Understanding Consumers’ Adoption Behavior of Driverless Delivery Vehicles: Insights from the Combined Use of NCA and PLS-SEM
Abstract
:1. Introduction
2. Hypothesis Development
2.1. Technology Acceptance Model (TAM)
2.2. Perceived Trust
2.3. Technological Complexity
3. Materials and Methods
3.1. Context and Data Collection
3.2. Scale Validation Process
3.3. Data Analysis and Scales
4. Results
4.1. Dimension Model Appraisal
4.2. Common Method Bias (CMB)
4.3. Structural Model Assessment
5. Implications and Conclusions
5.1. Discussion
5.2. Theoretical Implications
5.3. Methodological Implications
5.4. Managerial Implications
5.5. Policy Implications
5.6. Limitations and Future Examination
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Measurement Items and Sources
Constructs | Measurement Item | Source |
This part of the questionnaire employs the Likert scale. Each construct was measured with multiple items using a five-point Likert scale (1 = strongly disagree to 5 = strongly agree). 1 = Strongly disagree 2 = Very disagree 3 = Neutral 4 = Very agree 5 = Strongly agree | ||
Attitude (ATT) | I believe driverless delivery vehicles will improve the efficiency of delivery services. | [46] |
I trust that driverless delivery vehicles can safely navigate through traffic. | ||
I am concerned about the privacy and security implications of driverless delivery vehicles. | ||
I am open to receiving deliveries from driverless delivery vehicles. | ||
I believe driverless delivery vehicles will have a positive environmental impact by reducing emissions. | ||
Perceived Ease of Use (PEU) | I find it easy to understand how to interact with driverless delivery vehicles. | [37] |
I feel confident in using driverless delivery vehicles without assistance or guidance. | ||
I believe driverless delivery vehicles have a user-friendly interface. | ||
I perceive driverless delivery vehicle technology to be intuitive and easy to navigate. | ||
I feel comfortable using driverless delivery vehicles for my delivery needs. | ||
Perceived Usefulness (PUs) | I believe driverless delivery vehicles would be beneficial in reducing delivery times. | [29] |
I think driverless delivery vehicles would be helpful in providing more convenient delivery options. | ||
I perceive driverless delivery vehicles as a useful solution for reducing human error and improving delivery accuracy. | ||
I believe driverless delivery vehicles have the potential to increase efficiency and productivity in the delivery industry. | ||
I consider driverless delivery vehicles as a valuable innovation that could improve overall delivery experiences. | ||
Perceived Trust (TST) | I trust that driverless delivery vehicles can safely navigate and deliver packages without human intervention. | [58] |
I believe that driverless delivery vehicles have the necessary technology and sensors to accurately detect and avoid obstacles or hazards. | ||
I trust that driverless delivery vehicles have undergone rigorous testing and development to ensure their reliability and performance. | ||
I have confidence that driverless delivery vehicles can handle unexpected situations or challenges that may arise during the delivery process. | ||
I feel comfortable relying on driverless delivery vehicles to deliver packages securely and efficiently to the intended recipients. | ||
Technological Complexity (TECOM) | I find the technology behind driverless delivery vehicles to be complex and difficult to understand. | [65] |
I feel overwhelmed by the various technical aspects involved in using driverless delivery vehicles. | ||
I believe the interface of driverless delivery vehicles is overly complicated and not user-friendly. | ||
I perceive driverless delivery vehicle technology to be unintuitive and hard to navigate. | ||
I feel uneasy about relying on the advanced technology of driverless delivery vehicles for my delivery needs. | ||
Driverless delivery vehicle Intention (DDVI) | I am likely to use driverless delivery vehicles for my personal deliveries. | [43,86] |
I believe driverless delivery vehicles will improve the efficiency of delivery services. | ||
I would feel comfortable receiving deliveries from driverless vehicles. | ||
I trust driverless delivery vehicles to accurately deliver my packages. | ||
I would recommend the use of driverless delivery vehicles to others. |
References
- Ju, C.; Wang, S.; Hu, Z.; Lin, L.-W.; Yu, J. Application of the extended value-belief-norm (VBN) theory to understand consumers’ intention to use autonomous delivery vehicles (ADVs). Heliyon 2023, 9, e20244. [Google Scholar]
- Nava, J. The Evolution of Mobility: Self-Driving Vehicles on the Horizon in China. 2023. Available online: https://www.chinadaily.com.cn/a/a202308/21/WS64e2d09da31035260b81d4f9.html (accessed on 18 May 2025).
- Kapser, S.; Abdelrahman, M.; Bernecker, T. Autonomous delivery vehicles to fight the spread of COVID-19—How do men and women differ in their acceptance? Transp. Res. Part A Policy Pract. 2021, 148, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Xinhua Driverless Delivery Vehicle to Steal the Thunder of Shopping Festival. 2023. Available online: http://www.china.org.cn/business/2023-11/12/content_116810588.htm (accessed on 8 June 2024).
