Process Concept of a Waste-Fired Zero-Emission Integrated Gasification Static Cycle Power Plant
Abstract
1. Introduction
2. Technological Background
2.1. Waste Incineration Treatments
2.1.1. Mass Burn Incineration: The Conventional Approach
2.1.2. Fluidized Bed Incineration: Enhanced Combustion Efficiency
2.1.3. Modular Incineration: Small-Scale Solutions
2.1.4. Advanced Thermal Treatments: Gasification and Plasma Arc
2.1.5. Co-Incineration: Synergy with Industrial Processes
2.2. Advancements in the Coal Handling
2.2.1. The Rise of Smart Coal Handling
2.2.2. Protecting Workers and the Environment
2.2.3. IoT and Energy-Efficient Conveyors
2.2.4. Advanced Coal Washing and Gasification
2.2.5. Integration and Sustainability
3. Materials and Methods
3.1. Gasification
3.2. Water-Gas Shift Reactions
3.3. Integrated Gasification Combined Cycle
3.4. Waste to Energy
3.5. Magnetohydrodynamic Electric Generators
Types of MHD Generators
3.6. Thermoacoustic Converter
3.7. Thermoacoustic—Magnetohydrodynamic Generator
4. Concept Design of the Power Plant
4.1. Gasifier
4.2. Thermoacoustic Resonator
4.3. Magnetohydrodynamic Generator
5. Case Study
Mass and Energy Balance
6. Economic Analysis
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Nomenclature
Quantity (Symbol) | SI Unit |
Bulk viscosity (ζ) | Pa·s |
Charge (q) | C |
Current density (J) | A/m2 |
Density (ρ) | kg/m3 |
Efficiency (ε) | |
Electric conductivity (σ) | S/m |
Electrical power (Pel) | W |
Fluid dynamic viscosity (η) | Pa·s |
Generic internal power source (Sint) | |
Gravitational acceleration (g) | m/s2 |
Heat capacity ratio (γ) | |
Identity tensor (Id) | |
Load factor ratio (K) | |
Lorentz force (F) | N |
Magnetic field (B) | T |
Open circuit voltage (V0) | V |
Pressure (p) | Pa |
Specific gas constant () | J/(K·mol) |
Specific gravity force (ρg) | N/m3 |
Specific heat at constant pressure (cp) | J/(kg·K) |
Specific heat at constant volume (cv) | J/(kg·K) |
) | kJ/mol |
Stress tensor (τ) | Pa |
Temperature (T) | K |
Temperature of cold source (Tc) | K |
Temperature of hot source (Th) | K |
Thermal conductivity (k) | W/(m·K) |
Total energy per volume unit (e) | J/m3 |
Velocity (v) | m/s |
Wall heat transfer per volume unit and time unit (Qwall) | W/m3 |
References
- Swilling, M.; Hajer, M.; Baynes, T.; Bergesen, J.; Labbé, F.; Musango, J.K.; Ramaswami, A.; Robinson, B.; Salat, S.; Suh, S.; et al. The Weight of Cities: Resource Requirements of Future Urbanization; International Resource Panel: Paris, France; United Nations Environment Programme: Nairobi, Kenya, 2014; p. 280. [Google Scholar]
- Peter, C.; Swilling, M. Sustainable, Resource Efficient Cities-Making It Happen! United Nations Environment Programme: Paris, France, 2012; p. 64. [Google Scholar]
- Bouton, S.; Cis, D.; Mendonca, L.; Pohl, H.; Remes, J.; Ritchie, H.; Woetzel, J. How to Make a City Great; McKinsey Cities Special Initiative, McKinsey & Company: Chicago, IL, USA, 2013; p. 35. [Google Scholar]
- Liu, C.; Kawamoto, K.; Sasaki, S. Waste-to-Energy Incineration; CCET guideline series on intermediate municipal solid waste treatment technologies; United Nations Environment Programme: Nairobi, Kenya; International Environmental Technology Centre: Osaka, Japan; Japan Society of Material Cycles and Waste Management: Tokyo, Japan; Institute for Global Environmental Strategies: Hayama, Japan, 2020; p. 45. [Google Scholar]
