Effects of Planting Density and Site Index on Stand and Soil Nutrients in Chinese Fir Plantations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Measurement
2.3. Data Analysis
3. Results
3.1. Effect of Planting Density on Stand Factors in Mature Chinese Fir Plantations
3.2. Effect of Planting Density on Soil Nutrient Factors in Mature Chinese Fir Plantations
3.3. Effect of Site Index on Soil Nutrients and Stand Variables
3.4. Pathway Analysis of the Effects of Planting Density and Site Index on Standing Volume
4. Discussion
4.1. Effects of Planting Density on Stand and Soil Nutrient Factors
4.2. Effect of Site Index on Stand and Soil Nutrient Factors
4.3. Pathways of Planting Density and Stand Index on Stand Productivity
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Initial Eigenvalue | Extracted Load Squared | |||||
---|---|---|---|---|---|---|
Component | Total | Variance Percentage % | Cumulative % | Total | Variance Percentage % | Cumulative % |
1 | 3.01 | 37.63 | 37.63 | 3.01 | 37.63 | 37.63 |
2 | 2.20 | 27.56 | 65.19 | 2.20 | 27.56 | 65.19 |
3 | 0.83 | 10.40 | 75.59 | |||
4 | 0.55 | 6.88 | 82.48 | |||
5 | 0.47 | 5.96 | 88.45 | |||
6 | 0.39 | 4.90 | 93.36 | |||
7 | 0.28 | 3.61 | 96.97 | |||
8 | 0.24 | 3.02 | 100.00 |
Variable | Component | |
---|---|---|
1 | 2 | |
SOM | 0.89 | - |
TN | 0.80 | - |
AN | 0.84 | −0.25 |
TP | 0.66 | 0.16 |
AP | 0.50 | 0.29 |
TK | - | 0.88 |
AK | 0.17 | 0.83 |
pH | - | 0.73 |
References
- la Marca, O.; Marziliano, P.A.; Moretti, N. Experimental research in ageing holm oak (Quercus ilex L.) coppices: Preliminary results. Ann. For. Sci. 1998, 55, 461–476. [Google Scholar] [CrossRef]
- Harrington, T.B.; Harrington, C.A.; DeBell, D.S. Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). For. Ecol. Manag. 2009, 258, 18–25. [Google Scholar] [CrossRef]
- Sun, H.; Lei, J.; Liu, J.; Zhang, X.; Yuan, D.; Duan, A.; Zhang, J. Soil Comprehensive Fertility Changes in Response to Stand Age and Initial Planting Density of Long-Term Spacing Trials of Chinese Fir Plantations. Forests 2025, 16, 224. [Google Scholar] [CrossRef]
- Chen, X. Studies on the growth features and stand strcutures of 30-year-old Pinus msssoniana forests with various densities. J. Fujian For. Sci. Technol. 1995, 22, 40–43. [Google Scholar]
- Bahru, T.; Ding, Y. Effect of stand density, canopy leaf area index and growth variables on Dendrocalamus brandisii (Munro) Kurz litter production at Simao District of Yunnan Province, southwestern China. Glob. Ecol. Conserv. 2020, 23, e01051. [Google Scholar] [CrossRef]
- Alaback, P.B.; Herman, F.R. Long-term response of understory vegetation to stand density in Picea-Tsuga forests. Can. J. For. Res. 1988, 18, 1522–1530. [Google Scholar] [CrossRef]
- Ali, A.; Dai, D.; Akhtar, K.; Teng, M.; Yan, Z.; Urbina-Cardona, N.; Mullerova, J.; Zhou, Z. Response of understory vegetation, tree regeneration, and soil quality to manipulated stand density in a Pinus massoniana plantation. Glob. Ecol. Conserv. 2019, 20, e00775. [Google Scholar] [CrossRef]
- O’Hara, K.L. Stand structure and growing space efficiency following thinning in an even-aged Douglas-fir stand. Can. J. For. Res. 1988, 18, 859–866. [Google Scholar] [CrossRef]
- Schönau, A.P.G.; Coetzee, J. Initial spacing, stand density and thinning in eucalypt plantations. For. Ecol. Manag. 1989, 29, 245–266. [Google Scholar] [CrossRef]
- Hernández, J.; del Pino, A.; Vance, E.D.; Califra, Á.; Del Giorgio, F.; Martínez, L.; González-Barrios, P. Eucalyptus and Pinus stand density effects on soil carbon sequestration. For. Ecol. Manag. 2016, 368, 28–38. [Google Scholar] [CrossRef]
