Domestic Reclaimed Water for Circular Agriculture: Improving Agronomic Performance of Sweet Sorghum in a Semiarid Tropical Climate
Abstract
1. Introduction
2. Materials and Methods
2.1. Localization and Experimental Conditions
2.2. Experimental Design and Treatments
2.3. Water Source, System, and Irrigation Management
2.4. Planting Conditions
2.5. Variables Analyzed
2.5.1. Gas Exchange
2.5.2. Plant Growth
2.5.3. Sweet Sorghum Harvest and Water Use Efficiency
2.5.4. Juice Extraction and °Brix Determination
2.6. Data Analysis
3. Results
3.1. Gas Exchange
3.2. Plant Growth
3.3. Sweet Sorghum Harvest and Water Use Efficiency
3.4. Soluble Solids Content (°Brix)
3.5. Sorghum Cross-Crop Harvest Analysis
4. Discussion
4.1. Gas Exchange
4.2. Plant Growth, Fresh Biomass, and Water Use Efficiency
4.3. Soluble Solids Content (°Brix)
4.4. Cross-Crop Harvest Analysis
4.5. Risks of Wastewater Reuse in Agriculture: Heavy Metal Accumulation, Pathogen Load, and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, X.; Shen, Y.; Wang, Z.; Ma, J.; Yang, X.; Ma, L. Impact of Precipitation Variation on Summer Forage Crop Productivity and Precipitation Use Efficiency in a Semi-Arid Environment. Eur. J. Agron. 2022, 141, 126616. [Google Scholar] [CrossRef]
- Fust, P.; Schlecht, E. Importance of Timing: Vulnerability of Semi-Arid Rangeland Systems to Increased Variability in Temporal Distribution of Rainfall Events as Predicted by Future Climate Change. Ecol. Modell. 2022, 468, 109961. [Google Scholar] [CrossRef]
- Letsoalo, N.; Samuels, I.; Cupido, C.; Ntombela, K.; Finca, A.; Foster, J.; Tjelele, J.; Knight, R. Coping and Adapting to Drought in Semi-Arid Karoo Rangelands: Key Lessons from Livestock Farmers. J. Arid. Environ. 2023, 219, 105070. [Google Scholar] [CrossRef]
- Mayer, J.A.; Cushman, J.C. Nutritional and Mineral Content of Prickly Pear Cactus: A Highly Water-Use Efficient Forage, Fodder and Food Species. J. Agron. Crop Sci. 2019, 205, 625–634. [Google Scholar] [CrossRef]
- Lima, B.L.d.C.; Silva, Ê.F.d.F.e.; Zonta, J.H.; Neto, C.P.C.T.; de Lacerda, C.F.; Ferreira, J.F.d.S.; Cruz, F.J.R. Irrigation with Wastewater and k Fertilization Ensure the Yield and Quality of Coloured Cotton in a Semiarid Climate. Agronomy 2021, 11, 2370. [Google Scholar] [CrossRef]
- Souza, M.d.S.; Júnior, G.D.N.A.; de Souza, L.S.B.; Jardim, A.M.d.R.F.; da Silva, G.I.N.; de Araújo, G.G.L.; Campos, F.S.; Leite, M.L.d.M.V.; Tabosa, J.N.; da Silva, T.G.F. Forage Yield, Competition and Economic Benefit of Intercropping Cactus and Millet with Mulch in a Semi-Arid Environment. Afr. J. Range Forage Sci. 2023, 40, 219–230. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater: Economic Asset in an Urbanizing World; Springer: Dordrecht, The Netherlands, 2015; pp. 15–38. ISBN 9789401795456. [Google Scholar]
- Chaganti, V.N.; Ganjegunte, G.; Niu, G.; Ulery, A.; Flynn, R.; Enciso, J.M.; Meki, M.N.; Kiniry, J.R. Effects of Treated Urban Wastewater Irrigation on Bioenergy Sorghum and Soil Quality. Agric. Water Manag. 2020, 228, 105894. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A Transition from Conventional Irrigation to Fertigation with Reclaimed Wastewater: Prospects and Challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S. Influence of Long-Term Wastewater Irrigation on Soil Quality and Its Spatial Distribution. Ann. Agric. Sci. 2018, 63, 191–199. [Google Scholar] [CrossRef]
- Sdiri, W.; AlSalem, H.S.; Al-Goul, S.T.; Binkadem, M.S.; Ben Mansour, H. Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties. Sustainability 2023, 15, 5793. [Google Scholar] [CrossRef]
