A Scoping Review of Goldenberry Calyx Used as a Reinforcing Fiber for Cassava Starch Biopolymers
Abstract
1. Introduction
2. Methodology
3. Results
3.1. Characterization of Goldenberry Calyx
3.2. Relevance of Using Goldenberry Calyx
3.3. Use of Goldenberry Calyx in Biocomposites
3.4. Lignocellulosic Material as Reinforcement for Starch-Based Biopolymers
Research | Year | Source |
---|---|---|
The influence of chitosan coating on thermoplastic foams made from potato, cassava, and corn starches was studied. | 2017 | [42] |
Nanocomposites based on cassava starch reinforced with cellulose nanofibers were developed and analyzed. | 2017 | [48] |
The incorporation of broken rice flour was studied for its effect on cassava starch-based foams. | 2018 | [43] |
Cassava starch and bagasse biocomposites were examined considering variations in particle size distribution. | 2019 | [46] |
Cassava starch foam trays were reinforced using fibers extracted from pineapple shells. | 2019 | [30] |
Cassava starch films enhanced with cellulose and starch nanoparticles were analyzed for their morphology, barrier function, and mechanical behavior. The results support the application of these additives in developing reinforced materials. | 2020 | [49] |
Cassava starch films were developed using cellulose nanofibrils derived from peach palm agro-industrial waste. | 2020 | [45] |
Foams made from cassava starch were rendered biodegradable by integrating rice husk residue as a macro filler. | 2020 | [44] |
Peanut skin-reinforced native starch foams modified with acetyl groups were assessed for their environmental implications. | 2022 | [41] |
Rice husk ash was reused as a filler material in biodegradable foams composed of cassava starch. | 2023 | [47] |
Strawberry packaging was developed using cellulose nanofibrils extracted from wheat and oat residues. | 2023 | [50] |
Cassava starch biofilms were reinforced with fibers from the aerial parts of topinambur (Helianthus tuberosus). | 2024 | [39] |
3.5. Biopolymers Made from Cassava Starch
3.6. Improving Cassava Starch Properties Through Modification
3.7. Use of Plasticizers in Starch Biofilms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos, G.W.; Klosowski, A.B.; Lopes, A.C.; Carvalho, G.A.; Olivato, J.B. How Are the Properties of Starch-Based Composites Influenced by the Chemical Treatment of BSG? Macromol. Symp. 2024, 413, 2400081. [Google Scholar] [CrossRef]
- Henao-Díaz, L.S.; Cadena-Casanova, C.L.; López Bolio, G.I.; Veleva, L.; Azamar-Barrios, J.A.; Hernández-Villegas, M.M.; Córdova-Sánchez, S. Obtaining and characterization films of a bioplastic obtained from passion fruit waste (Passiflora edulis). Agro Productividad. 2021. [Google Scholar] [CrossRef]
- Ortega, Y.S.; Juórez, A.S.; Benítez, L.B.C. Fabricación y análisis general de costo de un Biopolímero naturalo partir del cáliz de Physalis peruviana L (uvilla). Rev. Univ. Guayaquil 2016, 122, 12–18. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Bălțatu, M.S.; Vizureanu, P.; Sandu, A.V.; Achitei, D.C.; Nergis, D.D.B.; Perju, M.C.; Nabiałek, M. Biocomposites: Materials, Properties, and Applications. In Composite Materials Science and Engineering; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Ciro, S.Q.; Yepes, W.U.; Posada, C.J.C.; Valencia-Arias, A. Revisión de modelos de gestión tecnológica e innovación orientados a la construcción de una metodología para el desarrollo de biomateriales biodegradables. Ingeniare. Rev. Chil. Ingeniería 2024, 31. [Google Scholar] [CrossRef]