- Lu, M.; Huang, C.; Wang, R.; Li, H. Customer’s Adoption Intentions toward Autonomous Delivery Vehicle Services: Extending DOI Theory with Social Awkwardness and Use Experience. J. Adv. Transp. 2023, 2023, 3440691. [Google Scholar] [CrossRef]
- Balaska, V.; Tsiakas, K.; Giakoumis, D.; Kostavelis, I.; Folinas, D.; Gasteratos, A.; Tzovaras, D. A Viewpoint on the Challenges and Solutions for Driverless Last-Mile Delivery. Machines 2022, 10, 1059. [Google Scholar] [CrossRef]
- Dou, W.; Hu, P.; Wei, P.; Zheng, N. Safety Risks of Self-driving Vehicle: Identification and Measurement. Chin. J. Eng. Sci. 2021, 23, 167. [Google Scholar] [CrossRef]
- Wu, T.; Cui, Y.; Lian, A.; Tian, Y.; Li, R.; Liu, X.; Yan, J.; Xue, Y.; Liu, H.; Wu, B. Vehicle emissions of primary air pollutants from 2009 to 2019 and projection for the 14th Five-Year Plan period in Beijing, China. J. Environ. Sci. 2023, 124, 513–521. [Google Scholar] [CrossRef]
- Figliozzi, M.; Jennings, D. Autonomous delivery robots and their potential impacts on urban freight energy consumption and emissions. Transp. Res. Procedia 2020, 46, 21–28. [Google Scholar] [CrossRef]
- Pani, A.; Mishra, S.; Golias, M.; Figliozzi, M. Evaluating public acceptance of autonomous delivery robots during COVID-19 pandemic. Transp. Res. Part D Transp. Environ. 2020, 89, 102600. [Google Scholar] [CrossRef]
- Golbabaei, F.; Yigitcanlar, T.; Paz, A.; Bunker, J. Individual predictors of autonomous vehicle public acceptance and intention to use: A systematic review of the literature. J. Open Innov. Technol. Mark. Complex. 2020, 6, 106. [Google Scholar] [CrossRef]
- Chen, J.; Li, R.; Gan, M.; Fu, Z.; Yuan, F. Public Acceptance of Driverless Buses in China: An Empirical Analysis Based on an Extended UTAUT Model. Discret. Dyn. Nat. Soc. 2020, 2020, 4318182. [Google Scholar] [CrossRef]
- Yuen, K.F.; Cai, L.; Qi, G.; Wang, X. Factors influencing autonomous vehicle adoption: An application of the technology acceptance model and innovation diffusion theory. Technol. Anal. Strateg. Manag. 2021, 33, 505–519. [Google Scholar] [CrossRef]
- Adu-Gyamfi, G.; Song, H.; Obuobi, B.; Nketiah, E.; Wang, H.; Cudjoe, D. Who will adopt? Investigating the adoption intention for battery swap technology for electric vehicles. Renew. Sustain. Energy Rev. 2022, 156, 111979. [Google Scholar] [CrossRef]
- Acharya, S.; Mekker, M. Public acceptance of connected vehicles: An extension of the technology acceptance model. Transp. Res. Part F Traffic Psychol. Behav. 2022, 88, 54–68. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. Manag. Inf. Syst. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Hair, J.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Springer Nature: Cham, Switzerland, 2022; ISBN 978-1-5443-9640-8. [Google Scholar]
- Richter, N.F.; Hauff, S.; Ringle, C.M.; Gudergan, S.P. The Use of Partial Least Squares Structural Equation Modeling and Complementary Methods in International Management Research. Manag. Int. Rev. 2022, 62, 449–470. [Google Scholar] [CrossRef]
- Richter, N.F.; Schubring, S.; Hauff, S.; Ringle, C.M.; Sarstedt, M. When predictors of outcomes are necessary: Guidelines for the combined use of PLS-SEM and NCA. Ind. Manag. Data Syst. 2020, 120, 2243–2267. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M. Gain more insight from your PLS-SEM results the importance-performance map analysis. Ind. Manag. Data Syst. 2016, 116, 1865–1886. [Google Scholar] [CrossRef]
- Dul, J. Problematic applications of Necessary Condition Analysis (NCA) in tourism and hospitality research. Tour. Manag. 2022, 93, 104616. [Google Scholar] [CrossRef]
- Dul, J.; Hauff, S.; Bouncken, R.B. Necessary condition analysis (NCA): Review of research topics and guidelines for good practice. Rev. Manag. Sci. 2023, 17, 683–714, Erratum in Rev. Manag. Sci. 2023, 17, 1535–1537. https://doi.org/10.1007/s11846-023-00634-z. [Google Scholar] [CrossRef]
