Power Generation Enhancement of Surface-Mounted Permanent Magnet Wind Generators Using Eccentric Halbach Array Permanent Magnets
Abstract
1. Introduction
2. Machine Topology
3. Design Optimization
- Step 1: Define the objective function and design constraints.
- Step 2: Define the design variables and then perform a sensitivity analysis to determine their impact on the objective function.
- Step 3: Optimize the design variables using the GA.
- Step 4: Evaluate the performance of the optimized structure.
3.1. Objective Function and Constraints
- (1)
- The optimization is conducted under identical operating conditions, with a rated speed of 500 rpm and a resistive load of 58 Ω.
- (2)
- The stator geometry, outer and inner rotor diameters, stack length, and shaft dimensions are kept consistent with those of the conventional design.
- (3)
- All structural components of the proposed generator are constructed using the same materials as those employed in the conventional machine.
- (4)
- The total PM volume in the proposed design does not exceed that of the benchmark structure.
3.2. Design Variables and Sensitivity Analysis
3.3. Optimization Using a Genetic Algorithm
4. Performance Evaluation
4.1. No-Load Performance
4.2. On-Load Generation Performances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhende, C.N.; Mishra, S.; Malla, S.G. Permanent magnet synchronous generator-based standalone wind energy supply system. IEEE Trans. Sustain. Energy 2011, 2, 361–373. [Google Scholar] [CrossRef]
- Polinder, H.; Ferreira, J.A.; Jensen, B.B.; Abrahamsen, A.B.; Atallah, K.; McMahon, R.A. Trends in wind turbine generator systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 174–185. [Google Scholar] [CrossRef]
- Chen, H.; Zuo, Y.; Chau, K.T.; Zhao, W.; Lee, C.H.T. Modern electric machines and drives for wind power generation: A review of opportunities and challenges. IET Renew. Power Gener. 2021, 15, 1864–1887. [Google Scholar] [CrossRef]
- Morais, L.D.S.; Reis, M.R.C.; Araujo, W.R.H.; Martins, M.S.R.; Ribeiro, L.E.B.; Rodrigues, C.G.; Coimbra, A.P.; Calixto, W.P.; Castaldo, P. Enhancement of the Performance of Switched Reluctance Generators in Low Wind Speed Conditions Using Advanced Tracking Techniques. Int. J. Energy Res. 2024, 2024, 5541150. [Google Scholar] [CrossRef]
- Elizondo, J.; Martínez, J.; Probst, O. Experimental study of a small wind turbine for low- and medium-wind regimes. Int. J. Energy Res. 2009, 33, 309–326. [Google Scholar] [CrossRef]
- Cheng, M.; Hua, W.; Zhang, J.; Zhao, W. Overview of stator-permanent magnet brushless machines. IEEE Trans. Ind. Electron. 2011, 58, 5087–5101. [Google Scholar] [CrossRef]
- Huang, C.; Li, F.; Jin, Z. Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics. IEEE Trans. Ind. Electron. 2015, 62, 2530–2539. [Google Scholar] [CrossRef]
- Nissayan, C.; Seangwong, P.; Chamchuen, S.; Fernando, N.; Siritaratiwat, A.; Khunkitti, P. Modeling and optimal configuration design of flux-barrier for torque improvement of rotor flux switching permanent magnet machine. Energies 2022, 15, 8429. [Google Scholar] [CrossRef]
- Chai, F.; Liang, P.; Pei, Y.; Cheng, S. Magnet shape optimization of surface-mounted permanent-magnet motors to reduce harmonic iron losses. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Dong, J.; Huang, Y.; Jin, L.; Lin, H. Comparative study of surface-mounted and interior permanent-magnet motors for high-speed applications. IEEE Trans. Appl. Supercond. 2016, 26, 1–4. [Google Scholar] [CrossRef]