- Yehia, H.M.; Elkhadragy, M.F.; Shebl, R.I.; Al-Masoud, A.H.; El-Din, M.F.S. Control some foodborne pathogens, contaminated bacteria and fungi by fabrication calyx cape gooseberry (Physalis peruviana L.) nanoparticles. Food Sci. Technol. 2022, 42, e116021. [Google Scholar] [CrossRef]
- Vieira, A.F.; Pereira, T.R.R.; da Silva, L.P.F.R.; Rodrigues, T.J.A.; de Almeida, R.D.; Santos, N.C.; da Costa, M.E.M.D.; de Araújo, G.T.; Rocha, A.P.T. Mechanical, Antimicrobial and Morphological Properties of Biodegradable Trays Based on Cassava Starch and Agroindustrial Processing Residues. Packag. Technol. Sci. 2024, 38, 195–210. [Google Scholar] [CrossRef]
- Chicaiza, D.S.; Forigua, M.C.; Valásquez, J.E.C. Elaboración de un modelo de biopolímero a partir de residuos orgánicos para el recubrimiento de prótesis de miembros superiores. In Proceedings of the Mujeres en Ingeniería: Empoderamiento, Liderazgo y Compromise, Bogotá, Colombia, 7 September 2021. [Google Scholar] [CrossRef]
- Cárdenas-Barboza, L.C.; Paredes-Córdoba, A.C.; Serna-Cock, L.; Guancha-Chalapud, M.; Torres-León, C. Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from P. peruviana calyces. Heliyon 2021, 7, e07988. [Google Scholar] [CrossRef]
- Dwivedi, B.; Bhardwaj, D.; Atal, P.K.; Choudhary, D. Bio-inspired facile synthesis of CeO2-TiO2 nanocomposites using calyx leaves extract of Physalis peruviana fruits and their biological assessments: Antibacterial and antioxidant activity. Plant Nano Biol. 2024, 11, 100130. [Google Scholar] [CrossRef]
- Bazana, M.T.; Missel, M.V.; de Deus, C.; Pinto, V.S.; Codevilla, C.F.; Santos, R.C.V.; Silva, C.D.B.D.; de Menezes, C.R. Antibacterial and antibiofilm activity of Physalis peruviana Calyx Extract/Atividade Antibacteriana e antibiofilme do extrato do cálice de Physalis peruviana. Braz. J. Dev. 2020, 6, 77422–77432. [Google Scholar] [CrossRef]
- Nocetti, D.; Núñez, H.; Puente, L.; Espinosa, A.; Romero, F. Composition and biological effects of goldenberry byproducts: An overview. J. Sci. Food Agric. 2020, 100, 4335–4346. [Google Scholar] [CrossRef] [PubMed]
- Schutz, G.F.; Gonçalves, S.D.Á.; Alves, R.M.V.; Vieira, R.P. A review of starch-based biocomposites reinforced with plant fibers. Int. J. Biol. Macromol. 2024, 261, 129916. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, A.V.V.; Quiroz, H.O.; Sandoval, C.A.S. Evaluación de parámetros óptimos para mejorar la resistencia de biopolímero producido a partir de almidón: Revisión bibliográfica. Rev. Científica Pakamuros 2020, 8, 22–33. [Google Scholar] [CrossRef]
- Ragoubi, M.; Terrié, C.; Leblanc, N. Physico-Chemical, Rheological, and Viscoelastic Properties of Starch Bio-Based Materials. J. Compos. Sci. 2022, 6, 375. [Google Scholar] [CrossRef]
