The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Region
2.2. Data Sources
2.2.1. NDVI Data
2.2.2. Land-Use/Land-Cover Data
2.2.3. Temperature and Precipitation Data
2.2.4. Solar Radiation Data
2.3. Research Methods
2.3.1. NPP Estimation
2.3.2. Characterization of the Spatial Distribution of NPP
- Characterization of the global spatial distribution of NPP
- Characterization of the local spatial distribution of NPP
2.3.3. NPP Stability Analysis
2.3.4. Analysis of the Impact of Land-Use Change on NPP
- Conversion between land-use types
- Amount of change in NPP due to land-use change
3. Results
3.1. Model Accuracy Verification
3.2. Spatial and Temporal Distribution of Net Primary Productivity of Vegetation
3.2.1. Temporal Variation Characteristics of NPP
3.2.2. Spatial Variation Characteristics of NPP
3.3. Spatial Stability of the NPP
3.4. Impact of Land-Use Change on Net Primary Productivity of Vegetation
4. Discussion
4.1. Drivers of NPP Temporal Variability: Policy Volatility, Urban Expansion, and Climate Feedbacks
4.2. Mechanisms of NPP Spatial Aggregation Patterns
4.3. Land-Use Conversion Dynamics and Agri-Ecological Trade-Offs in NPP Variation
4.4. Dual Critical Thresholds and Risk Early-Warning Mechanisms in Land Conversion Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LULC | Land use and land cover |
NPP | Net primary productivity |
LISA—CL | Local Indicators of Spatial Association—Cluster and Location |
CASA | Carnegie–Ames–Stanford approach |
Appendix A
Direction of Land-Use Type Transfer | Transfer Area /(m2) | NPP Change /(106 g C·m−2 year−1) |
---|---|---|
Farmland | 26,613,424,800 | 9577.91 |
Farmland to Forest | 506,003,400 | 127,667.66 |
Farmland to Grassland | 42,786,000 | −1914.65 |
Farmland to Water | 51,216,300 | −16372.19 |
Farmland to City | 208,542,600 | −22,980.45 |
Forest to Farmland | 598,843,800 | −168,461.41 |
Forest to Forest | 22,733,523,900 | −667,571.27 |
Forest to Water | 260,100 | −156.41 |
Forest to City | 2,985,300 | −1169.84 |
Grassland to Farmland | 9,126,000 | 505.28 |
Grassland to Forest | 244,800 | 75.23 |
Grassland to Grassland | 45,814,500 | 469.93 |
Grassland to Barren | 749,700 | −216.05 |
Grassland to City | 6,320,700 | −348.83 |
Water to Farmland | 20,208,600 | 5588.85 |
Water to Forest | 1,774,800 | 937.99 |
Water to Grassland | 1,225,800 | 283.71 |
Water | 491,998,500 | −21,386.88 |
Water to Barren | 489,600 | −32.80 |
Water to City | 12,111,300 | 2010.51 |
Barren to Farmland | 1,255,500 | 354.40 |
Barren to Grassland | 1,025,100 | 243.12 |
Barren to Water | 956,700 | −36.12 |
Barren | 9,774,000 | −598.84 |
Barren to City | 2,019,600 | 346.81 |
City to Farmland | 230,400 | 28.14 |
City to Water | 13,285,800 | −2629.02 |
City | 1,479,651,300 | 17,149.83 |
Wetland to Farmland | 6,720,300 | −761.70 |
Wetland to Forest | 260,100 | 36.05 |
Wetland | 20,295,900 | −209.57 |
Direction of Land-use type Transfer | Transfer Area /(m2) | NPP Change /(106 g C·m−2 year−1) |
---|---|---|
Farmland | 26,141,801,400 | −673,897.27 |
Farmland to Forest | 652,275,000 | 137,432.77 |
Farmland to Grassland | 16,573,500 | −802.77 |
Farmland to Water | 241,275,600 | −84,639.19 |
Farmland to City | 197,883,900 | −26,735.21 |
Forest to Farmland | 506,565,000 | −140,685.55 |
Forest | 22,729,808,700 | −937,569.34 |
Forest to Water | 734,400 | −442.66 |
Forest to City | 4,698,900 | −1818.72 |
Grassland to Farmland | 27,427,500 | 530.20 |
Grassland to Forest | 1,759,500 | 450.09 |
Grassland | 47,063,700 | −156.60 |
Grassland to Water | 4,760,100 | −1455.11 |
Grassland to Barren | 475,200 | −105.40 |
Grassland to City | 9,365,400 | −842.85 |
Water to Farmland | 36,887,400 | 10,854.08 |
Water to Water | 3,260,700 | 1730.54 |
Water to Grassland | 244,800 | 66.49 |
Water | 507,076,200 | −15,603.38 |
Water to Barren | 230,400 | 12.24 |
Water to City | 10,017,900 | 1852.53 |
Barren to Farmland | 1,003,500 | 318.88 |
Barren to Forest | 260,100 | 144.16 |
Barren to Grassland | 232,200 | 68.52 |
Barren to Water | 1,746,000 | −12.66 |
Barren | 4,772,700 | 365.71 |
Barren to City | 2,998,800 | 625.07 |
City to Farmland | 244,800 | 20.75 |
City to Water | 36,645,300 | −8803.79 |
City | 1,674,740,700 | −41,115.23 |