- Chauhan, A.; Jain, A.; Kolton, M.; Pathak, A. Impacts of Long-Term Irrigation of Municipally-Treated Wastewater to the Soil Microbial and Nutrient Properties. Sci. Total Environ. 2025, 959, 178143. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.L.S.; Sousa, H.G.; Silva, M.L.S.; Lacerda, C.F.; Gomes-Filho, E. Growth and Photosynthetic Parameters of Saccharine Sorghum Plants Subjected to Salinity. Acta Sci. Agron. 2019, 41, 42607. [Google Scholar] [CrossRef]
- Mubarik, M.K.; Hussain, K.; Abbas, G.; Altaf, M.T.; Baloch, F.S.; Ahmad, S. Productivity of Sorghum (Sorghum bicolar L.) at Diverse Irrigation Regimes and Sowing Dates in Semi-Arid and Arid Environment. Turk. J. Agric. For. 2022, 46, 1–18. [Google Scholar] [CrossRef]
- Huang, Z.; Dunkerley, D.; López-Vicente, M.; Wu, G.L. Trade-Offs of Dryland Forage Production and Soil Water Consumption in a Semi-Arid Area. Agric. Water Manag. 2020, 241, 106349. [Google Scholar] [CrossRef]
- Oktem, A.; Yucel, C.; Oktem, A.G. Assesment of Biochemical Forage Quality of Sweet Sorghum [Sorghum bicolor (L.) Moench ssp. Saccharatum]. Asian J. Chem. Sci. 2021, 9, 1–9. [Google Scholar] [CrossRef]
- Ghalkhani, A.; Golzardi, F.; Khazaei, A.; Mahrokh, A.; Illés, Á.; Bojtor, C.; Mousavi, S.M.N.; Széles, A. Irrigation Management Strategies to Enhance Forage Yield, Feed Value, and Water-Use Efficiency of Sorghum Cultivars. Plants 2023, 12, 2154. [Google Scholar] [CrossRef]
- Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. Modelling Environmental Impacts of Treated Municipal Wastewater Reuse for Tree Crops Irrigation in the Mediterranean Coastal Region. Sci. Total Environ. 2019, 660, 1513–1521. [Google Scholar] [CrossRef]
- Munné, A.; Solà, C.; Ejarque, E.; Sanchís, J.; Serra, P.; Corbella, I.; Aceves, M.; Galofré, B.; Boleda, M.R.; Paraira, M.; et al. Indirect Potable Water Reuse to Face Drought Events in Barcelona City. Setting a Monitoring Procedure to Protect Aquatic Ecosystems and to Ensure a Safe Drinking Water Supply. Sci. Total Environ. 2023, 866, 161339. [Google Scholar] [CrossRef]
- Lahlou, F.Z.; Mackey, H.R.; Al-Ansari, T. Wastewater Reuse for Livestock Feed Irrigation as a Sustainable Practice: A Socio-Environmental-Economic Review. J. Clean. Prod. 2021, 294, 126331. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated Wastewater Reuse for Irrigation: Pros and Cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
- Faouzi, E.; Arioua, A.; Karaoui, I.; Ait Ouhamchich, K.; Elhamdouni, D. Wastewater Reuse in Agriculture Sector: Resources Management and Adaptation in the Context of Climate Change: Case Study of the Beni Mellal-Khenifra Region, Morocco. In Proceedings of the E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 183. [Google Scholar]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Kama, R.; Song, J.; Liu, Y.; Hamani, A.K.M.; Zhao, S.; Li, Z. Water Availability and Status of Wastewater Treatment and Agriculture Reuse in China: A Review. Agronomy 2023, 13, 1187. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Ditzler, C.; Scheffe, K.; Monger, H.C. NRCS Soil Survey Manual: Soil Science Division Staff; Goverment Printing Office: Washington, DC, USA, 2018. [Google Scholar]
- Holanda, J.S.; Amorim, J.R.A.; Ferreira-Neto, M.; Holanda, A.C.; Sá, F.V.S. Qualidade Da Água Para Irrigação. In Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados; Gheyi, H.R., Dias, N.S., Lacerda, C.F., Gomes-Filho, E., Eds.; INCTSal: Fortaleza, Brazil, 2016; pp. 35–50. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture, 3rd ed.; Irrigation and Drainage Paper, 29; FAO: Rome, Italy, 1994; Volume 29. [Google Scholar]
- WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater; Volume 2: Wastewater Use in Agriculture; WHO: Geneva, Switzerland, 2013; Volume II, ISBN 9241546832.