- Naiseh, M.; Clark, J.; Akarsu, T.; Hanoch, Y.; Brito, M.; Wald, M.; Webster, T.; Shukla, P. Trust, risk perception, and intention to use autonomous vehicles: An interdisciplinary bibliometric review. AI Soc. 2025, 40, 1091–1111. [Google Scholar] [CrossRef]
- Kenesei, Z.; Ásványi, K.; Kökény, L.; Jászberényi, M.; Miskolczi, M.; Gyulavári, T.; Syahrivar, J. Trust and perceived risk: How different manifestations affect the adoption of autonomous vehicles. Transp. Res. Part A Policy Pract. 2022, 164, 379–393. [Google Scholar] [CrossRef]
- Lee, Y.; Kozar, K.A.; Larsen, K.R.T. The Technology Acceptance Model: Past, Present, and Future. Commun. Assoc. Inf. Syst. 2003, 12, 50. [Google Scholar] [CrossRef]
- Scherer, R.; Siddiq, F.; Tondeur, J. The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Comput. Educ. 2019, 128, 13–35. [Google Scholar] [CrossRef]
- Munabi, S.K.; Aguti, J.; Nabushawo, H.M. Using the TAM Model to Predict Undergraduate Distance Learners Behavioural Intention to Use the Makerere University Learning Management System. Open Access Libr. J. 2020, 7, e6699. [Google Scholar] [CrossRef]
- Ursavaş, Ö.F. Technology Acceptance Model: History, Theory, and Application. In Conducting Technology Acceptance Research in Education: Theory, Models, Implementation, and Analysis; Springer: Cham, Switzerland, 2022; pp. 57–91. [Google Scholar]
- Marikyan, D.; Papagiannidis, S. Technology Acceptance Model: A review. In TheoryHub Book; Newcastle University Business School: Newcastle upon Tyne, UK, 2023; pp. 1–17. [Google Scholar]
- Shemesh, T.; Barnoy, S. Assessment of the intention to use mobile health applications using a technology acceptance model in an israeli adult population. Telemed. e-Health 2020, 26, 1141–1149. [Google Scholar] [CrossRef]
- Ryan, M.J.; Worthington, A.K. Persuasion Theory in Action; University of Alaska Anchorage: Anchorage, AK, USA, 2023. [Google Scholar]
- Lankton, N.K.; Harrison Mcknight, D.; Tripp, J. Technology, humanness, and trust: Rethinking trust in technology. J. Assoc. Inf. Syst. 2015, 16, 880–918. [Google Scholar] [CrossRef]
- Holland, F. Walmart is using fully driverless trucks to ramp up its online grocery business. CNBC, 8 November 2021. [Google Scholar]
- Chau, P.Y.K. An Empirical Assessment of a Modified Technology Acceptance Model. J. Manag. Inf. Syst. 1996, 13, 185–204. [Google Scholar] [CrossRef]
- Tao, D.; Shao, F.; Wang, H.; Yan, M.; Qu, X. Integrating usability and social cognitive theories with the technology acceptance model to understand young users’ acceptance of a health information portal. Health Inform. J. 2020, 26, 1347–1362. [Google Scholar] [CrossRef]
- Bansah, A.K.; Darko Agyei, D. Perceived convenience, usefulness, effectiveness and user acceptance of information technology: Evaluating students’ experiences of a Learning Management System. Technol. Pedagog. Educ. 2022, 31, 431–449. [Google Scholar] [CrossRef]
- Luo, J.; Ahmad, S.F.; Alyaemeni, A.; Ou, Y.; Irshad, M.; Alyafi-Alzahri, R.; Alsanie, G.; Unnisa, S.T. Role of perceived ease of use, usefulness, and financial strength on the adoption of health information systems: The moderating role of hospital size. Humanit. Soc. Sci. Commun. 2024, 11, 516. [Google Scholar] [CrossRef]
- He, Y.; Chen, Q.; Kitkuakul, S. Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy. Cogent Bus. Manag. 2018, 5, 1459006. [Google Scholar] [CrossRef]
- Aljarrah, E.; Elrehail, H.; Aababneh, B. E-voting in Jordan: Assessing readiness and developing a system. Comput. Hum. Behav. 2016, 63, 860–867. [Google Scholar] [CrossRef]
- Fan, F. Driverless Delivery Vehicles Transform Grocery Trade. China Daily. 2022. Available online: http://www.chinadaily.com.cn/a/202204/05/WS624b8b58a310fd2b29e55132.html (accessed on 18 May 2025).