- Makarichi, L.; Jutidamrongphan, W.; anan Techato, K. The Evolution of Waste-to-Energy Incineration: A Review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Astrup, T.F.; Tonini, D.; Turconi, R.; Boldrin, A. Life Cycle Assessment of Thermal Waste-to-Energy Technologies: Review and Recommendations. Waste Manag. 2015, 37, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Baeyens, J.; Van Puyvelde, F. Fluidized Bed Incineration of Sewage Sludge: A Strategy for the Design of the Incinerator and the Future for Incinerator Ash Utilization. J. Hazard. Mater. 1994, 37, 179–190. [Google Scholar] [CrossRef]
- Tan, S.T.; Lee, C.T.; Hashim, H.; Ho, W.S.; Lim, J.S. Optimal Process Network for Municipal Solid Waste Management in Iskandar Malaysia. J. Clean. Prod. 2014, 71, 48–58. [Google Scholar] [CrossRef]
- Khan, A.H.; López-Maldonado, E.A.; Alam, S.S.; Khan, N.A.; López, J.R.L.; Herrera, P.F.M.; Abutaleb, A.; Ahmed, S.; Singh, L. Municipal Solid Waste Generation and the Current State of Waste-to-Energy Potential: State of Art Review. Energy Convers. Manag. 2022, 267, 115905. [Google Scholar] [CrossRef]
- Zaman, A.U. A Comprehensive Review of the Development of Zero Waste Management: Lessons Learned and Guidelines. J. Clean. Prod. 2015, 91, 12–25. [Google Scholar] [CrossRef]
- Nagar, V.; Kaushal, R. A Review of Recent Advancement in Plasma Gasification: A Promising Solution for Waste Management and Energy Production. Int. J. Hydrogen Energy 2024, 77, 405–419. [Google Scholar] [CrossRef]
- Hinkel, M.; Blume, S.; Hinchliffe, D.; Mutz, D.; Hengevoss, D. Guidelines on Pre-and Co-Processing of Waste in Cement Production: Use of Waste as Alternative Fuel and Raw Material; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH LafargeHolcim Institut für Ecopreneurship, Hochschule für Life Sciences FHNW: Holderbank, Switzerland, 2020; p. 132. [Google Scholar]
- National Research Council (US); Committee on Health Effects of Waste Incineration Processes and Environmental Releases. Waste Incineration and Public Health; National Academies Press: Washington, DC, USA, 2000; pp. 34–70. ISBN 978-0-309-06371-5.
- Tempelman, E.; Shercliff, H.; van Eyben, B.N. Recycling. In Manufacturing and Design; Elsevier: Amsterdam, The Netherlands; Butterworth-Heinemann: Oxford, UK, 2014; pp. 251–267. ISBN 978-0-08-099922-7. [Google Scholar]
- Zhu, Y.; Frey, H.C. Integrated Gasification Combined Cycle (IGCC) Systems. In Combined Cycle Systems for Near-Zero Emission Power Generation; Rao, A.D., Ed.; Woodhead Publishing Limited: Soston, UK, 2012; pp. 129–161. ISBN 978-0-85709-013-3. [Google Scholar]
- McCoy, J.T.; Auret, L. Machine Learning Applications in Minerals Processing: A Review. Miner. Eng. 2019, 132, 95–109. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Ilyas, S.; Heyes, G.W.; Kim, H. A Critical Review of Artificial Intelligence in Mineral Concentration. Miner. Eng. 2022, 189, 107884. [Google Scholar] [CrossRef]
- National Fire Protection Association (NPFA). NFPA 120: Standard for Fire Prevention and Control in Coal Mines; National Fire Protection Association (NPFA): Quincy, MA, USA, 2023. [Google Scholar]
- Jiang, B.; Liu, Z.; Zhao, Y.; Zhang, X.; Wang, X.-H.; Ji, B.; Zhang, Y.; Huang, J. Development of an Eco-Friendly Dust Suppressant Based on Modified Pectin: Experimental and Theoretical Investigations. Energy 2024, 289, 130018. [Google Scholar] [CrossRef]
- Salam, A. Internet of Things for Sustainable Mining. In Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems; Salam, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 243–271. ISBN 978-3-030-35291-2. [Google Scholar]
- Ramesh, V. IoT in Mining Solutions and Its Innovations. Available online: https://www.infosysbpm.com/blogs/sourcing-procurement/iot-in-mining.html (accessed on 26 March 2025).