- Li, X.; Wei, Z.; Zhao, Y.; Wang, X.; Hua, W. Design and analysis of surface-mounted permanent-magnet field-modulation machine for achieving high power factor. IEEE Trans. Ind. Electron. 2023, 71, 4375–4386. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, C.; Geng, Q.; Yan, Y. Modeling and analyzing of surface-mounted permanent-magnet synchronous machines with optimized magnetic pole shape. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, Z.; Liu, Y.; Wang, X. Analysis of a novel surface-mounted permanent magnet motor with hybrid magnets for low cost and low torque pulsation. IEEE Trans. Magn. 2021, 57, 1–4. [Google Scholar] [CrossRef]
- Amin, S.; Madanzadeh, S.; Khan, S.; Bukhari, S.S.H.; Akhtar, F.; Ro, J.-S. Effect of the magnet shape on the performance of coreless axial flux permanent magnet synchronous generator. Electr. Eng. 2022, 104, 959–968. [Google Scholar] [CrossRef]
- Kurt, E.; Dalcalı, A. Effects of magnet shapes on total harmonic distortion and cogging torque in a permanent magnet synchronous generator for wind turbines. Clean Energy 2023, 7, 1058–1068. [Google Scholar] [CrossRef]
- Lubis, A.; Aini, Z. Analysis of the Effect of Magnetic Thickness and Rotating Speed on PMSG 24 Slot 16 Pole Characteristics. PROtek J. Ilm. Tek. Elektro 2023, 10, 152–157. [Google Scholar] [CrossRef]
- Petrov, I.; Niemelä, M.; Ponomarev, P.; Pyrhönen, J. Rotor surface ferrite permanent magnets in electrical machines: Advantages and limitations. IEEE Trans. Ind. Electron. 2017, 64, 5314–5322. [Google Scholar] [CrossRef]
- Fang, H.; Wang, D. A novel design method of permanent magnet synchronous generator from perspective of permanent magnet material saving. IEEE Trans. Energy Convers. 2016, 32, 48–54. [Google Scholar] [CrossRef]
- Haraguchi, H.; Morimoto, S.; Sanada, M. Suitable design of a PMSG for a small-scale wind power generator. In Proceedings of the 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6. [Google Scholar]
- Gu, Z.; Wang, K.; Cao, R.; Liu, C. Design of five phase SPM machine considering third harmonic current injection. In Proceedings of the 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Seangwong, P.; Fernando, N.; Siritaratiwat, A.; Khunkitti, P. E-Core and C-Core switched flux permanent magnet generators for wind power generation. IEEE Access 2023, 11, 138590–138601. [Google Scholar] [CrossRef]
- Jabbari, A. An analytical expression for magnet shape optimization in surface-mounted permanent magnet machines. Math. Comput. Appl. 2018, 23, 57. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Wang, R.; Zhang, X.; Zhang, X. Optimization design of halbach permanent magnet motor based on multi-objective sensitivity. CES Trans. Electr. Mach. Syst. 2020, 4, 20–26. [Google Scholar] [CrossRef]
- Huang, H.; Jing, L.; Qu, R.; Li, D. Analysis and application of discrete Halbach magnet array with unequal arc lengths and unequally changed magnetization directions. IEEE Trans. Appl. Supercond. 2017, 28, 1–5. [Google Scholar] [CrossRef]
- Ning, S.; Seangwong, P.; Fernando, N.; Jongudomkarn, J.; Siritaratiwat, A.; Khunkitti, P. A novel double stator hybrid-excited flux reversal permanent magnet machine with Halbach arrays for electric vehicle traction applications. IEEE Access 2023, 11, 113255–113263. [Google Scholar] [CrossRef]
- Alshibani, S.; Dutta, R.; Agelidis, V.G. Optimization of a MW Halbach PMSG for wind turbine applications. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 1963–1969. [Google Scholar]
- Ni, Y.; Liu, Z.; Xiao, B.; Wang, Q. Optimum split ratio in surface-mounted permanent magnet machines with pieced Halbach magnet array. IEEE Trans. Energy Convers. 2020, 35, 1877–1885. [Google Scholar] [CrossRef]
- Duan, L.; Lu, H.; Zhao, C.; Shen, H. Influence of different Halbach arrays on performance of permanent magnet synchronous motors. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA 2020), Dalian, China, 27–29 June 2020; pp. 994–998. [Google Scholar]
- Gul, W.; Gao, Q.; Lenwari, W. Optimal design of a 5-MW double-stator single-rotor PMSG for offshore direct drive wind turbines. IEEE Trans. Ind. Appl. 2019, 56, 216–225. [Google Scholar] [CrossRef]