- Chu, L.K. Economic structure and environmental Kuznets curve hypothesis: New evidence from economic complexity. Appl. Econ. Lett. 2021, 28, 612–616. [Google Scholar] [CrossRef]
- Han, L.; Wang, S.; Zhao, D.; Li, J. The intention to adopt electric vehicles: Driven by functional and non-functional values. Transp. Res. Part A Policy Pract. 2017, 103, 185–197. [Google Scholar] [CrossRef]
- Rejali, S.; Aghabayk, K.; Esmaeli, S.; Shiwakoti, N. Comparison of technology acceptance model, theory of planned behavior, and unified theory of acceptance and use of technology to assess a priori acceptance of fully automated vehicles. Transp. Res. Part A Policy Pract. 2023, 168, 103565. [Google Scholar] [CrossRef]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Moura, I.V.; de Almeida, L.B.; da Silva, W.V.; da Veiga, C.P.; Costa, F. Predictor Factors of Intention to Use Technological Resources: A Multigroup Study About the Approach of Technology Acceptance Model. Sage Open 2020, 10, 2158244020967942. [Google Scholar] [CrossRef]
- Toros, E.; Asiksoy, G.; Sürücü, L. Refreshment students’ perceived usefulness and attitudes towards using technology: A moderated mediation model. Humanit. Soc. Sci. Commun. 2024, 11, 333. [Google Scholar] [CrossRef]
- Huajian, C. Attitude. In The ECPH Encyclopedia of Psychology; Springer Nature Singapore: Singapore, 2024; pp. 1–3. [Google Scholar]
- Huang, X.; Lin, Y.; Lim, M.K.; Tseng, M.L.; Zhou, F. The influence of knowledge management on adoption intention of electric vehicles: Perspective on technological knowledge. Ind. Manag. Data Syst. 2021, 121, 1481–1495. [Google Scholar] [CrossRef]
- Zhou, L.; Xue, S.; Li, R. Extending the Technology Acceptance Model to Explore Students’ Intention to Use an Online Education Platform at a University in China. Sage Open 2022, 12, 21582440221085260. [Google Scholar] [CrossRef]
- Nazirova, Z.; Borbala, S. Values, Attitudes and the Behaviour Paradigm: A Systematic Literature Review. J. Hum. Values 2024, 30, 214–239. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–339. [Google Scholar] [CrossRef]
- Mkhonto, M.; Zuva, T. Technology Acceptance: A Critical Review of Technology Adoption Theories and Models. In Software Engineering Methods in Systems and Network Systems; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2024; Volume 934, pp. 414–428. ISBN 9783031548123. [Google Scholar]
- Taherdoost, H. A review of technology acceptance and adoption models and theories. Procedia Manuf. 2018, 22, 960–967. [Google Scholar] [CrossRef]
- Fantozzi, I.C.; Di Luozzo, S.; Schiraldi, M.M. Soft Skills, Attitudes and Personality Traits in Operations and Supply Chain Management: Systematic review and taxonomy proposal through ProKnow-C methodology. In Proceedings of the XXVII Summer School “Francesco Turco”, San Remo, Italy, 7–9 September 2022. [Google Scholar]
- Bitkina, O.V.; Jeong, H.; Lee, B.C.; Park, J.; Park, J.; Kim, H.K. Perceived trust in artificial intelligence technologies: A preliminary study. Hum. Factors Ergon. Manuf. 2020, 30, 282–290. [Google Scholar] [CrossRef]
- Valori, I.; Jung, M.M.; Fairhurst, M.T. Social touch to build trust: A systematic review of technology-mediated and unmediated interactions. Comput. Hum. Behav. 2024, 153, 108121. [Google Scholar] [CrossRef]
- Soren, A.A.; Chakraborty, S. Adoption, satisfaction, trust, and commitment of over-the-top platforms: An integrated approach. J. Retail. Consum. Serv. 2024, 76, 103574. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the Importance of Trust on Adopting an Autonomous Vehicle. Int. J. Hum. Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Pavlou, P.A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar]
- Shahzad, M.F.; Xu, S.; Lim, W.M.; Hasnain, M.F.; Nusrat, S. Cryptocurrency awareness, acceptance, and adoption: The role of trust as a cornerstone. Humanit. Soc. Sci. Commun. 2024, 11, 4. [Google Scholar] [CrossRef]