Wetland to Farmland | 3,505,500 | −451.49 |
Wetland | 16,790,400 | −494.87 |
Direction of Land-Use type Transfer | Transfer Area /(m2) | NPP Change /(106 g C·m−2 year−1) |
---|---|---|
Farmland | 2,620,360,3500 | 1,485,193.82 |
Farmland to Forest | 207,911,700 | 77,891.18 |
Farmland to Grassland | 8,050,500 | 417.40 |
Farmland to Water | 81,981,000 | −24,054.32 |
Farmland to City | 215,888,400 | −11,906.86 |
Forest to Farmland | 1,323,404,100 | −237,944.26 |
Forest | 22,058,695,800 | 3,047,623.25 |
Forest to City | 5,264,100 | −1535.16 |
Grassland to Farmland | 17,127,000 | 1358.81 |
Grassland to Forest | 1,515,600 | 602.14 |
Grassland | 37,251,900 | 2775.50 |
Grassland to Water | 1,240,200 | −335.79 |
Grassland to Barren | 749,700 | −131.88 |
Grassland to City | 6,229,800 | −202.43 |
Water to Farmland | 15,832,800 | 6043.37 |
Water to Forest | 244,800 | 171.28 |
Water | 759,534,300 | 24,006.55 |
Water to Barren | 2,235,600 | 282.70 |
Water to City | 14,390,100 | 3883.42 |
Barren to Farmland | 765,000 | 227.83 |
Barren to Water | 750,600 | −39.24 |
Barren | 2,959,200 | 125.99 |
Barren to City | 1,003,500 | 186.64 |
City to Farmland | 260,100 | 43.18 |
City to Water | 18,133,200 | −3338.07 |
City | 1,881,312,300 | 101,918.51 |
Wetland to Farmland | 5,019,300 | −214.04 |
Wetland | 11,771,100 | 1047.69 |
Direction of Land-Use type Transfer | Transfer Area /(m2) | NPP Change /(106 g C·m−2 year−1) |
---|---|---|
Farmland | 24,588,205,200 | −603,741.48 |
Farmland to Forest | 1,755,548,100 | 411,459.59 |
Farmland to Grassland | 11,465,100 | 70.26 |
Farmland to Water | 151,132,500 | −48,597.92 |
Farmland to Barren | 747,900 | −152.89 |
Farmland to City | 1,056,136,500 | −111,895.26 |
Farmland to Wetland | 2,776,500 | 302.67 |
Forest to Farmland | 1,915,096,500 | −655941.54 |
Forest | 20,254,353,300 | −1,692,861.74 |
Forest to Grassland | 5,886,000 | −1835.42 |
Forest to Water | 33,960,600 | −21,718.32 |
Forest to Barren | 152,100 | −79.45 |
Forest to City | 5,037,3000 | −21,353.35 |
Forest to Wetland | 8,546,400 | −1785.72 |
Grassland to Farmland | 27,105,300 | −534.60 |
Grassland to Forest | 5,983,200 | 1431.23 |
Grassland to Grassland | 2,794,500 | 30.63 |
Grassland to Water | 421,200 | −133.41 |
Grassland to Barren | 100,800 | −20.12 |
Grassland to City | 8,897,400 | −899.67 |
Water to Farmland | 164,236,500 | 53,465.26 |
Water to Forest | 31,644,000 | 18,494.94 |
Water to Grassland | 295,200 | 105.16 |
Water | 602,616,600 | 17,195.02 |
Water to Barren | 953,100 | 138.83 |
Water to City | 61,877,700 | 15,107.11 |
Water to Wetland | 16,200 | 7.44 |
Barren to Farmland | 1,454,400 | 335.52 |
Barren to Forest | 196,200 | 96.06 |
Barren to Grassland | 93,600 | 24.46 |
Barren to Water | 1,224,900 | −81.23 |
Barren | 419,400 | 21.31 |
Barren to City | 2,556,000 | 381.60 |
City to Farmland | 893,205,000 | 77,956.92 |
City to Forest | 46,801,800 | 16,203.18 |
City to Grassland | 2,170,800 | 256.07 |
City to Water | 45,582,300 | −9559.82 |
City to Barren | 798,300 | −73.92 |
City | 1,135,511,100 | 6681.50 |
City to Wetland | 18,900 | 4.17 |
Wetland to Farmland | 2,641,500 | −412.61 |
Wetland to Forest | 8,636,400 | 887.20 |
Wetland to Grassland | 1800 | −0.23 |
Wetland to Water | 8100 | −3.67 |
Wetland to City | 33,300 | −7.91 |
Wetland | 450,000 | −10.19 |
References
- Gerland, P.; Hertog, S.; Wheldon, M.; Kantorova, V.; Gu, D.; Gonnella, G.; Williams, I.; Zeifman, L.; Bay, G.; Castanheira, H.; et al. World Population Prospects 2022: Summary of Results; United Nations: New York, NY, USA, 2022; ISBN 978-92-1-148373-4. [Google Scholar]
- Hertog, S.; Gerland, P.; Wilmoth, J. India Overtakes China as the World’s Most Populous Country; UN Department of Economic and Social Affairs: New York, NY, USA, 2023. [Google Scholar]
- Mondal, I.; Thakur, S.; Ghosh, P.; De, T.K.; Bandyopadhyay, J. Land use/land cover modeling of Sagar island, India using remote sensing and GIS techniques. In Emerging Technologies in Data Mining and Information Security: Proceeding of the IEMIS 2018, Online, 2018; Springer: Singapore, 2019; Volume 1, pp. 771–785. [Google Scholar]