- Lodewijks, G.; Li, W.; Pang, Y.; Jiang, X. An Application of the IoT in Belt Conveyor Systems. In Proceedings of the Internet and Distributed Computing Systems; Li, W., Ali, S., Lodewijks, G., Fortino, G., Di Fatta, G., Yin, Z., Pathan, M., Guerrieri, A., Wang, Q., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 340–351. [Google Scholar]
- Williams, G. Social and Economic Costs and Benefits of Coal. In The Coal Handbook (Second Edition); Osborne, D., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Soston, UK, 2023; Volume 2, pp. 3–29. ISBN 978-0-12-824327-5. [Google Scholar]
- Zagorščak, R.; Metcalfe, R.; Limer, L.; Thomas, H.; An, N.; Bond, A.; Watson, S. Risk Assessment Methodology for Underground Coal Gasification Technology. J. Clean. Prod. 2022, 370, 133493. [Google Scholar] [CrossRef]
- Swift, G.W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, 2nd ed.; Springer Nature: Cham, Switzerland, 2017; ISBN 978-3-319-66933-5. [Google Scholar]
- Falco, M.D.; Iaquaniello, G.; Centi, G. (Eds.) CO2: A Valuable Source of Carbon. In Green Energy and Technology, 1st ed.; Springer: London, UK, 2013; ISBN 978-1-4471-5119-7. [Google Scholar]
- Song, C. CO2 Conversion and Utilization: An Overview. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2002; Volume 809, pp. 1–30. ISBN 978-0-8412-1907-6. [Google Scholar]
- Cau, G.; Cocco, D.; Montisci, A. Performance of Zero Emissions Integrated Gasification Hydrogen Combustion (ZE-IGHC) Power Plants with CO2 Removal. In Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea and Air, New Orleans, LA, USA, 4–7 June 2001; American Society of Mechanical Engineers (ASME): New Orleans, LA, USA, 2001; Volume 2, p. 12. [Google Scholar]
- Bell, D.A.; Towler, B.F.; Fan, M. Coal Gasification and Its Applications, 1st ed.; William Andrew: Norwich, NY, USA, 2010; ISBN 978-0-8155-2049-8. [Google Scholar]
- National Institute of Standards and Technology. Carbon Monoxide. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C630080&Units=SI&Mask=1#Thermo-Gas (accessed on 9 July 2021).
- National Institute of Standards and Technology. Carbon Dioxide. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=1 (accessed on 29 June 2021).
- National Institute of Standards and Technology. Water. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=1#Thermo-Gas (accessed on 29 June 2021).
- Idriss, H.; Scott, M.; Subramani, V. Introduction to Hydrogen and Its Properties. In Compendium of Hydrogen Energy; Subramani, V., Basile, A., Veziroğlu, T.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–19. ISBN 978-1-78242-361-4. [Google Scholar]
- Gokhale, A.A.; Dumesic, J.A.; Mavrikakis, M. On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper. J. Am. Chem. Soc. 2008, 130, 1402–1414. [Google Scholar] [CrossRef]
- National Energy Technology Laboratory. Water Gas Shift & Hydrogen Production. Available online: https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/water-gas-shift (accessed on 9 July 2021).
- Cormos, C.C.; Cormos, A.M.; Serban Agachi, P. Techno-Economical and Environmental Evaluations of IGCC Power Generation Process with Carbon Capture and Storage (CCS). Comput. Aided Chem. Eng. 2011, 29, 1678–1682. [Google Scholar] [CrossRef]
- Mitsubishi Power. Integrated Coal Gasification Combined Cycle (IGCC) Power Plants. Available online: https://power.mhi.com/products/igcc (accessed on 22 June 2021).