- Huang, T. Psychological factors affecting potential users’ intention to use autonomous vehicles. PLoS ONE 2023, 18, e0282915. [Google Scholar] [CrossRef]
- Biala, A.M. Predicting Driverless Vehicle Technology Adoption from Logistic Experts. Ph.D. Thesis, Grand Canyon University, Phoenix, AZ, USA, 2022. [Google Scholar]
- Sung, E.; Chung, W.Y.; Lee, D. Factors that affect consumer trust in product quality: A focus on online reviews and shopping platforms. Humanit. Soc. Sci. Commun. 2023, 10, 766. [Google Scholar] [CrossRef]
- Körber, M.; Baseler, E.; Bengler, K. Introduction matters: Manipulating trust in automation and reliance in automated driving. Appl. Ergon. 2018, 66, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Al-Nuaimi, M.N.; Al-Emran, M. Learning management systems and technology acceptance models: A systematic review. Educ. Inf. Technol. 2021, 26, 5499–5533. [Google Scholar] [CrossRef]
- Ha, N.; Xu, K.; Ren, G.; Mitchell, A.; Ou, J.Z. Machine Learning-Enabled Smart Sensor Systems. Adv. Intell. Syst. 2020, 2, 2000063. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, C. A Review of Key Technologies for Environment Sensing in Driverless Vehicles. World Electr. Veh. J. 2024, 15, 290. [Google Scholar] [CrossRef]
- Zhang, L.; Tong, H.; Liang, Y.; Qin, Q. Consumer purchase intention of new energy vehicles with an extended technology acceptance model: The role of attitudinal ambivalence. Transp. Res. Part A Policy Pract. 2023, 174, 103742. [Google Scholar] [CrossRef]
- Mennie, J.J. Autonomous Vehicle Technology Examination. Muma Bus. Rev. 2019, 3, 193–205. [Google Scholar] [CrossRef]
- Lukyanenko, R.; Maass, W.; Storey, V.C. Trust in artificial intelligence: From a Foundational Trust Framework to emerging research opportunities. Electron. Mark. 2022, 32, 1993–2020. [Google Scholar] [CrossRef]
- Hornbæk, K. Commentary: Usability and Theory Building. Hum.-Comput. Interact. 2018, 33, 186–189. [Google Scholar] [CrossRef]
- Hu, R.; Cai, T.; Xu, W. Exploring the technology changes of new energy vehicles in China: Evolution and trends. Comput. Ind. Eng. 2024, 191, 110178. [Google Scholar] [CrossRef]
- Almansour, M. Electric vehicles (EV) and sustainability: Consumer response to twin transition, the role of e-businesses and digital marketing. Technol. Soc. 2022, 71, 102135. [Google Scholar] [CrossRef]
- Adnan, N. Exploring the future: A meta-analysis of autonomous vehicle adoption and its impact on urban life and the healthcare sector. Transp. Res. Interdiscip. Perspect. 2024, 26, 101110. [Google Scholar] [CrossRef]
- Kim, J.; Wilemon, D. An empirical investigation of complexity and its management in new product development. Technol. Anal. Strateg. Manag. 2009, 21, 547–564. [Google Scholar] [CrossRef]
- Kim, J.; Wilemon, D. Complexity and the multiple impacts on new product development: Results from a field study. Int. J. Innov. Technol. Manag. 2012, 9, 1250043. [Google Scholar] [CrossRef]
- Caferra, R.; Colasante, A.; Morone, A. The less you burn, the more we earn: The role of social and political trust on energy-saving behaviour in Europe. Energy Res. Soc. Sci. 2021, 71, 101812. [Google Scholar] [CrossRef]
- Del Ponte, A.; Li, L.; Ang, L.; Lim, N.; Seow, W.J. Evaluating SoJump.com as a tool for online behavioral research in China. J. Behav. Exp. Financ. 2024, 41, 100905. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Education International: Upper Saddle, NJ, USA, 2006. [Google Scholar]
- Kock, N.; Hadaya, P. Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Inf. Syst. J. 2018, 28, 227–261. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Change 2021, 173, 121092. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Chakraborty, I.; Hu, P.J.H.; Cui, D. Examining the effects of cognitive style in individuals’ technology use decision making. Decis. Support Syst. 2008, 45, 228–241. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107. [Google Scholar] [CrossRef]