- Mushtaq, F.; Pandey, A.C. Assessment of land use/land cover dynamics vis-à-vis hydrometeorological variability in Wular lake environs Kashmir Valley, India using multitemporal satellite data. Arab. J. Geosci. 2014, 7, 4707–4715. [Google Scholar] [CrossRef]
- Du, Y.; Lei, G. Research on the cointegration of intensive utilization of urban land and economic development in Harbin city. Land. Resour. Intell. 2012, 46–52. [Google Scholar]
- Benítez, G.; Pérez-Vázquez, A.; Nava-Tablada, M.; Equihua, M.; Álvarez-Palacios, J.L. Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa city, Veracruz, Mexico. Environ. Urban 2012, 24, 149–166. [Google Scholar] [CrossRef]
- Chowdhury, M.; Hasan, M.E.; Abdullah-Al-Mamun, M.M. Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2020, 23, 63–75. [Google Scholar] [CrossRef]
- Rawat, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef]
- Aithal, B.H.; Ramachandra, T.V. Visualization of urban growth pattern in Chennai using geoinformatics and spatial metrics. J. Indian Soc. Remote Sens. 2016, 44, 617–633. [Google Scholar] [CrossRef]
- Fazal, S. Urban expansion and loss of agricultural land—A GIS based study of Saharanpur city, India. Environ. Urban 2000, 12, 133–149. [Google Scholar] [CrossRef]
- Bisht, B.S.; Kothyari, B.P. Land-cover change analysis of Garur Ganga watershed using GIS/remote sensing technique. J. Indian Soc. Remote Sens. 2001, 29, 137–141. [Google Scholar] [CrossRef]
- Deka, J.; Tripathi, O.P.; Khan, M.L.; Srivastava, V.K. Study on land-use and land-cover change dynamics in eastern Arunachal Pradesh, n.e. India using remote sensing and GIS. Trop. Ecol. 2019, 60, 199–208. [Google Scholar] [CrossRef]
- Ghosh, S.; Sen, K.K.; Rana, U.; Rao, K.S.; Saxena, K.G. Application of GIS for land-use/land-cover change analysis in a mountainous terrain. J. Indian Soc. Remote Sens. 1996, 24, 193–202. [Google Scholar] [CrossRef]
- Liping, C.; Yujun, S.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef] [PubMed]
- Meshesha, T.W.; Tripathi, S.K.; Khare, D. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa watershed northern central highland of Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Hegazy, I.R.; Kaloop, M.R. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [Google Scholar] [CrossRef]
- Berberoglu, S.; Akin, A. Assessing different remote sensing techniques to detect land use/cover changes in the eastern mediterranean. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 46–53. [Google Scholar] [CrossRef]
- Muhammad, R.; Zhang, W.; Abbas, Z.; Guo, F.; Gwiazdzinski, L. Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: A case study of Linyi, China. Land 2022, 11, 419. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef]
- Ning, L.; Sheng, S.; Meng, Y. The interplay and synergistic relationship between urban land expansion and urban resilience across the three principal metropolitan regions of the Yangtze river basin. Sci. Rep. 2024, 14, 31868. [Google Scholar] [CrossRef]
- Lai, J.; Qi, S. Coupled effects of climate change and human activities on vegetation dynamics in the southwestern alpine canyon region of China. J. Mt. Sci. 2024, 21, 3234–3248. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan mountain region, Southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.; Kim, S.H.; Lee, E.J. Long-term land cover changes in the western part of the Korean demilitarized zone. Land 2021, 10, 708. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Wu, J. Decoupling relationship between urbanization and carbon sequestration in the pearl river delta from 2000 to 2020. Remote Sens. 2022, 14, 526. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, J.; Lu, Y.; Yang, T.; Lyu, S.; Shi, K.; Zhou, F.; Yu, G. Determining dominating control mechanisms of inland water carbon cycling processes and associated gross primary productivity on regional and global scales. Earth Sci. Rev. 2021, 213, 103497. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, C.; Wen, Y. Determining the impacts of climate change and urban expansion on net primary productivity using the spatio-temporal fusion of remote sensing data. Ecol. Indic. 2021, 127, 107737. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Xiong, N.; Sun, L.; Xu, J. Impacts of land use changes on net primary productivity in urban agglomerations under multi-scenarios simulation. Remote Sens. 2022, 14, 1755. [Google Scholar] [CrossRef]