- BRASIL CONAMA Resolution, No. 357/2005 (Brazil)—Classification of Fresh Waters. Brasília, Brazil, 2005. Available online: https://braziliannr.com/brazilian-environmental-legislation/conama-resolution-357-05-provisions-for-the-classification-of-water-bodies/ (accessed on 8 March 2024).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Pereira-Filho, I.A.; Rodrigues, J.A.S. Sorgo: O Produtor Pergunta, a Embrapa Responde; Pereirra-Filho, I.A., Rodrigues, J.A.S., Eds.; Embrapa: Brasília, Brazil, 2015; ISBN 9788570354365. [Google Scholar]
- Carvalho, D.F.; Oliveira, L.F.C. Planejamento e Manejo Da Água Na Agricultura Irrigada, 2nd ed.; Carvalho, D.F., Oliveira, L.F.C., Eds.; Editora UFV: Viçosa, Brazil, 2022. [Google Scholar]
- Sans, L.; Pellegrin, L. Método Simples Para Estimar a Área Foliar Da Cultura Do Sorgo. In Proceedings of the Congresso Nacional de Milho e Sorgo; ABMS: Recife, Brazil, 1998. [Google Scholar]
- Hoffman, G.J.; Evans, R.G.; Jensen, M.E.; Martin, D.L.; Elliott, R.L. Design and Operation of Farm Irrigation Systems, 2nd ed.; American Society of Agricultural and Biological Engineers: St. Joseph, MO, USA, 2007. [Google Scholar]
- Freita, L.A.; Henrique Gravatim Costa, G.; dos Santos Masson, I.; Emerenciano Ferreira, O.; Angelo Mutton, M.; Justino Rossini Mutton, M. Chemico-Technological Parameters and Maturation Curves of Sweet Sorghum Genotypes for Bioethanol Production. Afr. J. Agric. Res. 2014, 9, 3638–3644. [Google Scholar]
- The SAS System for Windows. SAS Institute Inc.: Cary, NC, USA, 2002.
- Sousa, L.V.; Silva, R.R.; Souza, M.V.P.; Queiroz, G.C.M.; Clemente, M.I.B.; Medeiros, J.F. Effects of Saline and Water Stress on Sweet Sorghum. Dyna 2024, 91, 69–75. [Google Scholar] [CrossRef]
- Carvalho, A.A.; Montenegro, A.A.A.; Lima, J.L.M.P.; Silva, T.G.F.; Pedrosa, E.M.R.; Almeida, T.A.B. Coupling Water Resources and Agricultural Practices for Sorghum in a Semiarid Environment. Water 2021, 13, 2288. [Google Scholar] [CrossRef]
- Tavazoh, M.; Habibi, D.; Golzardi, F.; Ilkaee, M.N.; Paknejad, F. Effect of Drought Stress on Morpho-Physiological Characteristics, Nutritive Value, and Water-Use Efficiency of Sorghum [Sorghum bicolor (L.) Moench] Varieties under Various Irrigation Systems. Braz. J. Biol. 2024, 84, e286121. [Google Scholar] [CrossRef]
- Cui, Y.N.; Yan, S.J.; Zhang, Y.N.; Wang, R.; Song, L.L.; Ma, Y.; Guo, H.; Yang, P.Z. Physiological, Metabolome and Gene Expression Analyses Reveal the Accumulation and Biosynthesis Pathways of Soluble Sugars and Amino Acids in Sweet Sorghum under Osmotic Stresses. Int. J. Mol. Sci. 2024, 25, 8942. [Google Scholar] [CrossRef]
- May, A.; de Souza, V.F.; Gravina, G.d.A.; Fernandes, P.G. Plant Population and Row Spacing on Biomass Sorghum Yield Performance. Ciencia Rural. 2016, 46, 434–439. [Google Scholar] [CrossRef]
- Hammer, G.L.; McLean, G.; Kholová, J.; van Oosterom, E. Modelling the Dynamics and Phenotypic Consequences of Tiller Outgrowth and Cessation in Sorghum. In Silico Plants 2023, 5, diad019. [Google Scholar] [CrossRef]
