Assessing Renewable Energy Adoption to Achieve Sustainable Development Goals in Ha’il Region
Abstract
1. Introduction
2. Review of the Literature
3. Methodology
3.1. Step 1: Empirical Approach
- H0: The error correction term is not significant, implying that there is no long-run adjustment to equilibrium.
- H1: The error correction term is significant, indicating that deviations from long-run equilibrium are corrected over time.
- t is 1, 2, …, T;
- is the column vector of the K-dimensional endogenous variable;
- are the column vector of the dimensional exogenous variables;
- are the coefficients of long-term equilibrium;
- t denotes the time period;
- is the stationary cointegration error term.
- Δ represents the first difference operator;
- is the intercept term;
- n is the number of lags in the model.
3.2. Step 2: Deep Learning Technique
4. Results and Analysis
4.1. Empirical Findings
- H0: There is no cointegration between the SDGs and SDGH;
- H1: A cointegration exists between the SDGs and SDGH.
4.2. Test and Forecast Results
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Gayen, D.; Chatterjee, R.; Roy, S. A review on environmental impacts of renewable energy for sustainable development. Int. J. Environ. Sci. Technol. 2024, 21, 5285–5310. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.B.; Zheng, L.; Guan, C. Exploring the impacts of spatial regulation on environmentally sustainable development: A new perspective of quasi–experimental evaluation based on the National Key Ecological Function Zones in China. Sustain. Dev. 2024, 32, 404–424. [Google Scholar] [CrossRef]
- Laaroussi, A.; Laaroussi, O.; Bouayad, A. Environmental impact study of the NOOR 1 solar project on the Southern Region of Morocco. Renew. Energy Environ. Sustain. 2023, 8, 9. [Google Scholar] [CrossRef]
- Kamboj, P.; Hejazi, M.; Qiu, Y.; Kyle, P.; Iyer, G. The path to 2060: Saudi Arabia’s long-term pathway for GHG emission reduction. Energy Strategy Rev. 2024, 55, 101537. [Google Scholar] [CrossRef]
- Nassar, K. Strategic energy transition in the Gulf Cooperation Council: Balancing economic, social, political, and environmental dynamics for sustainable development. Int. J. Green Energy 2024, 22, 1570–1586. [Google Scholar] [CrossRef]
- Farahat, A.; Kambezidis, H.D.; Labban, A. The Solar Radiation Climate of Saudi Arabia. Climate 2023, 11, 75. [Google Scholar] [CrossRef]
- Alanazi, A.; Hassan, I.; Jan, S.T.; Alanazi, M. Multi-criteria analysis of renewable energy technologies performance in diverse geographical locations of Saudi Arabia. Clean Technol. Environ. Policy 2024, 26, 1165–1196. [Google Scholar] [CrossRef]
- Khan, M.A.; Cárdenas-Barrón, L.E.; Treviño-Garza, G. Strategizing emissions reduction investment for a livestock production farm amid power demand pattern: A path to sustainable growth under the carbon cap environmental regulation. Oper. Res. Perspect. 2024, 13, 100313. [Google Scholar] [CrossRef]
- GIROUD. World Investment Report 2023: Investing in sustainable energy for all. In Proceedings of the United Nations Conference on Trade and Development, Geneva, Switzerland, 8–9 May 2023; GIROUD: New York, NY, USA, 2024. 205p. [Google Scholar]
- Zhang, X.; Khan, K.; Shao, X.; Oprean-Stan, C.; Zhang, Q. The rising role of artificial intelligence in renewable energy development in China. Energy Econ. 2024, 132, 107489. [Google Scholar] [CrossRef]
- Sami, U.; Lin, B.; Zhu, R. Developing a new sustainable policy perspective for Pakistan: An intricate nexus between green innovation. financial structure and ecological footprint. Energy 2025, 316, 134496. [Google Scholar]
- Ahmed, S.; Ali, A.; D’Angola, A. A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations. Sustainability 2024, 16, 1749. [Google Scholar] [CrossRef]
- Storey, A.; Johnson, D.; Chatellier, J.; Participation, C. Experience, and Perceptions of the Solar Over Louisville Solarize Program; A Technical Report Prepared for Louisville Metro Government; Louisville Metro Government: Louisville, KY, USA, 2023.