- Amaraweera, S.M.; Gunathilake, C.; Gunawardene, O.H.P.; Dassanayake, R.S.; Fernando, N.M.; Wanninayaka, D.B.; Rajapaksha, S.M.; Manamperi, A.; Gangoda, M.; Manchanda, A.; et al. Preparation and Characterization of Dual-Modified Cassava Starch-Based Biodegradable Foams for Sustainable Packaging Applications. ACS Omega 2022, 7, 19579–19590. [Google Scholar] [CrossRef]
- Serpa-Fajardo, J.G.; Hernández-Ramos, E.J.; Fernández-Lambert, G.; Sandoval-Herazo, L.C.; Andrade-Pizarro, R.D. Post-industrial context of cassava bagasse and trend of studies towards a sustainable industry: A scoping review—Part, I. F1000Research 2022, 11, 562. [Google Scholar] [CrossRef]
- Coronado, A.C.M.; Castillo, J.A.G.; Coronado, Y.M. Caracterización de la diversidad genética de uchuva (Physalis peruviana L.) en Boyacá. Biotecnol. Sect. Agropecu. Agroindustrial 2018, 16, 26–33. [Google Scholar]
- Añibarro-Ortega, M.; Dias, M.i.; Petrović, J.; Mandim, F.; Núñez, S.; Soković, M.; López, V.; Barros, L.; Pinela, J. Nutrients, Phytochemicals, and In Vitro Biological Activities of Goldenberry (Physalis peruviana L.) Fruit and Calyx. Plants 2025, 14, 327. [Google Scholar] [CrossRef]
- Gimenez, L.A.S.; Rivas, M.A.; Vignale, N.D.; Gurni, A.A. Caracterización micrográfica de tres frutas tropicales, Musa paradisii L., Physalis peruviana L. y Persea americana Mill. Importancia en el control de calidad botánico de alimentos derivados. Polibotánica 2021, 51, 155–170. [Google Scholar] [CrossRef]
- Castellanos, I.C.; Rojas-Pérez, L.C. Extraction and characterisation of cuticular waxes from Physalis peru-viana calyx. Int. J. Food Sci. Technol. 2024, 59, 1829–1839. [Google Scholar] [CrossRef]
- Ballesteros-Vivas, D.; Alvarez-Rivera, G.; Leon, C.; Morantes, S.J.; Ibánez, E.; Parada-Alfonso, F.; Cifuentes, A.; Valdés, A. Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J. Funct. Foods 2019, 63, 103567. [Google Scholar] [CrossRef]
- Lan, Y.-H.; Chang, F.-R.; Pan, M.-J.; Wu, C.-C.; Wu, S.-J.; Chen, S.-L.; Wang, S.-S.; Wu, M.-J.; Wu, Y.-C. New cytotoxic withanolides from Physalis peruviana. Food Chem. 2009, 116, 462–469. [Google Scholar] [CrossRef]
- Calderón, J.; Ruiz, N.; Castellanos, L. Within and between plant variation of 4β-hydroxiwithanolide E in cape gooseberry (Physalis peruviana; Solanaceae). Biochem. Syst. Ecol. 2012, 41, 21–25. [Google Scholar] [CrossRef]
- Puente, L.A.; Pinto-Muñoz, C.A.; Castro, E.S.; Cortés, M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 2011, 44, 1733–1740. [Google Scholar] [CrossRef]
- Wahdan, O.A.; Badr, S.E.-S.A.; Abdelfattah, M.S. Phytochemical Analysis, Antibacterial and Anti-cancer Activities of the Physalis peruviana Calyces Growing in Egypt. Food Nutr. J. 2019, 4, 197. [Google Scholar]
- González-Velandia, K.-D.; Daza-Rey, D.; Caballero-Amado, P.-A.; Martínez-González, C. Evaluación de las propiedades físicas y químicas de residuos sólidos orgánicos a emplearse en la elaboración de papel. Luna Azul 2016, 43, 499–517. [Google Scholar] [CrossRef]
- Popova, V.; Stoyanova, M.; Ivanova, T.; Mazova, N.; Stoyanova, A. Comparison of some chemical indices of the fruit calyces of Physalis peruviana L. and Physalis alkekengi L. from different genotypes. AIP Conf. Proc. 2023, 2889, 080007. [Google Scholar] [CrossRef]