- Öztürk, N.; Dalcalı, A.; Çelik, E.; Sakar, S. Cogging torque reduction by optimal design of PM synchronous generator for wind turbines. Int. J. Hydrogen Energy 2017, 42, 17593–17600. [Google Scholar] [CrossRef]
- Yazdanpanah, R.; Mortazavizadeh, S.; Salehian, M.; Campos-Gaona, D.; Anaya-Lara, O. Design optimization of inner and outer-rotor PMSGs for X-ROTOR wind turbines. IET Renew. Power Gener. 2024, 18, 2605–2618. [Google Scholar] [CrossRef]
- Shao, L.; Hua, W.; Soulard, J.; Zhu, Z.Q.; Wu, Z.; Cheng, M. Electromagnetic performance comparison between 12-phase switched flux and surface-mounted PM machines for direct-drive wind power generation. IEEE Trans. Ind. Appl. 2020, 56, 1408–1422. [Google Scholar] [CrossRef]
Parameters | Units | Conventional Structure [32] | Proposed Structure |
---|---|---|---|
Stator outer radius | mm | 163.5 | |
Stator inner radius | mm | 130.8 | |
Stator yoke radius | mm | 153.2 | |
Stator tooth base height | mm | 1 | |
Stator slot opening | mm | 2.28 | |
Stator tooth width | mm | 10.27 | |
Air-gap length | mm | 1 | |
Rotor outer radius, Rm | mm | 129.8 | |
Rotor inner radius | mm | 60 | |
Rotor yoke radius, Rr | mm | 123.1 | |
Eccentric shape radius, R0 | mm | - | 49.53 |
Distance of O and O’, d | mm | - | 80.27 |
PM thickness, hm | mm | 6.7 | |
Pole arc | deg | 8.181 | |
Number of PM segment | - | 1 | 3 |
Arc angle of central PM | deg | 8.181 | 4.77 |
Stack length | mm | 185 | |
Total slot area | mm2 | 5034.5 | |
Number of turns per coil | turn | 40 | |
Slot filling factor | - | 0.58 | |
Number of parallel brunches | brunch | 1 | |
Type of PM | - | NdFeB N35 | |
Lamination steel | - | DW465-50 | |
Copper conductor diameter | - | 0.912 (AWG-19) |
Design Variables (Unit) | Minimum | Maximum |
---|---|---|
αCPM (deg) | 2.5 | 5.7 |
MSPM (deg) | 45 | 90 |
d (mm) | 80 | 120 |
Design Variables | Initial | Optimal |
---|---|---|
αCPM (deg) | 60 | 50.46 |
MSPM (deg) | 100 | 80.27 |
D (mm) | 2.73 | 4.77 |
Output power (kW) | 18.7 | 23.3 |
Parameters (Unit) | Conventional Structure | Proposed Structure |
---|---|---|
EMF (V) | 320.7 | 344.8 |
Total harmonic distortion (%) | 18.7 | 12.9 |
Peak-to-peak cogging torque (N·m) | 3.7 | 1.9 |
Rated voltage (V) | 300.7 | 335.1 |
Rated current (A) | 5.2 | 5.8 |
Rated output power (kW) | 18.7 | 23.3 |
Rated torque (N·m) | 371.1 | 452.5 |
Torque ripple (%) | 1.2 | 0.46 |
Copper loss (W) | 482.1 | 576.5 |
Iron loss (W) | 323.1 | 373.6 |
PM eddy current loss (W) | 167 | 188.1 |
Cost per kW (USD/kW) | 58.3 | 45.7 |
PM volume (cm3) | 984.8 | 957.8 |
Power/PM volume (kW/cm3) | 0.019 | 0.024 |
Efficiency (%) | 95 | 95.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tun, Z.M.; Seangwong, P.; Fernando, N.; Siritaratiwat, A.; Khunkitti, P. Power Generation Enhancement of Surface-Mounted Permanent Magnet Wind Generators Using Eccentric Halbach Array Permanent Magnets. Sustainability 2025, 17, 5893. https://doi.org/10.3390/su17135893
Tun ZM, Seangwong P, Fernando N, Siritaratiwat A, Khunkitti P. Power Generation Enhancement of Surface-Mounted Permanent Magnet Wind Generators Using Eccentric Halbach Array Permanent Magnets. Sustainability. 2025; 17(13):5893. https://doi.org/10.3390/su17135893
Chicago/Turabian StyleTun, Zaw Min, Pattasad Seangwong, Nuwantha Fernando, Apirat Siritaratiwat, and Pirat Khunkitti. 2025. "Power Generation Enhancement of Surface-Mounted Permanent Magnet Wind Generators Using Eccentric Halbach Array Permanent Magnets" Sustainability 17, no. 13: 5893. https://doi.org/10.3390/su17135893
APA StyleTun, Z. M., Seangwong, P., Fernando, N., Siritaratiwat, A., & Khunkitti, P. (2025). Power Generation Enhancement of Surface-Mounted Permanent Magnet Wind Generators Using Eccentric Halbach Array Permanent Magnets. Sustainability, 17(13), 5893. https://doi.org/10.3390/su17135893