- Aldulaimi, S.H.; Abdeldayem, M.M. Examining the impact of renewable energy technologies on sustainability development in the middle east and north Africa region. Int. J. Eng. Bus. Manag. 2022, 14, 18479790221110835. [Google Scholar] [CrossRef]
- Magadum, S.; Prasad, P.; Almeida, J. Forecasting Renewable Energy Generation Capacity in South America by 2050 Using Machine Learning Models. arXiv 2025, arXiv:2503.17771. [Google Scholar]
- Nguyen, H.; Tran, D.; Li, Y. A Comparative Sustainability Assessment of Energy Transitions in Southeast Asia Using the SEEN Framework. Energies 2025, 18, 287. [Google Scholar]
- Dahhou, K.; Ezzahid, E.; Bouzidi, A. The Impact of Renewable Energy Consumption on Economic Growth in Morocco. Int. J. Energy Econ. Policy 2025, 15, 33–40. [Google Scholar] [CrossRef]
- Benchikh, S.; El Amrani, M.; Tazi, S. Harnessing Morocco’s Renewable Potential: Wind and Solar Energy Development. SCT Proc. Interdiscip. Insights Innov. 2024, 2, 318. [Google Scholar]
- Cheng, C.; Fang, Z.; Zhou, Q.; Jiang, Y.; Xue, S.; Zhao, S.; Wang, W.; Zhuang, Y.; Ding, T.; Tang, Y.; et al. Nature’s hand in megacity cluster progress: Integrating SDG11 with ecosystem service dynamics. Sustain. Cities Soc. 2024, 108, 105471. [Google Scholar] [CrossRef]
- Garcia, L.B.; Fiore, F.A.; Carvalho, F.L.C. Factors associated with the use of solar energy in urban households: Case study: Municipality of são josé dos campos. Int. J. Energy Econ. Policy 2023, 13, 522–530. [Google Scholar] [CrossRef]
- Patel, R.K.; Jha, P.; Chauhan, A.; Kant, R.; Kumar, R. Polycyclic Pyrazoles from Alkynyl Cyclohexadienones and Nonstabilized Diazoalkanes via [3+ 2]-Cycloaddition/[1, 5]-Sigmatropic Rearrangement/Aza-Michael Reaction Cascade. Org. Lett. 2024, 26, 839–844. [Google Scholar] [CrossRef]
- Lee, D.Y.; Park, S.Y. Global energy intensity convergence using a spatial panel growth model. Appl. Econ. 2022, 55, 4745–4764. [Google Scholar] [CrossRef]
- Abhishek, N.; Rahiman, H.U.; Suraj, N.; Abhinandan, K.; Ashoka, M.L.; Divyashree, M.S.; Raghupathif, S. Renewable energy initiatives by corporates and sustainable development–a mediation analysis. Cogent Econ. Financ. 2024, 12, 2344122. [Google Scholar]
- Lafortune, G.; Sachs, J.D. The Index of Countries’ Support for UN-based Multilateralism: Construction, Verification, and Correlates. Asian Econ. Pap. 2024, 23, 1–28. [Google Scholar] [CrossRef]
- Triki, R.; Maâloul, M.H.; Bahou, Y.; Kadria, M. The Impact of Digitization to Ensure Competitiveness of the Ha’il Region to Achieve Sustainable Development Goals. Sustainability 2023, 15, 1661. [Google Scholar] [CrossRef]
- Ordonez-Ponce, E. The role of local cultural factors in the achievement of the sustainable development goals. Sustain. Dev. 2023, 31, 1122–1134. [Google Scholar] [CrossRef]
- Tian, M.; Liu, Y.; Zhang, S.; Yu, C.; Ostrikov, K.; Zhang, Z. Overcoming the permeability-selectivity challenge in water purification using two-dimensional cobalt-functionalized vermiculite membrane. Nat. Commun. 2024, 15, 391. [Google Scholar] [CrossRef]