- Guarderas, P.; Trávez, K.; Boeraeve, F.; Cornelis, J.; Dufrêne, M. Native forest conversion alters soil macroinvertebrate diversity and soil quality in tropical mountain landscapes of Northern Ecuador. Front. Glob. Change 2022, 5, 959799. [Google Scholar] [CrossRef]
- Bolte, A.; Mansourian, S.; Madsen, P.; Derkyi, M.; Kleine, M.; Stanturf, J. Forest adaptation and restoration under global change. Ann. Sci. 2023, 80, 7. [Google Scholar] [CrossRef]
- Lieth, H.; Whittaker, R.H. Primary Productivity of the Biosphere; Ecological Studies: New York, NY, USA, 1975. [Google Scholar]
- Ryan-Keogh, T.J.; Tagliabue, A.; Thomalla, S.J. Global decline in net primary production underestimated by climate models. Commun. Earth Environ. 2025, 6, 75. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C. The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Huang, M. NDVI joint process-based models drive a learning ensemble model for accurately estimating cropland net primary productivity (NPP). Front. Environ. Sci. 2024, 11, 1304400. [Google Scholar] [CrossRef]
- Wang, R.; Mo, X.; Ji, H.; Zhu, Z.; Wang, Y.; Bao, Z.; Li, T. Comparison of the CASA and InVEST models’ effects for estimating spatiotemporal differences in carbon storage of green spaces in megacities. Sci. Rep. 2024, 14, 5456. [Google Scholar] [CrossRef]
- Fang, P.; Yan, N.; Wei, P.; Zhao, Y.; Zhang, X. Aboveground biomass mapping of crops supported by improved casa model and sentinel-2 multispectral imagery. Remote Sens. 2021, 13, 2755. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Running, S.W.; Nemani, R.R. Regional hydrologic and carbon balance responses of forests resulting from potential climate change. Clim. Change 1991, 19, 349–368. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C. Widespread decline of Congo rainforest greenness in the past decade. Nature 2014, 509, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Piao, S.; Ciais, P.; Friedlingstein, P.; Myneni, R.B.; Cox, P.; Heimann, M.; Miller, J.; Peng, S.; Wang, T.; et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 2014, 506, 212–215. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Q.; Guan, Q.; Zhang, Z.; Yan, Y.; Mi, J.; Yang, E. Quantifying the nonlinear response of vegetation greening to driving factors in Longnan of China based on machine learning algorithm. Ecol. Indic. 2023, 151, 110277. [Google Scholar] [CrossRef]
- Dong, F.; Mu, X.; Meng, F.; Zheng, E.; Li, T.; Zhang, H.; Jiang, S. Analyzing the spatial patterns and impact factors of vegetation net primary productivity and precipitation utilization efficiency in Heilongjiang province under climate change. Water 2024, 16, 3681. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Zhang, Y.; Gentine, P.; Luo, X.; Lian, X.; Liu, Y.; Zhou, S.; Michalak, A.M.; Sun, W.; Fisher, J.B.; Piao, S.; et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun. 2022, 13, 4875. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Potter, C.; Pass, S. Changes in the net primary production of ecosystems across western Europe from 2015 to 2022 in response to historic drought events. Carbon Balance Manag. 2024, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lin, N.; You, G.; Wang, Y.; Wang, L.; Zou, C.; Yan, R.; Zhang, Y. Variations and influencing factors of vegetation net primary productivity over 31 years in Wuyishan national park, China. Sci. Rep. 2024, 14, 29002. [Google Scholar] [CrossRef] [PubMed]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Dai, Y.; Zhang, M.; Chen, E. Exploring the cooling intensity of green cover on urban heat island: A case study of nine main urban districts in Chongqing. Sustain. Cities Soc. 2025, 124, 106299. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Feng, Z.; Xiao, C. A review of land use and land cover in mainland southeast Asia over three decades (1990–2023). Land 2025, 14, 828. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, R.; Peng, D.; Yang, X.; Wang, Y.; Hu, Y.; Zheng, S.; Zhang, J.; Bai, J.; Li, Q. Spatiotemporal dynamics of net primary productivity in China’s urban lands during 1982–2015. Remote Sens. 2021, 13, 400. [Google Scholar] [CrossRef]