- Muchuweti, M.; Birkett, J.W.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.D.; Lester, J.N. Heavy Metal Content of Vegetables Irrigated with Mixtures of Wastewater and Sewage Sludge in Zimbabwe: Implications for Human Health. Agric. Ecosyst. Environ. 2006, 112, 41–48. [Google Scholar] [CrossRef]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy Metal Accumulation in Vegetables Irrigated with Water from Different Sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Chen, A.; Liang, H.; Chen, T.; Yang, W.; Ding, C. Influence of Long-Term Irrigation with Treated Papermaking Wastewater on Soil Ecosystem of a Full-Scale Managed Reed Wetland. J. Soils Sediments 2015, 16, 1352–1359. [Google Scholar] [CrossRef]
- Christou, A.; Karaolia, P.; Hapeshi, E.; Michael, C.; Fatta-Kassinos, D. Long-Term Wastewater Irrigation of Vegetables in Real Agricultural Systems: Concentration of Pharmaceuticals in Soil, Uptake and Bioaccumulation in Tomato Fruits and Human Health Risk Assessment. Water Res. 2017, 109, 24–34. [Google Scholar] [CrossRef]
- Fuhrimann, S.; Winkler, M.S.; Kabatereine, N.B.; Tukahebwa, E.M.; Halage, A.A.; Rutebemberwa, E.; Medlicott, K.; Schindler, C.; Utzinger, J.; Cissé, G. Risk of Intestinal Parasitic Infections in People with Different Exposures to Wastewater and Fecal Sludge in Kampala, Uganda: A Cross-Sectional Study. PLoS Negl. Trop. Dis. 2016, 10, e0004469. [Google Scholar] [CrossRef]
- Fuhrimann, S.; Winkler, M.S.; Pham-Duc, P.; Do-Trung, D.; Schindler, C.; Utzinger, J.; Cissé, G. Intestinal Parasite Infections and Associated Risk Factors in Communities Exposed to Wastewater in Urban and Peri-Urban Transition Zones in Hanoi, Vietnam. Parasit. Vectors 2016, 9, 537. [Google Scholar] [CrossRef]
Soil Characteristics | Layer (cm) | |
---|---|---|
0–20 | 20–40 | |
Chemical characteristics | ||
pH1:2.5 | 7.43 | 7.73 |
P (mg dm−1) | 117 | 86 |
S (mg dm−1) | 18.8 | 20.1 |
Soil sorption complex (cmolC dm−3) | ||
Ca2+ | 14.25 | 15.63 |
Mg2+ | 2.45 | 1.97 |
Na+ | 1.87 | 2.33 |
K+ | 0.26 | 0.17 |
SB * | 16.25 | 20.10 |
H + Al | 0.27 | 0.46 |
CEC ** | 19.1 | 20.5 |
Al3+ | 0 | 0 |
V (%) | 98.6 | 97.6 |
Aluminum saturation percentage | ||
m (%) | 0 | 0 |
Physical characteristics | ||
Sand (%) | 23.67 | 19.00 |
Silt (%) | 45.33 | 47.33 |
Clay (%) | 31.00 | 33.67 |
Soil texture | Clay loam | Clay loam |
Bulk density (Mg m−3) | 1.26 | 1.27 |
Soil particle density (Mg m−3) | 2.45 | 2.43 |
Effluent Characteristics | Values | Reference Values |
---|---|---|
pH | 7.10 | 6.0–8.5 (a) |
Electrical conductivity (dS m−1) | 1.11 (mean, Figure 5) | 0–3.0 (a) |
Hardness CaCO3 (mmolC L−1) | 0.1996 | 0–3.0 (b) |
SAR (mmolC L−1)1/2 | 5.07 | 0–15 (a) |
Na+ (mmolC L−1) | 6.61 | 0–40 (a) |
K+ (mmolC L−1) | 1.10 | 0–0.05 (a) |
Ca2+ (mmolC L−1) | 2.48 | 0–20 (a) |
Mg2+ (mmolC L−1) | 0.92 | 0–5 (a) |
Cu2+ (mmolC L−1) | 0.000157 | 0–0.0063 (a) |
Fe3+ (mmolC L−1) | 0.000250 | 0–0.269 (a) |
Mn2+ (mmolC L−1) | 0.006006 | 0–0.0073 (a) |