- Cabanillas, A.; Nuñez, J.; Cruz-Tirado, J.; Vejarano, R.; Tapia-Blácido, D.R.; Arteaga, H.; Siche, R. Pineapple shell fiber as reinforcement in cassava starch foam trays. Polym. Polym. Compos. 2019, 27, 496–506. [Google Scholar] [CrossRef]
- Ali, S.; Rani, A.; Dar, M.A.; Qaisrani, M.M.; Noman, M.; Yoganathan, K.; Asad, M.; Berhanu, A.; Barwant, M.; Zhu, D. Recent Advances in Characterization and Valorization of Lignin and Its Value-Added Products: Challenges and Future Perspectives. Biomass 2024, 4, 947–977. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef]
- Fauzi, A.R.; Sarofa, U.; Rosida, D.F. Characteristics of Biodegradable Foam with Proportional Treatment of Tapioca Flour and Soybean Peel Flour with Added Glycerol. AJARCDE Asian J. Appl. Res. Community Dev. Empower. 2024, 8, 246–253. [Google Scholar] [CrossRef]
- Aguilar, M.A.C.; Quintana, S.G.C. Fenoles y capacidad antioxidante de psidium guajava, vaccinium myrtillus, selenicereus megalanthus y physalis peruviana de diferentes procedencias. Bioagro 2020, 32, 225–230. [Google Scholar]
- Linan, L.Z.; Fakhouri, F.M.; Nogueira, G.F.; Zoppe, J.; Velasco, J.I. Benefits of Incorporating Lignin into Starch-Based Films: A Brief Review. Polymers 2024, 16, 2285. [Google Scholar] [CrossRef]
- Adeyeye, S.A.O.; Babu, A.S.; Ganesh, P.S. Starch Nanocrystal and its Food Packaging Applications. Curr. Res. Nutr. Food Sci. J. 2023, 11, 1–21. [Google Scholar] [CrossRef]
- Velásquez-Castillo, L.E.; Leite, M.A.; Tisnado, V.J.A.; Ditchfield, C.; Sobral, P.J.D.A.; Moraes, I.C.F. Cassava Starch Films Containing Quinoa Starch Nanocrystals: Physical and Surface Properties. Foods 2023, 12, 576. [Google Scholar] [CrossRef]
- Méité, N.; Konan, L.K.; Tognonvi, M.T.; Oyetola, S. Effect of metakaolin content on mechanical and water barrier properties of cassava starch films. S. Afr. J. Chem. Eng. 2022, 40, 186–194. [Google Scholar] [CrossRef]
- Montes, L.F.S.; Melaj, M.A.; Lorenzo, M.C.; Ribba, L.; Garcia, M.A. Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber. Sustain. Polym. Energy 2024, 2, 10004. [Google Scholar] [CrossRef]
- Zarski, A.; Bajer, K.; Kapuśniak, J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers 2021, 13, 832. [Google Scholar] [CrossRef]
- García-Rengifo, A.R.; Rojas-Bringas, P.M.; De-La-Torre, G.E.; Torres, F.G. Environmental impact of peanut skin-reinforced native starch foams modified by acetylation. Environ. Qual. Manag. 2021, 31, 89–99. [Google Scholar] [CrossRef]
- Bergel, B.F.; da Luz, L.M.; Santana, R.M.C. Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch. Prog. Org. Coat. 2017, 106, 27–32. [Google Scholar] [CrossRef]
- Machado, C.M.; Longhi, E.M.; Spada, J.C.; Tessaro, I.C. Effect of Broken Rice Flour Addition on Cassava Starch-Based Foams. Starch-Starke 2018, 70, 1700191. [Google Scholar] [CrossRef]
- Spada, J.C.; Jasper, A.; Tessaro, I.C. Biodegradable Cassava Starch Based Foams Using Rice Husk Waste as Macro Filler. Waste Biomass-Valoriza. 2019, 11, 4315–4325. [Google Scholar] [CrossRef]
- Martins, M.P.; Dagostin, J.L.A.; Franco, T.S.; de Muñiz, G.I.B.; Masson, M.L. Application of Cellulose Nanofibrils Isolated from an Agroindustrial Residue of Peach Palm in Cassava Starch Films. Food Biophys. 2020, 15, 323–334. [Google Scholar] [CrossRef]