- Bayer, A.D.; Fuchs, R.; Mey, R.; Krause, A.; Verburg, P.H.; Anthoni, P.; Arneth, A. Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services. Earth Syst. Dynam. 2021, 12, 327–351. [Google Scholar] [CrossRef]
- Mao, R.; Xing, L.; Wu, Q.; Song, J.; Li, Q.; Long, Y.; Shi, Y.; Huang, P.; Zhang, Q. Evaluating net primary productivity dynamics and their response to land-use change in the loess plateau after the ‘grain for green’ program. J. Environ. Manag. 2024, 360, 121112. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Xie, B.; Liang, Y.; Li, X.; Zhou, K. Decoupling the effect of climate and land-use changes on carbon sequestration of vegetation in Mideast Hunan province, China. Forests 2021, 12, 1573. [Google Scholar] [CrossRef]
- Gao, J.; Shi, Y.; Zhang, H.; Chen, X.; Zhang, W.; Shen, W.; Xiao, T.; Zhang, Y. China Regional 250 m Normalized Difference Vegetation Index Data Set (2000–2023); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2024. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover datasets and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Zhu, W.-Q.; Pan, Y.-Z.; Zhang, J.-S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar] [CrossRef]
- Song, M.; Zhao, Y.; Liang, J.; Li, F. Spatial-temporal variability of carbon emission and sequestration and coupling coordination degree in Beijing district territory. Clean. Environ. Syst. 2023, 8, 100102. [Google Scholar] [CrossRef]
- Chen, J.; Shao, Z.; Huang, X.; Hu, B. Multi-source data-driven estimation of urban net primary productivity: A case study of Wuhan. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103638. [Google Scholar] [CrossRef]
- Huang, X.; He, L.; He, Z.; Nan, X.; Lyu, P.; Ye, H. An improved carnegie-ames-stanford approach model for estimating ecological carbon sequestration in mountain vegetation. Front. Ecol. Evol. 2022, 10, 1048607. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Wang, Z.; Li, J.; Xu, Z. Dynamics and drivers of grasslands in the Eurasian steppe during 2000–2014. Sustainability 2021, 13, 5887. [Google Scholar] [CrossRef]
- Zhang, L.; Guan, Q.; Li, H.; Chen, J.; Meng, T.; Zhou, X. Assessment of coastal carbon storage and analysis of its driving factors: A case study of Jiaozhou bay, China. Land 2024, 13, 1208. [Google Scholar] [CrossRef]
- Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the yellow river basin. Sci. Rep. 2022, 12, 5105. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Khan, D.; Rossen, L.M.; Hamilton, B.E.; He, Y.; Wei, R.; Dienes, E. Hot spots, cluster detection and spatial outlier analysis of teen birth rates in the U.S., 2003–2012. Spat. Spatiotemporal Epidemiol. 2017, 21, 67–75. [Google Scholar] [CrossRef]
- Mondal, P.; Southworth, J. Evaluation of conservation interventions using a cellular automata-markov model. Ecol. Manag. 2010, 260, 1716–1725. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Xi, Z.; Chen, G.; Xing, Y.; Xu, H.; Tian, Z.; Ma, Y.; Cui, J.; Li, D. Spatial and temporal variation of vegetation NPP and analysis of influencing factors in Heilongjiang province, China. Ecol. Indic. 2023, 154, 110798. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze river basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Luo, Q.; Hu, K.; Liu, W.; Wu, H. Scientometric analysis for spatial autocorrelation-related research from 1991 to 2021. ISPRS Int. J. Geoinf. 2022, 11, 309. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.; Liu, Z.; Huang, Q. Characteristics and progress of land use/cover change research during 1990–2018. J. Geogr. Sci. 2022, 32, 537–559. [Google Scholar] [CrossRef]
- Du, T.; Yang, F.; Li, J.; Zhang, C.; Cui, K.; Zheng, J. Long time series spatiotemporal variations in NPP based on the CASA model in the eco-urban agglomeration around Poyang lake, China. Remote Sens. 2025, 17, 80. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J. Integrated global assessment of the natural forest carbon potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, Z.; Wu, Z. Exploring the relationship between urbanization and vegetation ecological quality changes in the Guangdong–Hong Kong–Macao greater bay area. Land 2024, 13, 1246. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.; Shangguan, Z. Land-use conversion and changing soil carbon stocks in China’s ‘grain-for-green’ program: A synthesis. Glob. Change Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Ren, Q.; Yan, H.; Li, L.; Zhao, X.; Mu, X.; Wu, P.; Yu, Q. Target areas for harmonizing the grain for green programme in China’s loess plateau. Land Degrad. Dev. 2020, 31, 325–333. [Google Scholar] [CrossRef]