- Agbakwuru, V.; Obidi, P.O.; Salihu, O.S.; MaryJane, O.C. The role of renewable energy in achieving sustainable development goals. Int. J. Eng. Res. Updates 2024, 7, 13–027. [Google Scholar] [CrossRef]
- Krauss, J.E.; Cisneros, A.J.; Requena-I-Mora, M. Mapping Sustainable Development Goals 8, 9, 12, 13 and 15 through a decolonial lens: Falling short of ‘transforming our world’. Sustain. Sci. 2022, 17, 1855–1872. [Google Scholar] [CrossRef]
- Raman, R.; Lathabai, H.H.; Nedungadi, P. Sustainable development goal 12 and its synergies with other SDGs: Identification of key research contributions and policy insights. Discov. Sustain. 2024, 5, 150. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Phillips, P.C.B.; Perron, P. Testing for a Unit Root in Time Series Regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Johansen, S. Statistical Analysis of Cointegration Vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Johansen, S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica 1991, 59, 1551–1580. [Google Scholar] [CrossRef]
- Ban, R.; Deng, Y. Optimization Method for Predictive Models Based on ARIMA Time Series and K-means Clustering Algorithm. In Proceedings of the 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China, 25–27 May 2024; pp. 2391–2396. [Google Scholar] [CrossRef]
- Win, H.H.; San, K.K.; Chaw, K.E.E. Deep Learning for Commodity Price Forecasting: LSTM, BiLSTM, GRU Comparison with Variable Window Sizes and Activation Functions. In Proceedings of the 5th International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 7 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
Variables | Descriptions | Sources | References |
---|---|---|---|
SDG6 | Clean water and sanitation | World Development Indicators/Official Statistics KSA (https://data.worldbank.org/country/saudi-arabia & https://www.stats.gov.sa “accessed on 29 January 2025”) | [27,28] |
SDG7 | Affordable and clean energy | [27,29] | |
SDG12 | Responsible consumption and production | [30,31] | |
SDG13 | Climate and action | [29,31] | |
SDG15 | Life on land | [28,31] |
SDG6 | SDG7 | SDG12 | SDG13 | SDG15 | SDGH | |
---|---|---|---|---|---|---|
Mean | 4.562 | 4.656 | 2.406 | 1.477 | 1.516 | 4.697 |
Median | 4.589 | 4.705 | 2.367 | 1.572 | 1.518 | 4.724 |
Maximum | 4.603 | 5.020 | 2.880 | 1.790 | 1.598 | 6.097 |
Minimum | 4.265 | 4.154 | 1.847 | 0.772 | 1.372 | 2.388 |
Std. Dev. | 0.093 | 0.270 | 0.354 | 0.298 | 0.057 | 0.781 |
Skewness | −2.823 | −0.809 | 0.015 | −0.852 | −1.068 | 0.922 |
Kurtosis | 9.046 | 2.449 | 1.541 | 2.740 | 3.634 | 4.718 |
Jarque–Bera | 62.742 | 2.681 | 1.951 | 2.725 | 4.558 | 5.828 |
Probability | 0.000 | 0.261 | 0.376 | 0.255 | 0.102 | 0.054 |
SDG6 | 1 | |||||
SDG7 | 0.030 | 1 | ||||
SDG12 | 0.488 | 0.433 | 1 | |||
SDG13 | 0.440 | −0.281 | 0.887 | 1 | ||