- Noh, N.J.; Son, Y.; Lee, S.K.; Yoon, T.K.; Seo, K.W.; Kim, C.; Lee, W.-K.; Bae, S.W.; Hwang, J. Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea. J. Plant Res. 2010, 123, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Kara, F.; Topaçoğlu, O. Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings. Environ. Monit. Assess. 2018, 190, 749. [Google Scholar] [CrossRef] [PubMed]
- Iddrisu, A.-Q.; Hao, Y.; Issifu, H.; Getnet, A.; Sakib, N.; Yang, X.; Abdallah, M.M.; Zhang, P.J.F. Effects of Stand Density on Tree Growth, Diversity of Understory Vegetation, and Soil Properties in a Pinus koraiensis Plantation. Forests 2024, 15, 1149. [Google Scholar] [CrossRef]
- Wang, S.T.; Li, H. The effect of thinning on the soil physical and chemical properties of Larix kaempferi plantation. J. Liaoning For. Sci. Technol. 2019, 293, 46–48. [Google Scholar]
- Dai, X.J. Effects of soil fertility on Tending Thinning on the forest in cold area. For. Prospect. Des. 2016, 4, 76. [Google Scholar]
- Fang, X.-M.; Zhang, X.-L.; Zong, Y.-Y.; Zhang, Y.; Wan, S.-Z.; Bu, W.-S.; Chen, F.-S.; Paz-Ferreiro, J. Soil phosphorus functional fractions and tree tissue nutrient concentrations influenced by stand density in subtropical Chinese fir plantation forests. PLoS ONE 2017, 12, e0186905. [Google Scholar] [CrossRef]
- Bergès, L.; Chevalier, R.; Dumas, Y.; Franc, A.; Gilbert, J.-M. Sessile oak (Quercus petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest stands in northern France. Ann. For. Sci. 2005, 62, 391–402. [Google Scholar] [CrossRef]
- Seynave, I.; Gégout, J.-C.; Hervé, J.-C.; Dhôte, J.-F.; Drapier, J.; Bruno, É.; Dumé, G. Picea abies site index prediction by environmental factors and understorey vegetation: A two-scale approach based on survey databases. Can. J. For. Res. 2005, 35, 1669–1678. [Google Scholar] [CrossRef]
- Jianbo, S.; Xiangdong, L.; Yuancai, L.; Yutang, L. Comparison between site index and site form for site quality evaluation of Larix olgensis plantation. J. Beijing For. Univ. 2018, 40, 1–8. [Google Scholar]
- Kayahara, G.J.; Klinka, K.; Marshall, P.L. Testing site index–site-factor relationships for predicting Pinus contorta and Picea engelmannii × P. glauca productivity in central British Columbia, Canada. For. Ecol. Manag. 1998, 110, 141–150. [Google Scholar] [CrossRef]
- Sharma, R.P.; Brunner, A.; Eid, T. Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway. Scand. J. For. Res. 2012, 27, 619–636. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, J.M.; Yang, X.; Fan, W.; Li, M.; He, L.; Yang, J. Influence of site index on the relationship between forest net primary productivity and stand age. PLoS ONE 2017, 12, e0177084. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Meng, F.-R.; Meng, C.H. The impact of initial stand density and site index on maximum stand density index and self-thinning index in a stand self-thinning model. For. Ecol. Manag. 1995, 75, 61–68. [Google Scholar] [CrossRef]
- Kayahara, G.J.; Carter, R.E.; Klinka, K. Site index of western hemlock (Tsuga heterophylla) in relation to soil nutrient and foliar chemical measures. For. Ecol. Manag. 1995, 74, 161–169. [Google Scholar] [CrossRef]
- Farrelly, N.; Dhubháin, Á.N.; Nieuwenhuis, M. Sitka spruce site index in response to varying soil moisture and nutrients in three different climate regions in Ireland. For. Ecol. Manag. 2011, 262, 2199–2206. [Google Scholar] [CrossRef]
- Alban, D.H. Red pine site index in Minnesota as related to soil and foliar nutrients. For. Sci. 1974, 20, 261–269. [Google Scholar]