- Dai, L.; Tang, H.; Pan, Y.; Liang, D. Enhancing ecosystem services in the agro-pastoral transitional zone based on local sustainable management: Insights from Duolun county in Northern China. Land 2022, 11, 805. [Google Scholar] [CrossRef]
- Assede, E.S.P.; Orou, H.; Biaou, S.S.H.; Geldenhuys, C.J.; Ahononga, F.C.; Chirwa, P.W. Understanding drivers of land use and land cover change in Africa: A review. Curr. Landsc. Ecol. Rep. 2023, 8, 62–72. [Google Scholar] [CrossRef]
- Koutika, L. Boosting c sequestration and land restoration through forest management in tropical ecosystems: A mini-review. Ecologies 2022, 3, 13–29. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Mansingh, A.; Pradhan, A.; Rath, L.P.; Kujur, A.J.; Ekka, N.J.; Panda, B.P. Spatio-temporal analysis of fragmentation and rapid land use changes in an expanding urban region of eastern India. Discov. Sustain. 2025, 6, 131. [Google Scholar] [CrossRef]
- Wilson, M.C.; Chen, X.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, J.; Zeng, Y.; Gu, T.; Chen, W. Impacts of construction land expansion on cultivated land fragmentation in China, 2000–2020. Environ. Monit. Assess. 2025, 197, 300. [Google Scholar] [CrossRef]
- Diyaolu, C.O.; Folarin, I.O. The role of biodiversity in agricultural resilience: Protecting ecosystem services for sustainable food production. Int. J. Res. Publ. Rev. 2024, 5, 1560–1573. [Google Scholar] [CrossRef]
- Khan, M.A.; Anser, M.K.; Usman, B.; Nabi, A.A.; Ahmad, I.; Zaman, K. Decoding carbon sequestration: The impact of agriculture, conservation policies, climate, and land use. Asian J. Water Environ. Pollut. 2025, 22, 52–66. [Google Scholar] [CrossRef]
- Farooqi, T.J.A.; Li, X.; Yu, Z.; Liu, S.; Sun, O.J. Reconciliation of research on forest carbon sequestration and water conservation. J. Res. 2021, 32, 7–14. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L.; Qiu, Q.; Chen, H. Assessing the impacts of urban expansion on habitat quality by combining the concepts of land use, landscape, and habitat in two urban agglomerations in China. Sustainability 2020, 12, 4346. [Google Scholar] [CrossRef]
- Li, W.; Xie, S.; Wang, Y.; Huang, J.; Cheng, X. Effects of urban expansion on ecosystem health in Southwest China from a multi-perspective analysis. J. Clean Prod. 2021, 294, 126341. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y. Analysis of land use changes in Harbin from 2000 to 2020. Urban. Intensive Land Use 2024, 4, 238–246. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Brancalion, P.H.S.; Lamb, D.; Laestadius, L.; Calmon, M.; Kumar, C. A policy-driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 2017, 10, 125–132. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, J.; He, J.; Zhang, P.; Yi, F.; Yue, C.; Wang, L.; Mei, D.; Teng, S.; Duan, L.; et al. Impact of Natural and Human Factors on Dryland Vegetation in Eurasia from 2003 to 2022. Plants 2024, 13, 2985. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, J.; Jiao, L.; Geiß, C.; Droin, A.; Taubenböck, H. Unveiling the spatio-temporal patterns of vegetation growth influenced by diverse urban intensity gradients. Environ. Impact Assess. Rev. 2025, 112, 107810. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, H.-Y.; Dai, Q.-Y.; Guo, Z.-D.; Zheng, Z.-W.; Pan, Y.-C. Spatial-temporal variation in net primary productivity in terrestrial vegetation ecosystems and its driving forces in Southwest China. Environ. Sci. 2023, 44, 2704–2714. [Google Scholar] [CrossRef]
- Wu, C.; Chen, K.; E, C.; You, X.; He, D.; Hu, L.; Liu, B.; Wang, R.; Shi, Y.; Li, C.; et al. Improved CASA model based on satellite remote sensing data: Simulating net primary productivity of Qinghai lake basin alpine grassland. Geosci. Model. Dev. 2022, 15, 6919–6933. [Google Scholar] [CrossRef]