SDG15 | 0.655 | −0.175 | 0.657 | 0.717 | 1 | |
SDGH | 0.539 | 0.762 | 0.764 | 0.660 | 0.346 | 1 |
Batches | Epochs | LSTM1 | LSTM2 | MSE | R2 |
---|---|---|---|---|---|
8 | 100 | 100 | 50 | 0.003309 | 0.935892 |
16 | 0.004126 | 0.925803 | |||
32 | 0.004813 | 0.909592 | |||
64 | 0.007951 | 0.857547 |
LSTM1 | 100 |
LSTM2 | 50 |
Batch | 8 |
Epoch | 100 |
Variable | ADF | PP | ||
---|---|---|---|---|
Intercept (0) | Intercept I (1) | Intercept I (0) | Intercept I (1) | |
SDGH | 0.8960 | 0.0000 *** | 0.0071 | 0.0000 *** |
SDG6 | 0.0000 *** | 0.0014 ** | 0.0000 | 0.0014 ** |
SDG7 | 0.0491 ** | 0.0015 ** | 0.9120 | 0.0015 ** |
SDG12 | 0.5780 | 0.0220 ** | 0.5780 | 0.0208 ** |
SDG13 | 0.6607 | 0.0135 ** | 0.6887 | 0.0000 *** |
SDG15 | 0.0661 *** | 0.0003 *** | 0.0661 | 0.0003 *** |
Hypothesized | Eigenvalue | Trace Statistics | 5% CV | Probability * |
---|---|---|---|---|
No. of CE(s) | ||||
None * | 0.999719 | 323.4694 | 95.75366 | 0.0000 |
At most 1 * | 0.988926 | 159.9534 | 69.81889 | 0.0000 |
At most 2 * | 0.834967 | 69.88991 | 47.85613 | 0.0001 |
At most 3 * | 0.649225 | 33.85768 | 29.79707 | 0.0161 |
At most 4 | 0.433851 | 12.90548 | 15.49471 | 0.1183 |
At most 5 | 0.073532 | 1.527526 | 3.841465 | 0.2165 |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | 313.0308 | NA | 1.87 × 10−21 | −30.70308 | −30.40436 | −30.64476 |
1 | 397.0467 | 109.2208 * | 1.85 × 10−23 | −35.50467 | −33.41364 * | −35.09648 |
2 | 450.3009 | 37.27790 | 1.23 × 10−23 * | −37.23009 * | −33.34673 | −36.47202 * |
Error Correction | (1)D(SDGH) | (2)D(SDG6) | (3)D(SDG7) | (4)D(SDG12) | (5)D(SDG13) | (6)D(SDG15) |
---|---|---|---|---|---|---|
Cointegration Eq | −0.088317 (0.08189) *** | −0.016272 (0.53446) | −0.151273 (0.02380) ** | −0.061096 (0.00072) * | 0.058779 (0.00315) ** | −0.081685 (0.00067) * |
SDGH(−1) | 0.013240 (0.02313) ** [0.05722] | 0.012941 (1.49737) [0.00864] | 0.103801 (0.07119) *** [1.45811] | 0.023319 (0.05104) ** [0.45688] | 0.210098 (0.22724) [0.92455] | 0.168751 (0.19546) [0.86336] |
SDGH(−2) | 0.225545 (0.027614) ** [0.81679] | −0.514771 (1.78710) [−0.28805] | 0.078171 (0.08496) *** [0.92005] | 0.020161 (0.06091) *** [0.33097] | −0.80661 (0.027121) ** [−2.97407] | 0.316920 (0.23328) [1.35855] |
SDG6(−1) | 7.802626 (5.35098) [1.45817] | −18.66631 (34.6306) [−0.53901] | −6.798718 (1.64643) [−4.12938] | −3.774512 (1.18041) [−3.19764] | −12.23363 (5.25560) [−2.32773] | 5.499433 (4.52048) [1.21656] |
SDG6(−2) | −5.020864 (4.54312) [−1.10516] | 11.70110 (29.4022) [0.39797] | −4.811658 (1.39786) [−3.44216] | −3.060355 (1.00220) [−3.05365] | 2.435546 (4.46214) [0.54582] | 4.641323 (3.83801) [1.20931] |
SDG7(−1) | 0.185664 (0.01153) * [1.60936] | 0.281626 (0.74662) [0.37720] | −0.115264 (0.03550) ** [−3.24720] | −0.065129 (0.02545) ** [−2.55918] | −0.375647 (0.11331) [−3.31526] | 0.004023 (0.09746) *** [0.04128] |