Zn2+ (mmolC L−1) | 0.000153 | 0–0.061 (a) |
Helminth eggs (Eggs L−1) | <1.0 | ≤1 (b) |
Thermotolerant coliforms (MPN/100 mL) 1 | 100 | ≤1000 (b,c) |
Phases | Characteristics | Kc |
---|---|---|
I | initial period | 0.40 |
II | vegetative development | 0.68 |
III | reproductive | 1.14 |
IV | grain filling | 1.10 |
Effects | DF | Mean Square | ||||||
---|---|---|---|---|---|---|---|---|
H | SD | LN | LA | TFM | WUE | Brix | ||
IR | 4 | 3171 * | 10.02 NS | 0.65 NS | 906,923 NS | 47.97 NS | 184.97 * | 13.06 ** |
error | 15 | 651 | 4.06 | 1.61 | 710,550 | 54.19 | 40.238 | 1.71 |
CH | 1 | 8873 ** | 814.82 ** | 36.10 ** | 130,064,567 ** | 6008.22 ** | 2155.83 ** | 25.33 ** |
CH × IR | 4 | 918 * | 11.95 NS | 1.41 NS | 850,117 NS | 28.91 NS | 66.49 * | 0.06 NS |
error | 15 | 201 | 4.01 | 1.43 | 816,150 | 36.00 | 21.36 | 1.84 |
IR (%) | First Crop Harvest | Second Crop Harvest | ||
---|---|---|---|---|
H (cm) ± SD | WUE (kg m−3) ± SD | H (cm) ± SD | WUE (kg m−3) ± SD | |
50 | 207.44 ± 13.32 | 33.55 ± 12.06 | 166.25 ± 8.88 | 8.76 ± 2.36 |
75 | 241.88 ± 20.38 | 27.00 ± 10.05 | 183.75 ± 21.55 | 13.07 ± 4.24 |
100 | 243.38 ± 0.25 | 21.18 ± 4.62 | 211.75 ± 11.98 | 9.10 ± 1.28 |
125 | 218.25 ± 13.32 | 17.17 ± 1.98 | 213.50 ± 5.00 | 6.46 ± 1.14 |
150 | 247.00 ± 51.04 | 16.31 ± 2.56 | 233.75 ± 16.58 | 4.41 ± 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, B.L.d.C.; Araújo, J.S.; Souza, J.T.A.; Lira, E.C.d.; Tabosa, J.N.; Alencar, E.L.d.N.; Moraes, J.E.F.d.; Almeida, C.D.G.C.d.; Silva, A.O.d.; Rolim, M.M.; et al. Domestic Reclaimed Water for Circular Agriculture: Improving Agronomic Performance of Sweet Sorghum in a Semiarid Tropical Climate. Sustainability 2025, 17, 5765. https://doi.org/10.3390/su17135765
Lima BLdC, Araújo JS, Souza JTA, Lira ECd, Tabosa JN, Alencar ELdN, Moraes JEFd, Almeida CDGCd, Silva AOd, Rolim MM, et al. Domestic Reclaimed Water for Circular Agriculture: Improving Agronomic Performance of Sweet Sorghum in a Semiarid Tropical Climate. Sustainability. 2025; 17(13):5765. https://doi.org/10.3390/su17135765
Chicago/Turabian StyleLima, Breno Leonan de Carvalho, Jucilene Silva Araújo, José Thyago Aires Souza, Elder Cunha de Lira, Jose Nildo Tabosa, Eurico Lustosa do Nascimento Alencar, Jose Edson Florentino de Moraes, Ceres Duarte Guedes Cabral de Almeida, Alexsandro Oliveira da Silva, Mario Monteiro Rolim, and et al. 2025. "Domestic Reclaimed Water for Circular Agriculture: Improving Agronomic Performance of Sweet Sorghum in a Semiarid Tropical Climate" Sustainability 17, no. 13: 5765. https://doi.org/10.3390/su17135765
APA StyleLima, B. L. d. C., Araújo, J. S., Souza, J. T. A., Lira, E. C. d., Tabosa, J. N., Alencar, E. L. d. N., Moraes, J. E. F. d., Almeida, C. D. G. C. d., Silva, A. O. d., Rolim, M. M., Montenegro, A. A. d. A., Silva, T. G. F. d., & Silva, Ê. F. d. F. e. (2025). Domestic Reclaimed Water for Circular Agriculture: Improving Agronomic Performance of Sweet Sorghum in a Semiarid Tropical Climate. Sustainability, 17(13), 5765. https://doi.org/10.3390/su17135765