- Bai, X.; Li, Z.; Li, W.; Zhao, Y.; Li, M.; Chen, H.; Wei, S.; Jiang, Y.; Yang, G.; Zhu, X. Comparison of machine-learning and CASA models for predicting apple fruit yields from time-series planet imageries. Remote Sens. 2021, 13, 3073. [Google Scholar] [CrossRef]
- Yan, J.; Dilishati, Y.; Xia, F. Definition and threshold measurement of narrow land development intensity in province scale based on coordinated development. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2019, 35, 255–264. [Google Scholar] [CrossRef]
- Cao, J.; Liang, M.; Hu, X.; Zhang, J.; Li, J.; Bai, B.; Chen, Y.; Hu, Y.; Wu, S. Evaluation and prediction of ecological benefits in Song-Liao river basin. Remote Sens. 2024, 16, 3993. [Google Scholar] [CrossRef]
- Shang, Y.; Cao, Y.; Li, G.; Gao, K.; Zhang, H.; Sheng, J.; Chen, D.; Lin, J. Characteristics of meteorology and freeze-thaw in high-latitude cold regions: A case study in Da Xing’anling, Northeast China (2022–2023). Front. Earth Sci. 2025, 12, 1476234. [Google Scholar] [CrossRef]
- Li, X.; Cong, S.; Tang, L.; Ling, X. Effect of freeze–thaw cycles on the microstructure characteristics of unsaturated expansive soil. Sustainability 2025, 17, 762. [Google Scholar] [CrossRef]
- Chen, A.; Zhong, X.; Wang, J.; Li, J. Spatiotemporal patterns and driving forces of net primary productivity in south and southeast Asia based on google earth engine and MODIS data. Catena 2025, 249, 108689. [Google Scholar] [CrossRef]
NPP Change. | 2000 to 2005 | 2010 to 2005 | 2015 to 2010 | 2020 to 2015 | ||||
---|---|---|---|---|---|---|---|---|
Area/km2 | Percentage | Area/km2 | Percentage | Area/km2 | Percentage | Area/km2 | Percentage | |
≤ −750 | 0.00 | 0.000% | 0.00 | 0.000% | 0.00 | 0.000% | 50.23 | 0.095% |
≤ −500 | 4.72 | 0.009% | 23.80 | 0.045% | 3.48 | 0.007% | 43.69 | 0.082% |
≤ −250 | 259.87 | 0.489% | 215.01 | 0.405% | 33.51 | 0.063% | 559.17 | 1.052% |
≤ 0 | 32,015.25 | 60.251% | 41,266.63 | 77.661% | 4148.08 | 7.806% | 41,604.78 | 78.297% |
≤ 250 | 20,848.84 | 39.236% | 11,619.81 | 21.868% | 48,768.07 | 91.778% | 10,772.94 | 20.274% |
≤ 500 | 7.47 | 0.014% | 10.68 | 0.020% | 180.76 | 0.340% | 94.26 | 0.177% |
≤ 750 | 0.75 | 0.001% | 0.97 | 0.002% | 0.98 | 0.002% | 11.55 | 0.022% |
≤ 1000 | 0.00 | 0.000% | 0.00 | 0.000% | 2.01 | 0.004% | 0.28 | 0.001% |
2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|
Moran I | 0.83 | 0.85 | 0.85 | 0.87 | 0.74 |
Z-score | 744.96 | 763.00 | 759.37 | 774.10 | 783.16 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2000 | 2005 | 2010 | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LISA-CL | Area/km2 | Percentage | Area/km2 | Percentage | Area/km2 | Percentage | Area/km2 | Percentage | Area/km2 | Percentage |
Not Significant | 11,425.27 | 21.60% | 14,069.15 | 26.62% | 14,675.05 | 27.75% | 11,056.72 | 20.92% | 10,149.64 | 19.23% |
High–high | 19,768.48 | 37.37% | 19,675.97 | 37.22% | 19,081.94 | 36.08% | 19,183.67 | 36.29% | 18,419.49 | 34.89% |
Low–low | 21,184.06 | 40.05% | 18,514.52 | 35.03% | 18,596.77 | 35.17% | 22,088.64 | 41.79% | 23,689.94 | 44.88% |
Low–high | 404.95 | 0.77% | 503.11 | 0.95% | 399.60 | 0.76% | 433.72 | 0.82% | 459.49 | 0.87% |
High–low | 112.01 | 0.21% | 95.11 | 0.18% | 129.76 | 0.25% | 95.10 | 0.18% | 67.21 | 0.13% |
Coefficient of Variation | Degree of Variation | Area/km2 | Percentage of Total Area |
---|---|---|---|
CV ≤ 0.05 | Low volatility fluctuations | 17,351.80 | 32.89% |
0.05 < C ≤ 0.1 | Relatively low volatility fluctuations | 29,071.08 | 55.11% |
0.1 < CV ≤ 0.15 | Moderate volatility fluctuations | 3869.12 | 7.33% |
0.15 < CV ≤ 0.2 | Relatively high volatility fluctuations | 857.27 | 1.63% |
CV > 0.2 | High volatility fluctuations | 1603.24 | 3.04% |
Time Period | Direction of Land-Use type Transfer | Transfer Area /(m2) | NPP Change /(106 g C·m−2 year−1) |
---|---|---|---|
From 2000 to 2005 | Farmland | 26,613,424,800 | 9577.91 |
Farmland to Forest | 506,003,400 | 127,667.66 | |
Farmland to City | 208,542,600 | −22,980.45 | |
Forest to Farmland | 598,843,800 | −168,461.41 | |
Forest | 22,733,523,900 | −667,571.27 | |
Forest to City | 2,985,300 | −1169.84 | |
Grassland to Farmland | 9,126,000 | 505.28 | |