- Maurstad, O. An Overview of Coal Based Integrated Gasification Combined Cycle (IGCC) Technology; Massachusetts Institute of Technology, Laboratory for Energy and the Environment: Cambridge, MA, USA, 2005; p. 44. [Google Scholar]
- Capodaglio, A.G.; Bolognesi, S. Ecofuel Feedstocks and Their Prospects. In Advances in Eco-Fuels for a Sustainable Environment; Elsevier: Amsterdam, The Netherlands; Woodhead Publishing: Soston, UK, 2019; pp. 15–51. ISBN 978-0-08-102728-8. [Google Scholar]
- Moya, D.; Aldás, C.; Jaramillo, D.; Játiva, E.; Kaparaju, P. Waste-To-Energy Technologies: An Opportunity of Energy Recovery from Municipal Solid Waste, Using Quito-Ecuador as Case Study. Energy Procedia 2017, 134, 327–336. [Google Scholar] [CrossRef]
- Sheindlin, A.E.; Jackson, W.D.; Brzozowski, W.S.; Rietjens, L.H.T. Magnetohydrodynamic Power Generation. Nat. Resour. Forum 1979, 3, 133–145. [Google Scholar] [CrossRef]
- Bera, T.K. A Magnetohydrodynamic (MHD) Power Generating System: A Technical Review. IOP Conf Ser. Mater. Sci. Eng. 2020, 955, 012075. [Google Scholar] [CrossRef]
- Messerle, H.K. Magnetohydrodynamic Electrical Power Generation (UNESCO Energy Engineering Series); John Wiley Publishing: Chichester, UK, 1995; ISBN 978-0-471-94252-8. [Google Scholar]
- Forcinetti, R. Magneto-Fluid-Dynamic Energy Conversion Systems for Aerospace Applications; Università degli Studi di Cagliari: Cagliari, Italy, 2017. [Google Scholar]
- Lani, A.; Sharma, V.; Giangaspero, V.F.; Poedts, S.; Viladegut, A.; Chazot, O.; Giacomelli, J.; Oswald, J.; Behnke, A.; Pagan, A.S.; et al. A Magnetohydrodynamic Enhanced Entry System for Space Transportation: MEESST. J. Space Saf. Eng. 2023, 10, 27–34. [Google Scholar] [CrossRef]
- Kayukawa, N. Open-Cycle Magnetohydrodynamic Electrical Power Generation: A Review and Future Perspectives. Prog. Energy Combust. Sci. 2004, 30, 33–60. [Google Scholar] [CrossRef]
- Carcangiu, S.; Fanni, A.; Montisci, A. Optimal Design of an Inductive MHD Electric Generator. Sustainability 2022, 14, 16457. [Google Scholar] [CrossRef]
- Carcangiu, S.; Forcinetti, R.; Montisci, A. Simulink Model of an Inductive MHD Generator. Magnetohydrodynamics 2017, 53, 255–266. [Google Scholar] [CrossRef]
- Carcangiu, S.; Montisci, A.; Pintus, R. Performance Analysis of an Inductive MHD Generator. Magnetohydrodynamics 2012, 48, 115–124. [Google Scholar] [CrossRef]
- Carcangiu, S.; Montisci, A. Assessment of the Machine Parameters Affecting the Overall Performance of an Inductive MHD Generator. In Proceedings of the 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy, 10 November 2012; pp. 271–275. [Google Scholar]
- Rosa, R.J.; Krueger, C.H.; Shioda, S. Plasmas in MHD Power Generation. IEEE Trans. Plasma Sci. 1991, 19, 1180–1190. [Google Scholar] [CrossRef]
- Strohl, G.R.; Jackson, W.D. Magnetohydrodynamic Power Generator. Encycl. Br. 2016. Technology. Available online: https://www.britannica.com/technology/magnetohydrodynamic-power-generator (accessed on 26 March 2025).
- Medin, S.A. Magnetohydrodynamic Electrical Power Generators. Available online: https://www.thermopedia.com/content/934/ (accessed on 29 June 2021).