- Zhang, Y.; Xu, Q.; Zhang, B.; Gao, D.; Wang, T.; Xu, W.; Ren, R.; Wang, S. Contrasting water-use patterns of Chinese fir among different plantation types in a subtropical region of China. Front. Plant Sci. 2022, 13, 946508. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, Y.; Chen, Z.; Wei, J.; Li, D.; Zhang, S. Landscape Dynamics, Succession, and Forecasts of Cunninghamia lanceolata in the Central Producing Regions of China. Forests 2024, 15, 1817. [Google Scholar] [CrossRef]
- Chen, H. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. For. Ecol. Manag. 2003, 178, 301–310. [Google Scholar] [CrossRef]
- Ma, X.; Heal, K.V.; Liu, A.; Jarvis, P.G. Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China. For. Ecol. Manag. 2007, 243, 61–74. [Google Scholar] [CrossRef]
- Wu, A.; Hu, X.; Wang, F.; Guo, C.; Wang, H.; Chen, F.-S. Nitrogen deposition and phosphorus addition alter mobility of trace elements in subtropical forests in China. Sci. Total Environ. 2021, 781, 146778. [Google Scholar] [CrossRef]
- Wang, S.; Kobayashi, K.; Takanashi, S.; Liu, C.-P.; Li, D.-R.; Chen, S.-W.; Cheng, Y.-T.; Moriguchi, K.; Dannoura, M. Estimating divergent forest carbon stocks and sinks via a knife set approach. J. Environ. Manag. 2022, 330, 117114. [Google Scholar] [CrossRef]
- Zhang, B.; Sajjad, S.; Chen, K.; Zhou, L.; Zhang, Y.; Yong, K.K.; Sun, Y. Predicting Tree Height-Diameter Relationship from Relative Competition Levels Using Quantile Regression Models for Chinese Fir (Cunninghamia lanceolata) in Fujian Province, China. Forests 2020, 11, 183. [Google Scholar] [CrossRef]
- Xu, D.Y.; Liu, J.F.; Tong, S.Z. Optimization model for density control in Chinese fir plantations—DENTROL. For. Sci. 1993, 29, 415–423. (In Chinese) [Google Scholar]
- Lu, R.K. Soil Agricultural Chemical Analysis Method; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Ramalho, F.M.G.; Pimenta, E.M.; Goulart, C.P.; De Almeida, M.N.F.; Vidaurre, G.B.; Hein, P.R.G. Effect of stand density on longitudinal variation of wood and bark growth in fast-growing Eucalyptus plantations. iForest—Biogeosci. For. 2019, 12, 527–532. [Google Scholar] [CrossRef]
- Yi, X.; Wang, N.; Ren, H.; Yu, J.; Hu, T.; Su, Y.; Mi, X.; Guo, Q.; Ma, K. From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession. J. Ecol. 2021, 110, 457–465. [Google Scholar] [CrossRef]
- Long, S.; Zeng, S.; Wang, G. Dynamics of stand density and self-thinning in Chinese fir plantations: Theoretical insights and empirical validation. Front. Plant Sci. 2024, 15, 1444807. [Google Scholar] [CrossRef]
- Canham, C.D.; LePage, P.T.; Coates, K.D. A neighborhood analysis of canopy tree competition: Effects of shading versus crowding. Can. J. For. Res. 2004, 34, 778–787. [Google Scholar] [CrossRef]
- Lei, J.; Du, H.; Duan, A.; Zhang, J. Effect of stand density and soil layer on soil nutrients of a 37-year-old Cunninghamia lanceolata plantation in Naxi, Sichuan Province, China. Sustainability 2019, 11, 5410. [Google Scholar] [CrossRef]
- Duan, A.; Lei, J.; Hu, X.; Zhang, J.; Du, H.; Zhang, X.; Guo, W.; Sun, J. Effects of Planting Density on Soil Bulk Density, pH and Nutrients of Unthinned Chinese Fir Mature Stands in South Subtropical Region of China. Forests 2019, 10, 351. [Google Scholar] [CrossRef]
- Kunhamu, T.K.; Kumar, B.M.; Viswanath, S. Does thinning affect litterfall, litter decomposition, and associated nutrient release in Acacia mangium stands of Kerala in peninsular India? Can. J. For. Res. 2009, 39, 792–801. [Google Scholar] [CrossRef]
- Carter, R.; Klinka, K. Relationships between growing-season soil water-deficit, mineralizable soil nitrogen and site index of coastal Douglas fir. For. Ecol. Manag. 1990, 30, 301–311. [Google Scholar] [CrossRef]