SDG7(−2) | −0.234998 (0.09757) *** [−2.40857] | −0.27483 (0.63144) [−0.43525] | −0.054589 (0.03002) ** [−1.81841] | −0.0381 (0.02152) ** [−1.77020] | 0.095127 (0.09583) *** [0.99268] | 0.169734 (0.08242) *** [2.05926] |
SDG12(−1) | −17.18332 (0.03383) ** [−1.51550] | 40.68929 (0.33797) ** [0.55450] | 12.85526 (0.48866) [3.68487] | 7.159117 (2.50120) [2.86227] | 27.72933 (11.1363) [2.49000] | −11.29688 (9.57859) [−1.17939] |
SDG12(−2) | 9.740122 (0.023038) ** [1.05522] | −23.50239 (0.97374) [−0.39343] | 9.733476 (0.08407) *** [3.42720] | 6.194075 (0.03619) ** [3.04199] | −1.730149 (0.06586) *** [−0.19084] | −9.494853 (7.79779) [−1.21763] |
SDG13(−1) | 0.098568 (0.07687) *** [1.28232] | −0.167356 (0.49747) [−0.33642] | 0.001300 (0.02365) ** [0.05496] | −0.000938 (0.01696) ** [−0.05531] | 0.000381 (0.07550) *** [0.00505] | 0.119493 (0.06494) *** [1.84014] |
SDG13(−2) | −0.018548 (0.07056) *** [−0.26287] | −0.155833 (0.45666) [−0.34125] | −0.008735 (0.02171) ** [−0.40235] | −0.00746 (0.01557) * [−0.47925] | 0.073357 (0.06930) ** [1.05849] | −0.060245 (0.05961) ** [−1.01066] |
SDG15(−1) | 0.344479 (0.28017) [1.22954] | −1.042552 (1.81321) [−0.57498] | −0.095652 (0.08620) [−1.10959] | −0.031946 (0.06180) [−0.51689] | 0.014823 (0.27518) [0.05387] | 0.653802 (0.23669) [2.76232] |
SDG15(−2) | −0.408106 (0.39432) [−1.03497] | 0.166635 (2.55194) [0.06530] | 0.062039 (0.12133) [0.51134] | 0.014387 (0.08698) *** [0.16540] | 0.717860 (0.38729) [1.85356] | −0.859204 (0.33312) [−2.57929] |
C | 0.108697 (0.03700) | 0.215977 (0.23945) | −0.023949 (0.01138) | −0.004058 (0.00816) | 0.098421 (0.03634) | −0.020553 (0.03126) |
R-squared | 0.764259 | 0.471703 | 0.994100 | 0.987438 | 0.978671 | 0.792686 |
Adj. R-squared | 0.360131 | −0.433948 | 0.983984 | 0.965902 | 0.942108 | 0.437290 |
Test | F-Statistic | Remarks |
---|---|---|
F-statistic | 7.991393 | No Heteroskedasticity |
Prob (F-stat) | 0.0086 | |
Durbin–Watson | 1.896138 | No Autocorrelation |
Akaike Information Criterion | −32.21675 | |
Schwarz Criterion | −28.33339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triki, R.; Mahmoud, S.M.; Bahou, Y.; Boudabous, M.M. Assessing Renewable Energy Adoption to Achieve Sustainable Development Goals in Ha’il Region. Sustainability 2025, 17, 6097. https://doi.org/10.3390/su17136097
Triki R, Mahmoud SM, Bahou Y, Boudabous MM. Assessing Renewable Energy Adoption to Achieve Sustainable Development Goals in Ha’il Region. Sustainability. 2025; 17(13):6097. https://doi.org/10.3390/su17136097
Chicago/Turabian StyleTriki, Rabab, Shawky Mohamed Mahmoud, Younès Bahou, and Mohamed Mahdi Boudabous. 2025. "Assessing Renewable Energy Adoption to Achieve Sustainable Development Goals in Ha’il Region" Sustainability 17, no. 13: 6097. https://doi.org/10.3390/su17136097
APA StyleTriki, R., Mahmoud, S. M., Bahou, Y., & Boudabous, M. M. (2025). Assessing Renewable Energy Adoption to Achieve Sustainable Development Goals in Ha’il Region. Sustainability, 17(13), 6097. https://doi.org/10.3390/su17136097