- Abdoulla-Latiwish, K.O.A.; Jaworski, A.J. Two-Stage Travelling-Wave Thermoacoustic Electricity Generator for Rural Areas of Developing Countries. Appl. Acoust. 2019, 151, 87–98. [Google Scholar] [CrossRef]
- Agarwal, H.; Unni, V.R.; Akhil, K.T.; Ravi, N.T.; Iqbal, S.M.; Sujith, R.I.; Pesala, B. Compact Standing Wave Thermoacoustic Generator for Power Conversion Applications. Appl. Acoust. 2016, 110, 110–118. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Y.; Jin, T.; Feng, Y.; Tang, K. Development of a Three-Stage Looped Thermoacoustic Electric Generator Capable of Utilizing Heat Source below 120 °C. Energy Convers. Manag. 2018, 155, 161–168. [Google Scholar] [CrossRef]
- Bi, T.; Wu, Z.; Zhang, L.; Yu, G.; Luo, E.; Dai, W. Development of a 5 kW Traveling-Wave Thermoacoustic Electric Generator. Appl. Energy 2017, 185, 1355–1361. [Google Scholar] [CrossRef]
- Brekis, A.; Alemany, A.; Alemany, O.; Montisci, A. Space Thermoacoustic Radioisotopic Power System, SpaceTRIPS: The Magnetohydrodynamic Generator. Sustainability 2021, 13, 13498. [Google Scholar] [CrossRef]
- Hofler, T.J.; Ceperley, P.H. Thermoacoustic Heat Engines. In CRC Handbook of Thermoelectrics; Rowe, D.M., Ed.; CRC Press: London, UK, 2012; pp. 581–601. [Google Scholar]
- Timmer, M.A.G.; de Blok, K.; Meer, T.H. van der Review on the Conversion of Thermoacoustic Power into Electricity. J. Acoust. Soc. Am. 2018, 143, 857. [Google Scholar] [CrossRef]
- Mirhoseini, S.M.H.; Alemany, A. Analytical Study of Thermoacoustic MHD Generator. Magnetohydrodynamics 2015, 51, 519–530. [Google Scholar] [CrossRef]
- Alemany, A.; Carcangiu, S.; Forcinetti, R.; Montisci, A.; Roux, J.P. Magnetohydrodynamics, Feasibility Analysis of an MHD Inductive Generator Coupled with a Thermoacoustic Resonator. Magnetohydrodynamics 2015, 51, 531–542. [Google Scholar] [CrossRef]
- Alemany, A.; Krauze, A.; Al Radi, M. Thermo Acoustic-MHD Electrical Generator. Energy Procedia 2011, 6, 92–100. [Google Scholar] [CrossRef]
- Czop, M.; Lazniewska-Piekarczyk, B. Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete. Materials 2020, 13, 1593. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Lyu, Y.; Wang, D.; Ju, Y.; Shang, X.; Li, L. Application of Fly Ash and Slag Generated by Incineration of Municipal Solid Waste in Concrete. Adv. Mater. Sci. Eng. 2020, 2020, 7802103. [Google Scholar] [CrossRef]
- Wang, Y.n.; Wang, Q.; Li, Y.; Wang, H.; Gao, Y.; Sun, Y.; Wang, B.; Bian, R.; Li, W.; Zhan, M. Impact of Incineration Slag Co-Disposed with Municipal Solid Waste on Methane Production and Methanogens Ecology in Landfills. Bioresour. Technol. 2023, 377, 128978. [Google Scholar] [CrossRef] [PubMed]
- Rollinson, A.N.; Vahk, J.; Oliveira, A. Toxic Fallout-Waste Incinerator Bottom Ash in a Circular Economy; Zero Waste Europe, Global Alliance for Incinerator Alternatives: Brussels, Belgium, 2022; p. 26. [Google Scholar]
- Rashid, A.; Aleik, K.; Alloush, Z.; Awada, N.; Baraki, M.; Bardus, M.; Chaar, R.; Chehade, B.; Fakih, B.; Foddis, L.M.; et al. RES-Q an Ongoing Project on Municipal Solid Waste Management Program for the Protection of the Saniq River Basin in Southern Lebanon. In Proceedings of the 21st International Conference Computational Science and Its Applications (ICCSA 2021), Cagliari, Italy, 13–16 September 2021; Lecture Notes in Computer Science. Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Eds.; Springer: Cham, Switzerland, 2021; Volume 12956, pp. 536–550. [Google Scholar]
- Massarutto, A. Economic Aspects of Thermal Treatment of Solid Waste in a Sustainable WM System. Waste Manag. 2015, 37, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Eshet, T.; Ayalon, O.; Shechter, M. Valuation of Externalities of Selected Waste Management Alternatives: A Comparative Review and Analysis. Resour. Conserv. Recycl. 2006, 46, 335–364. [Google Scholar] [CrossRef]
- University of Stuttgart ExternE-Externel Costs of Energy. Available online: https://www.ier.uni-stuttgart.de/en/research/projects/externe (accessed on 29 April 2025).