- Reddy, A.R.; Chaitanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, D.; Yan, J. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China. Plant Soil 2008, 311, 61–72. [Google Scholar] [CrossRef]
- Jones, D.L.; Darrah, P.R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 1994, 166, 247–257. [Google Scholar] [CrossRef]
- Tong, R.; Wu, T.; Jiang, B.; Wang, Z.; Xie, B.; Zhou, B. Soil carbon, nitrogen, and phosphorus stoichiometry and its influencing factors in Chinese fir plantations across subtropical China. Front. For. Glob. Chang. 2023, 5, 1086328. [Google Scholar] [CrossRef]
- Tong, R.; Zhou, B.; Jiang, L.; Ge, X.; Cao, Y.; Yang, Z. Leaf Nitrogen and Phosphorus Stoichiometry of Chinese fir Plantations across China: A Meta-Analysis. Forests 2019, 10, 945. [Google Scholar] [CrossRef]
- Van Sundert, K.; Horemans, J.A.; Stendahl, J.; Vicca, S. The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric. Biogeosciences 2018, 15, 3475–3496. [Google Scholar] [CrossRef]
- Paoli, G.D.; Curran, L.M. Soil Nutrients Limit Fine Litter Production and Tree Growth in Mature Lowland Forest of Southwestern Borneo. Ecosystems 2007, 10, 503–518. [Google Scholar] [CrossRef]
- Martins, P.; Sampedro, L.; Moreira, X.; Zas, R. Nutritional status and genetic variation in the response to nutrient availability in Pinus pinaster. A multisite field study in Northwest Spain. For. Ecol. Manag. 2009, 258, 1429–1436. [Google Scholar] [CrossRef]
Location | East Longitude | North Latitude | Landform | Parent Rock | Soil Type |
---|---|---|---|---|---|
Naxi | 105°23′ | 28°47′ | Low mountains | Shale | Red soil |
Shaowu | 117°43′ | 27°05′ | Low mountains | Shale | Red soil |
Plot Number | Planting Density (hm−2) | Fujian | Sichuan |
---|---|---|---|
1 | 1667 | 16.10 | 13.07 |
2 | 1667 | 20.83 | 14.24 |
3 | 1667 | 21.58 | 14.44 |
4 | 3333 | 13.98 | 12.23 |
5 | 3333 | 20.77 | 12.67 |
6 | 3333 | 19.07 | 13.62 |
7 | 5000 | 15.48 | 11.87 |
8 | 5000 | 21.28 | 11.30 |
9 | 5000 | 20.02 | 12.97 |
10 | 6667 | 14.45 | 11.74 |
11 | 6667 | 21.10 | 12.24 |
12 | 6667 | 14.30 | 13.60 |
13 | 10,000 | 14.07 | 11.71 |
14 | 10,000 | 20.75 | 12.10 |
15 | 10,000 | 12.25 | 12.87 |
Province | Stand Factors | |||||
---|---|---|---|---|---|---|
ATH | ADBH | DH | SV | ASD | NMP | |
Fujian | 0.84 ** | 0.57 ** | 0.96 ** | 0.55 ** | −0.49 ** | −0.25 * |
Sichuan | 0.79 ** | 0.76 ** | 0.49 ** | 0.18 | −0.53 ** | −0.50 ** |
Province | Soil Nutrients | |||||||
---|---|---|---|---|---|---|---|---|
SOM | TN | AN | TP | AP | TK | AK | pH | |
Fujian | −0.10 | 0.03 | 0.02 | −0.54 ** | 0.16 | 0.37 ** | 0.18 | 0.27 * |
Sichuan | 0.04 | 0.17 | −0.05 | 0.00 | 0.18 | −0.14 | 0.37 ** | −0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Lei, J.; Liu, J.; Li, X.; Yuan, D.; Duan, A.; Zhang, J. Effects of Planting Density and Site Index on Stand and Soil Nutrients in Chinese Fir Plantations. Sustainability 2025, 17, 5867. https://doi.org/10.3390/su17135867
Sun H, Lei J, Liu J, Li X, Yuan D, Duan A, Zhang J. Effects of Planting Density and Site Index on Stand and Soil Nutrients in Chinese Fir Plantations. Sustainability. 2025; 17(13):5867. https://doi.org/10.3390/su17135867
Chicago/Turabian StyleSun, He, Jie Lei, Juanjuan Liu, Xiaoyan Li, Deyi Yuan, Aiguo Duan, and Jianguo Zhang. 2025. "Effects of Planting Density and Site Index on Stand and Soil Nutrients in Chinese Fir Plantations" Sustainability 17, no. 13: 5867. https://doi.org/10.3390/su17135867
APA StyleSun, H., Lei, J., Liu, J., Li, X., Yuan, D., Duan, A., & Zhang, J. (2025). Effects of Planting Density and Site Index on Stand and Soil Nutrients in Chinese Fir Plantations. Sustainability, 17(13), 5867. https://doi.org/10.3390/su17135867