Grassland to Forest | 244,800 | 75.23 | |
Grassland | 45,814,500 | 469.93 | |
Water to Farmland | 20,208,600 | 5588.85 | |
Water to Forest | 1,774,800 | 937.99 | |
Water | 491,998,500 | −21,386.88 | |
Barren to Farmland | 1,255,500 | 354.40 | |
Barren | 9,774,000 | −598.84 | |
Barren to City | 2,019,600 | 346.81 | |
City to Farmland | 230,400 | 28.14 | |
City to Water | 13,285,800 | −2629.02 | |
City | 1,479,651,300 | 17,149.83 | |
Wetland to Farmland | 6,720,300 | −761.70 | |
Wetland to Forest | 260,100 | 36.05 | |
Wetland | 20,295,900 | −209.57 | |
From 2005 to 2010 | Farmland | 26,141,801,400 | −673,897.27 |
Farmland to Forest | 652,275,000 | 137,432.77 | |
Farmland to City | 197,883,900 | −26,735.21 | |
Forest to Farmland | 506,565,000 | −140,685.55 | |
Forest to City | 4,698,900 | −1818.72 | |
Grassland to Farmland | 27,427,500 | 530.20 | |
Grassland | 47,063,700 | −156.60 | |
Grassland to City | 9,365,400 | −842.85 | |
Water to Farmland | 36,887,400 | 10,854.08 | |
Water | 507,076,200 | 15,603.38 | |
Water to City | 10,017,900 | 1852.53 | |
Barren to Farmland | 1,003,500 | 318.88 | |
Barren to City | 2,998,800 | 625.07 | |
Barren | 4,772,700 | 365.71 | |
City to Farmland | 244,800 | 20.75 | |
City to Water | 36,645,300 | −8803.79 | |
City | 1,674,740,700 | −41,115.23 | |
Wetland to Farmland | 3,505,500 | −451.49 | |
Wetland | 16,790,400 | −494.87 | |
From 2010 to 2015 | Farmland | 26,203,603,500 | 1,485,193.82 |
Farmland to Forest | 207,911,700 | 77,891.18 | |
Farmland to City | 215,888,400 | −11,906.86 | |
Forest to Farmland | 1,323,404,100 | −237,944.26 | |
Forest | 22,058,695,800 | 3,047,623.25 | |
Forest to City | 5,264,100 | −1535.16 | |
Grassland to Farmland | 17,127,000 | 1358.81 | |
Grassland to Forest | 1,515,600 | 602.14 | |
Grassland | 37,251,900 | 2775.50 | |
Water to Farmland | 15,832,800 | 6043.37 | |
Water | 759,534,300 | 24,006.55 | |
Water to City | 14,390,100 | 3883.42 | |
Barren to Farmland | 765,000 | 227.83 | |
Barren | 2,959,200 | 125.99 | |
Barren to City | 1,003,500 | 186.64 | |
City to Farmland | 260,100 | 43.18 | |
City to Water | 18,133,200 | −3338.07 | |
City | 1,881,312,300 | 101,918.51 | |
Wetland to Farmland | 5,019,300 | −214.04 | |
Wetland | 11,771,100 | 1047.69 | |
From 2015 to 2020 | Farmland | 24,588,205,200 | −60,3741.48 |
Farmland to Forest | 1,755,548,100 | 411,459.59 | |
Farmland to City | 1,056,136,500 | −111,895.26 | |
Forest to Farmland | 1,915,096,500 | −655,941.54 | |
Forest | 20,254,353,300 | −1,692,861.74 | |
Forest to City | 50,373,000 | −21,353.35 | |
Grassland to Forest | 5,983,200 | 1431.23 | |
Grassland | 2,794,500 | 30.63 | |
Grassland to City | 8,897,400 | −899.67 | |
Water to Farmland | 164,236,500 | 53,465.26 | |
Water | 602,616,600 | 17,195.02 | |
Water to City | 61,877,700 | 15,107.11 | |
City to Farmland | 893,205,000 | 77,956.92 | |
City to Forest | 46,801,800 | 16,203.18 | |
City | 1,135,511,100 | 6681.50 | |
Wetland to Farmland | 2,641,500 | −412.61 | |
Wetland to Forest | 8,636,400 | 887.20 | |
Wetland | 450,000 | −10.19 |
Period | Land Conversion Rate (%) | Proportion of NPP Loss Area (%) | Proportion of NPP Increase Area (%) | NPP Loss per Unit of Conversion Rate (Loss/Conversion Rate) | NPP Increase per Unit of Conversion Rate (Increase/Conversion Rate) |
---|---|---|---|---|---|
2000 to 2005 | 2.81 | 1.76 | 1.05 | 0.63 | 0.37 |
2005 to 2010 | 3.33 | 1.94 | 1.39 | 0.58 | 0.42 |
2010 to 2015 | 3.65 | 3.14 | 0.51 | 0.86 | 0.14 |
2015 to 2020 | 11.91 | 6.26 | 5.65 | 0.53 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, J. The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China. Sustainability 2025, 17, 5979. https://doi.org/10.3390/su17135979
Zhang C, Liu J. The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China. Sustainability. 2025; 17(13):5979. https://doi.org/10.3390/su17135979
Chicago/Turabian StyleZhang, Chaofan, and Jie Liu. 2025. "The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China" Sustainability 17, no. 13: 5979. https://doi.org/10.3390/su17135979
APA StyleZhang, C., & Liu, J. (2025). The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China. Sustainability, 17(13), 5979. https://doi.org/10.3390/su17135979