- Murphy, J.D.; McKeogh, E. Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste. Renew. Energy 2004, 29, 1043–1057. [Google Scholar] [CrossRef]
- Nezhad, Q.A.; Jafarmadar, S.; Genceli, H. Analysis of a Novel Concentrated Solar Power and Magnetohydrodynamic Liquid Metal Units Integrated System with Hydrogen Production. Int. J. Hydrogen Energy 2023, 48, 22734–22751. [Google Scholar] [CrossRef]
Technology/Process | Power | Advantages | Disadvantages | Refs |
---|---|---|---|---|
Thermoacoustic generator | ||||
Standing wave (wf: air) | 0.21 W 0.084% | Novel cold heat exchanger design for thermoacoustic engine (TAE) is introduced. | Helium gas can be used to improve efficiency. | [55] |
Travelling wave (wf: He-Ar mixture) | 10.6 W 1.51% | Three-stage looped thermoacoustic electric generator | The thermal-to-electric efficiency stabilizes at around 1.5% when hot temperature is in the range of 120–170 °C. | [56] |
Travelling wave (wf: helium) | 3.46 kW 18.4% | Three-stage traveling-wave thermoacoustic electric generator (heat engine and linear alternators) | The acoustic impedance of the linear alternator can be greatly affected by the electric capacitance and resistance, thereby the system performance can be greatly changed. | [57] |
Quantity | Value |
---|---|
Auxiliaries power (MW) | 0.58 |
Carbon dioxide mass flow (kg/s) | 1.95 |
Efficiency acoustic to electric conversion (%) | 80.00 |
Efficiency of Carnot for Thermoacoustic resonator (%) | 64.57 |
Efficiency of thermal to acoustic conversion (%) | 32.28 |
Efficiency of thermal to electric conversion (%) | 25.83 |
Gasifier cold gas efficiency (%) | 82.10 |
Heat capacity of syngas (MJ/kg K) | 0.00 |
Liquid Metal | NaK |
Mass Flow of Hydrogen (kg/s) | 0.12 |
Mass flow of Oxygen (kg/s) | 0.63 |
Mass flow of raw gas (kg/s) | 1.46 |
Mass flow of steam (kg/s) | 0.06 |
Mass flow of steam for Shift Reactor (kg/s) | 1.21 |
Mass flow of Waste (kg/s) | 0.75 |
Percentage of Carbon dioxide removed (%) | 97.40 |
Percentage of CO converted (%) | 97.50 |
Power entering into the plant (MW) | 14.71 |
Power entering into the TA-MHD generator (MW) | 1.97 |
Power for CO2 removal and compression (MW) | 0.38 |
Power for Oxygen production and compression (MW) | 2.29 |
Power of Fuel Cells (MW) | 10.45 |
Power of MHD Generator (MW) | 0.51 |
Mass flow of steam for gas treatment(kg/s) | 2.54 |
Temperature at the outlet of Gasifier (°C) | 1100 |
Temperature at the outlet of HX1 (°C) | 400 |
Temperature of ambient (°C) | 27.00 |
Net Power (MW) | 7.71 |
Net Efficiency (%) | 52.39 |
Component | % Waste by Mass | % Moisture Content | Energy Content (MJ/kg) | Dry Mass (kg) | Total Energy (MJ) |
---|---|---|---|---|---|
Tin cans | 2 | 4 | 0.70 | 1.92 | 1.40 |
Food waste | 15 | 70 | 3.65 | 4.50 | 54.75 |
Garden waste | 10 | 50 | 6.60 | 5.00 | 66.00 |
Wood | 6 | 20 | 18.60 | 4.80 | 111.60 |
Cardboard | 10 | 5 | 14.30 | 9.50 | 143.00 |
Plastic | 10 | 15 | 30.60 | 8.50 | 306.00 |
Paper | 45 | 6 | 18.75 | 42.30 | 843.75 |
98 | 76.52 | 1526.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montisci, A.; Rashid, A. Process Concept of a Waste-Fired Zero-Emission Integrated Gasification Static Cycle Power Plant. Sustainability 2025, 17, 5816. https://doi.org/10.3390/su17135816
Montisci A, Rashid A. Process Concept of a Waste-Fired Zero-Emission Integrated Gasification Static Cycle Power Plant. Sustainability. 2025; 17(13):5816. https://doi.org/10.3390/su17135816
Chicago/Turabian StyleMontisci, Augusto, and Aiman Rashid. 2025. "Process Concept of a Waste-Fired Zero-Emission Integrated Gasification Static Cycle Power Plant" Sustainability 17, no. 13: 5816. https://doi.org/10.3390/su17135816
APA StyleMontisci, A., & Rashid, A. (2025). Process Concept of a Waste-Fired Zero-Emission Integrated Gasification Static Cycle Power Plant. Sustainability, 17(13), 5816. https://doi.org/10.3390/su17135816