- Versino, F.; Garcia, M.A. Particle Size Distribution Effect on Cassava Starch and Cassava Bagasse Biocomposites. ACS Sustain. Chem. Eng. 2018, 7, 1052–1060. [Google Scholar] [CrossRef]
- Donati, N.; Spada, J.C.; Tessaro, I.C. Recycling rice husk ash as a filler on biodegradable cassava starch-based foams. Polym. Bull. 2022, 80, 10231–10248. [Google Scholar] [CrossRef]
- Santana, J.S.; Rosário, J.M.D.; Pola, C.C.; Otoni, C.G.; FerreiraSoares, N.D.F.; Camilloto, G.P.; Cruz, R.S. Cassava starch-based nanocomposites reinforced with cellulose nanofibers extracted from sisal. J. Appl. Polym. Sci. 2016, 134, 44637. [Google Scholar] [CrossRef]
- Santana, J.S.; Costa, É.K.D.C.; Rodrigues, P.R.; Correia, P.R.C.; Cruz, R.S.; Druzian, J.I. Morphological, barrier, and mechanical properties of cassava starch films reinforced with cellulose and starch nanoparticles. J. Appl. Polym. Sci. 2018, 136, 47001. [Google Scholar] [CrossRef]
- Lago, R.C.D.; Zitha, E.Z.M.; de Oliveira, A.L.M.; de Abreu, D.J.M.; Carvalho, E.E.N.; Piccoli, R.H.; Tonoli, G.H.D.; Boas, E.V.d.B.V. Effect of coating with co-product-based bionanocomposites on the quality of strawberries under refrigerated storage. Sci. Hortic. 2022, 309, 111668. [Google Scholar] [CrossRef]
- Martinez, C.V.V.; Murillo, X.S.Z.; Demera, M.H.D.; Briones, G.A.B.; Palacios, C.A.C. Almidones de Cáscara de Yuca (Manihot Esculenta) y Papa (Solanum Tuberosum) para Producción de Bioplásticos: Propiedades Mecánicas y Efecto Gelatinizante. Rev. Bases De La Cienc. 2021, 6, 137–152. [Google Scholar] [CrossRef]
- Lilavanichakul, A.; Yoksan, R. Development of Bioplastics from Cassava toward the Sustainability of Cassava Value Chain in Thailand. Sustainability 2023, 15, 14713. [Google Scholar] [CrossRef]
- Fernando, N.M.L.; Amaraweera, A.P.S.M.; Gunawardane, O.H.P.; Wanninayaka, W.M.D.B.; Manipura, A.; Manamperi, W.A.R.; Gunathilake, C.A.; Kulathunga, K.M.A.K. Sustainable Biorefinery Approach for Cassava: A Review. Eng. J. Inst. Eng. Sri Lanka 2022, 55, 71–88. [Google Scholar] [CrossRef]
- Figueiró, C.D.S.; Trojaner, M.R.; Calcagno, C.I.W.; Santana, R.M.C. Rheological and structural characterization of cassava starches foam with low and high amylose contents. J. Polym. Res. 2022, 29, 1–8. [Google Scholar] [CrossRef]
- Dodino-Duarte, I.; Quiroz-Ortega, L.A.; Arias-Benítez, J.C.; García-León, R.A. Development of biodegradable plastic films from cassava starch. DYNA 2024, 91, 75–85. [Google Scholar] [CrossRef]
- Bishnoi, A.; Chandla, N.K.; Talwar, G.; Khatkar, S.K.; Sharma, A.; Anupam, R. Mechanical Strength, Solubility, and Functional Studies of Developed Composite Biopolymeric Film. J. Food Process. Preserv. 2023, 2023, 5108490. [Google Scholar] [CrossRef]
- Abdullah, A.H.D.; Chalimah, S.; Primadona, I.; Hanantyo, M.H.G. Physical and chemical properties of corn, cassava, and potato starchs. In Proceedings of the 2nd International Symposium on Green Technology for Value Chains, Jakarta, Indonesia, 23–24 October 2017. [Google Scholar]
- Luchese, C.L.; Benelli, P.; Spada, J.C.; Tessaro, I.C. Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. J. Appl. Polym. Sci. 2018, 135, 46564. [Google Scholar] [CrossRef]