- Hamburger, Y.A.; Sela, Y.; Kaufman, S.; Wellingstein, T.; Stein, N.; Sivan, J. Personality and the autonomous vehicle: Overcoming psychological barriers to the driverless car. Technol. Soc. 2022, 69, 101971. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Ringle, C.M. “PLS-SEM: Indeed a silver bullet”–retrospective observations and recent advances. J. Mark. Theory Pract. 2023, 31, 261–275. [Google Scholar] [CrossRef]
- Richter, N.F.; Hauff, S. Necessary conditions in international business research—Advancing the field with a new perspective on causality and data analysis. J. World Bus. 2022, 57, 101310. [Google Scholar] [CrossRef]
- Richter, N.F.; Hauff, S.; Kolev, A.E.; Schubring, S. Dataset on an extended technology acceptance model: A combined application of PLS-SEM and NCA. Data Brief 2023, 48, 109190. [Google Scholar] [CrossRef]
- Dul, J.; van der Laan, E.; Kuik, R. A Statistical Significance Test for Necessary Condition Analysis. Organ. Res. Methods 2020, 23, 385–395. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, K.; Stylianou, A. The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: An empirical investigation. Decis. Support Syst. 2023, 56, 513–524. [Google Scholar] [CrossRef]
- Chong, A.Y.L.; Lacka, E.; Boying, L.; Chan, H.K. The role of social media in enhancing guanxi and perceived effectiveness of E-commerce institutional mechanisms in online marketplace. Inf. Manag. 2018, 55, 621–632. [Google Scholar] [CrossRef]
- Lindell, M.K.; Whitney, D.J. Accounting for common method variance in cross-sectional research designs. J. Appl. Psychol. 2001, 86, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Howard, M.C.; Nitzl, C. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. J. Bus. Res. 2020, 109, 101–110. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Mustafa, S.A.; Othman, A.R.; Perumal, S. Corporate Social Responsibility and Company Performance in the Malaysian Context. Procedia Soc. Behav. Sci. 2012, 65, 897–905. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R; Classroom Companion: Business; Springer International Publishing: Cham, Switzerland, 2021; Volume 21, ISBN 9783030805180. [Google Scholar]
- Shmueli, G.; Sarstedt, M.; Hair, J.F.; Cheah, J.H.; Ting, H.; Vaithilingam, S.; Ringle, C.M. Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. Eur. J. Mark. 2019, 53, 2322–2347. [Google Scholar] [CrossRef]
- Huit, G.T.M.; Hair, J.F.; Proksch, D.; Sarstedt, M.; Pinkwart, A.; Ringle, C.M. Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. J. Int. Mark. 2018, 26, 1–21. [Google Scholar]
- Richter, N.F.; Martin, J.; Hansen, S.V.; Taras, V.; Alon, I. Motivational configurations of cultural intelligence, social integration, and performance in global virtual teams. J. Bus. Res. 2021, 129, 351–367. [Google Scholar] [CrossRef]
- Hauff, S.; Richter, N.F.; Sarstedt, M.; Ringle, C.M. Importance and performance in PLS-SEM and NCA: Introducing the combined importance-performance map analysis (cIPMA). J. Retail. Consum. Serv. 2024, 78, 103723. [Google Scholar] [CrossRef]
- Lehmann, C. Theory and method in grammaticalization. Z. Ger. Linguist. 2004, 32, 152–187. [Google Scholar]
- Baskerville, R.; Pries-Heje, J. Grounded action research: A method for understanding IT in practice. Account. Manag. Inf. Technol. 1999, 9, 1–23. [Google Scholar] [CrossRef]
- Filimonau, V.; Chiang, C.C.; Wang, L.E.; Muhialdin, B.J.; Ermolaev, V.A. Resourcefulness of chefs and food waste prevention in fine dining restaurants. Int. J. Hosp. Manag. 2023, 108, 103368. [Google Scholar] [CrossRef]
- Magno, F.; Cassia, F. Predicting restaurants’ surplus food platform continuance: Insights from the combined use of PLS-SEM and NCA and predictive model comparisons. J. Retail. Consum. Serv. 2024, 79, 103820. [Google Scholar] [CrossRef]