- Chen, X.; Yao, W.; Gao, F.; Zheng, D.; Wang, Q.; Cao, J.; Tan, H.; Zhang, Y. Physicochemical Properties Comparative Analysis of Corn Starch and Cassava Starch, and Comparative Analysis as Adhesive. J. Renew. Mater. 2021, 9, 979–992. [Google Scholar] [CrossRef]
- Tezera, A.; Abera, D.; Bantie, Z.; Bisenebt, B.; Beyene, A.; Deslaegn, E.; Nega, T.; Demeke, M.; Aregahegn, S.; Abrham, T.; et al. Evaluation and Optimization of Sustainable Ecofriendly Bio-based Micro-composites for Smart Packaging Application Using Micro-Clay Particles as Reinforcement. In Green Energy and Technology; Springer Nature: Berlin, Germany, 2025. [Google Scholar] [CrossRef]
- Thuppahige, V.T.W.; Moghaddam, L.; Welsh, Z.G.; Wang, T.; Karim, A. Investigation of critical properties of Cassava (Manihot esculenta) peel and bagasse as starch-rich fibrous agro-industrial wastes for biodegradable food packaging. Food Chem. 2023, 422, 136200. [Google Scholar] [CrossRef]
- Fronza, P.; Batista, M.J.P.A.; Franca, A.S.; Oliveira, L.S. Bionanocomposite Based on Cassava Waste Starch, Locust Bean Galactomannan, and Cassava Waste Cellulose Nanofibers. Foods 2024, 13, 202. [Google Scholar] [CrossRef]
- Silveira, Y.D.O.; Franca, A.S.; Oliveira, L.S. Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties. Foods 2025, 14, 113. [Google Scholar] [CrossRef]
- Santana, I.; Felix, M.; Bengoechea, C. Sustainable Biocomposites Based on Invasive Rugulopteryx okamurae Seaweed and Cassava Starch. Sustainability 2023, 16, 76. [Google Scholar] [CrossRef]
- Supardi, Y.A.; Karmini, M. Effect of using cassava and glycerol as food storage on the quality of bioplastic packaged food. Heal. Low-Resour. Settings 2023, 11, 1–13. [Google Scholar] [CrossRef]
- Vargas-García, Y.; Pazmiño-Sánchez, J.; Dávila-Rincón, J. Potencial de Biomasa en América del Sur para la Producción de Bioplásticos. Rev. Politec. 2021, 48, 7–20. [Google Scholar] [CrossRef]
- Muñoz, S.B.; Riera, M.A. Residuos de la cáscara de yuca y cera de abejas como potenciales materiales de partida para la producción de bioplásticos. Av. Química 2020, 15, 3–11. [Google Scholar]
- Florencia, V.; López, O.V.; García, M.A. Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos. Part B: Eng. 2020, 182, 107653. [Google Scholar] [CrossRef]
- Mantovan, J.; Bersaneti, G.T.; Faria-Tischer, P.C.; Celligoi, M.A.P.C.; Mali, S. Use of microbial levan in edible films based on cassava starch. Food Packag. Shelf Life 2018, 18, 31–36. [Google Scholar] [CrossRef]
- Andretta, R.; Luchese, C.L.; Tessaro, I.C.; Spada, J.C. Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocoll. 2019, 93, 317–324. [Google Scholar] [CrossRef]
- Engel, J.B.; Ambrosi, A.; Tessaro, I.C. Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr. Polym. 2019, 225, 115234. [Google Scholar] [CrossRef]
- Knapp, M.A.; dos Santos, D.F.; Pilatti-Riccio, D.; Deon, V.G.; dos Santos, G.H.F.; Pinto, V.Z. Yerba mate extract in active starch films: Mechanical and antioxidant properties. J. Food Process. Preserv. 2019, 43, 13897. [Google Scholar] [CrossRef]