- Baloglu, S.; Raab, C.; Malek, K. Organizational Motivations for Green Practices in Casual Restaurants. Int. J. Hosp. Tour. Adm. 2022, 23, 269–288. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Ringle, C.; Gudergan, S. Advanced Issues in Partial Least Squares Structural Equation Modeling, 2nd ed.; Sage Publications: London, UK, 2023; ISBN 9781071862506. [Google Scholar]
- Sukhov, A.; Friman, M.; Olsson, L.E. Unlocking potential: An integrated approach using PLS-SEM, NCA, and fsQCA for informed decision making. J. Retail. Consum. Serv. 2023, 74, 103424. [Google Scholar] [CrossRef]
- Adler, S.J.; Röseler, L.; Schöniger, M.K. A toolbox to evaluate the trustworthiness of published findings. J. Bus. Res. 2023, 167, 114189. [Google Scholar] [CrossRef]
Variable | ‘Subcategory’ | Frequency | Percent |
---|---|---|---|
Gender | Male | 345.0 | 59.6 |
Female | 234.0 | 40.4 | |
Age | Under 25 | 101.0 | 17.4 |
26–35 | 178.0 | 30.7 | |
36–45 | 112.0 | 19.3 | |
46–55 | 89.0 | 15.4 | |
Above 55 | 99.0 | 17.1 | |
Marital status | Single | 241.0 | 41.6 |
Married | 338.0 | 58.4 | |
Employment status | Student | 128.0 | 22.1 |
Self-employed | 111.0 | 19.2 | |
Government worker | 63.0 | 10.9 | |
Private company worker | 228.0 | 39.4 | |
Unemployed | 49.0 | 8.5 | |
Level of education | High school and below | 47.0 | 8.1 |
Junior high school | 94.0 | 16.2 | |
Vocational/Technical Education | 83.0 | 14.3 | |
Bachelor’s | 264.0 | 45.6 | |
Master’s | 87.0 | 15.0 | |
Ph.D. | 4.0 | 0.7 | |
Income level | Below CNY 2500 | 95.0 | 16.4 |
CNY 2501–5000 | 62.0 | 10.7 | |
CNY 5001–7500 | 163.0 | 28.2 | |
CNY 7501–10,000 | 187.0 | 32.3 | |
Above CNY 10,000 | 72.0 | 12.4 | |
Type of community | Urban area | 463.0 | 80.0 |
Rural area | 116.0 | 20.0 | |
The total of each variable | 579 (100%) |
Items | Current Research Model | Benchmark Value |
---|---|---|
SRMR | 0.023 | <0.08 |
NFI | 0.942 | >0.80 |
GFI | 0.918 | >0.80 |
R2 | 0.907 |
Construct | Median | Max | Min | Skewness | Standard Deviation | Excess Kurtosis |
---|---|---|---|---|---|---|
PU | 0.399 | 1.104 | −2.439 | −1.225 | 1.000 | −0.095 |
TST | 0.404 | 1.121 | −2.297 | −1.197 | 1.000 | −0.174 |
PEU | 0.394 | 1.096 | −2.423 | −1.202 | 1.000 | −0.181 |
DDVI | 0.397 | 1.105 | −2.435 | −1.228 | 1.000 | −0.113 |
ATT | 0.412 | 1.130 | −2.462 | −1.238 | 1.000 | −0.111 |
TECOM | 0.319 | 1.509 | −2.258 | −1.2 | 1.000 | −0.166 |
Construct | Item | FL | CA | Rho_A | CR | AVE |
---|---|---|---|---|---|---|
Attitude | ATT1 | 0.885 | 0.921 | 0.922 | 0.941 | 0.761 |
ATT2 | 0.872 | |||||
ATT3 | 0.863 | |||||
ATT4 | 0.867 | |||||
ATT5 | 0.874 | |||||
Driverless delivery vehicle’s intention | DDVI1 | 0.882 | 0.930 | 0.930 | 0.947 | 0.782 |
DDVI2 | 0.891 | |||||
DDVI3 | 0.881 | |||||
DDVI4 | 0.877 | |||||
DDVI5 | 0.890 | |||||
Perceived ease of use | PEU1 | 0.884 | 0.926 | 0.926 | 0.944 | 0.771 |
PEU2 | 0.864 | |||||
PEU3 | 0.885 | |||||
PEU4 | 0.878 | |||||
PEU5 | 0.877 | |||||
Perceived usefulness | PU1 | 0.882 | 0.929 | 0.929 | 0.946 | 0.779 |
PU2 | 0.880 | |||||
PU3 | 0.885 | |||||
PU4 | 0.883 | |||||
PU5 | 0.881 | |||||
Technological complexity | TECOM1 | 0.876 | 0.933 | 0.933 | 0.949 | 0.788 |
TECOM2 | 0.889 | |||||
TECOM3 | 0.889 | |||||
TECOM4 | 0.896 | |||||
TECOM5 | 0.887 | |||||
Perceived trust | TST1 | 0.877 | 0.926 | 0.927 | 0.944 | 0.773 |
TST2 | 0.866 | |||||
TST3 | 0.874 | |||||
TST4 | 0.885 | |||||
TST5 | 0.892 |
HTMT | ||||||
---|---|---|---|---|---|---|
ATT | DDVI | PEU | PU | TECOM | TST | |
ATT | ||||||
DDVI | 0.478 | |||||
PEU | 0.263 | 0.383 | ||||
PU | 0.264 | 0.231 | 0.384 | |||
TECOM | 0.65 | 0.183 | 0.327 | 0.372 | ||
TST | 0.557 | 0.454 | 0.377 | 0.311 | 0.465 |
Construct | R-Square | Q2 Predict | RMSE | MAE | SRMR | GFI | NFI |
---|---|---|---|---|---|---|---|
ATT | 0.894 | 0.890 | 0.334 | 0.271 | 0.023 | 0.918 | 0.942 |
DDVI | 0.907 | 0.887 | 0.337 | 0.269 | |||
PEU | 0.894 | 0.894 | 0.327 | 0.256 | |||
PU | 0.905 | 0.895 | 0.325 | 0.263 |
Direct Effects | Path Coefficients | p Values | Confidence Intervals | f-Square | Decision | |
---|---|---|---|---|---|---|
2.5% | 97.5% | |||||
ATT → DDVI | 0.117 | 0.004 | 0.038 | 0.196 | 0.013 | |
PEU → ATT | 0.475 | 0.000 | 0.399 | 0.552 | 0.303 | |
PEU → DDVI | 0.243 | 0.000 | 0.166 | 0.323 | 0.057 | |
PEU → PU | 0.305 | 0.000 | 0.228 | 0.382 | 0.104 | |
PU → ATT | 0.489 | 0.000 | 0.412 | 0.563 | 0.321 | |
PU → DDVI | 0.212 | 0.000 | 0.126 | 0.295 | 0.043 | |
TECOM → DDVI | 0.214 | 0.000 | 0.127 | 0.302 | 0.044 | |
TECOM → PEU | 0.532 | 0.000 | 0.463 | 0.599 | 0.378 | |
TECOM → PU | 0.266 | 0.000 | 0.188 | 0.347 | 0.077 | |
TST → DDVI | 0.196 | 0.000 | 0.114 | 0.279 | 0.038 | |
TST → PEU | 0.432 | 0.000 | 0.363 | 0.501 | 0.249 | |
TST → PU | 0.404 | 0.000 | 0.326 | 0.478 | 0.196 |
Paths | p Values | CI | Decision | ||
---|---|---|---|---|---|
2.5% | 97.5% | ||||
TECOM → PU → DDVI | 0.056 | 0.000 | 0.031 | 0.086 | Partial mediation |
TST → PU → DDVI | 0.085 | 0.000 | 0.048 | 0.125 | Partial mediation |
PEU → ATT → DDVI | 0.055 | 0.005 | 0.018 | 0.095 | Partial mediation |
TECOM → PEU → DDVI | 0.129 | 0.000 | 0.085 | 0.177 | Partial mediation |
PU → ATT → DDVI | 0.057 | 0.006 | 0.019 | 0.100 | Partial mediation |
TST → PEU → DDVI | 0.105 | 0.000 | 0.070 | 0.143 | Partial mediation |
PEU → PU → DDVI | 0.064 | 0.000 | 0.035 | 0.097 | Partial mediation |
CE-FDH | CR-FDH | |||||
---|---|---|---|---|---|---|
Latent Variable | Original Effect Size | 95.0% | p Value | Original Effect Size | 95.0% | p Value |
ATT | 0.412 | 0.042 | 0.000 | 0.284 | 0.031 | 0.000 |
PEU | 0.394 | 0.044 | 0.000 | 0.305 | 0.035 | 0.000 |
PU | 0.391 | 0.045 | 0.000 | 0.286 | 0.036 | 0.000 |
TECOM | 0.354 | 0.031 | 0.000 | 0.257 | 0.028 | 0.000 |
TST | 0.394 | 0.037 | 0.000 | 0.266 | 0.027 | 0.000 |
Bottleneck Tables | ATT | PEU | PU | TECOM | TST |
---|---|---|---|---|---|
0.000% | NN | NN | NN | NN | NN |
10.000% | NN | NN | NN | NN | NN |
20.000% | −2.432 | −2.287 | NN | NN | NN |
30.000% | −2.120 | −1.986 | −2.258 | −1.997 | −2.192 |
40.000% | −1.809 | −1.686 | −1.898 | −1.681 | −1.852 |
50.000% | −1.498 | −1.386 | −1.537 | −1.365 | −1.511 |
60.000% | −1.186 | −1.085 | −1.177 | −1.048 | −1.171 |
70.000% | −0.875 | −0.785 | −0.817 | −0.732 | −0.830 |
80.000% | −0.564 | −0.484 | −0.456 | −0.415 | −0.489 |
90.000% | −0.252 | −0.184 | −0.096 | −0.099 | −0.149 |
100.000% | 0.059 | 0.116 | 0.265 | 0.217 | 0.192 |
Construct | NCA Results | PLS-SEM Results |
---|---|---|
ATT | Necessary condition that is significant and relevant | Significant determinant |
PEU | Necessary condition that is significant and relevant | Significant determinant |
PU | Necessary condition that is significant and relevant | Significant determinant |
TECOM | Necessary condition that is significant and relevant | Significant determinant |
TST | Necessary condition that is significant and relevant | Significant determinant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Espahbod, S.; Shi, V.; Nketiah, E. Understanding Consumers’ Adoption Behavior of Driverless Delivery Vehicles: Insights from the Combined Use of NCA and PLS-SEM. Sustainability 2025, 17, 5730. https://doi.org/10.3390/su17135730
Zhou W, Espahbod S, Shi V, Nketiah E. Understanding Consumers’ Adoption Behavior of Driverless Delivery Vehicles: Insights from the Combined Use of NCA and PLS-SEM. Sustainability. 2025; 17(13):5730. https://doi.org/10.3390/su17135730
Chicago/Turabian StyleZhou, Wei, Shervin Espahbod, Victor Shi, and Emmanuel Nketiah. 2025. "Understanding Consumers’ Adoption Behavior of Driverless Delivery Vehicles: Insights from the Combined Use of NCA and PLS-SEM" Sustainability 17, no. 13: 5730. https://doi.org/10.3390/su17135730
APA StyleZhou, W., Espahbod, S., Shi, V., & Nketiah, E. (2025). Understanding Consumers’ Adoption Behavior of Driverless Delivery Vehicles: Insights from the Combined Use of NCA and PLS-SEM. Sustainability, 17(13), 5730. https://doi.org/10.3390/su17135730