- Xavier, T.D.N.; de Oliveira, V.R.L.; Leite, R.H.d.L.; Aroucha, E.M.M.; dos Santos, F.K.G. Filmes biopoliméricos baseados em fécula, quitosana e cera de carnaúba e suas propriedades. Mater. Jan. 2020, 25, 1517–707620200004. [Google Scholar] [CrossRef]
- Ferreira, D.C.; Molina, G.; Pelissari, F.M. Biodegradable trays based on cassava starch blended with agroindustrial residues. Compos. Part B: Eng. 2020, 183, 107682. [Google Scholar] [CrossRef]
- Ferreira, L.F.; de Oliveira, A.C.S.; de Oliveira Begali, D.; de Sena Neto, A.R.; Martins, M.A.; de Oliveira, J.E.; Borges, S.V.; Yoshida, M.I.; Tonoli, G.H.D.; Dias, M.V. Characterization of cassava starch/soy protein isolate blends obtained by extrusion and thermocompression. Ind. Crops Prod. 2021, 160, 113092. [Google Scholar] [CrossRef]
- Versino, F.; López, O.V.; García, M.A. Sunflower Oil Industry By-product as Natural Filler of Biocomposite Foams for Packaging Applications. J. Polym. Environ. 2021, 29, 1869–1879. [Google Scholar] [CrossRef]
- Carpes, S.T.; Bertotto, C.; Bilck, A.P.; Yamashita, F.; Anjos, O.; Siddique, A.B.; Harrison, S.M.; Brunton, N.P. Bio-based films prepared with apple pomace: Volatiles compound composition and mechanical, antioxidant and antibacterial properties. LWT 2021, 144, 111241. [Google Scholar] [CrossRef]
- Pereira, G.V.D.S.; Neves, E.M.P.X.; Albuquerque, G.A.; Rêgo, J.D.A.R.D.; Cardoso, D.N.P.; Brasil, D.D.S.B.; Joele, M.R.S.P. Effect of the Mixture of Polymers on the Rheological and Technological Properties of Composite Films of Acoupa Weakfish (Cynoscion acoupa) and Cassava Starch (Manihot esculenta C.). Food Bioprocess Technol. 2021, 14, 1199–1215. [Google Scholar] [CrossRef]
- Laureanti, E.J.G.; Paiva, T.S.; Tasso, I.D.S.; Dallabona, I.D.; Helm, C.V.; Jorge, L.M.D.M.; Jorge, R.M.M. Development of active cassava starch films reinforced with waste from industrial wine production and enriched with pink pepper extract. J. Appl. Polym. Sci. 2021, 138, 50922. [Google Scholar] [CrossRef]
- Araya, J.; Esquivel, M.; Jimenez, G.; Navia, D.; Poveda, L. Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil. J. Plast. Film. Sheeting 2021, 38, 46–71. [Google Scholar] [CrossRef]
- La Fuente, C.I.; Siqueira, L.D.V.; Augusto, P.E.D.; Tadini, C.C. Casting and extrusion processes to produce bio-based plastics using cassava starch modified by the dry heat treatment (DHT). Innov. Food Sci. Emerg. Technol. 2022, 75, 102906. [Google Scholar] [CrossRef]
- González, C.M.O.; Schelegueda, L.I.; Ruiz-Henestrosa, V.M.P.; Campos, C.A.; Basanta, M.F.; Gerschenson, L.N. Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial by-Products: Their Use for Intelligent Label Development. Foods 2022, 11, 3361. [Google Scholar] [CrossRef]
- Bertotto, C.; Bilck, A.P.; Yamashita, F.; Anjos, O.; Siddique, A.B.; Harrison, S.M.; Brunton, N.P.; Carpes, S.T. Development of a biodegradable plastic film extruded with the addition of a Brazilian propolis by-product. LWT 2022, 157, 113124. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Quintero-Borregales, L.M.; Goyanes, S.; Bernal, C.; Famá, L. A Biodegradable and Active Bilayer Nanocomposite Obtained from Starch-Yerba Mate Extract and Starch-TiO2 Nanoparticles Films for Packaging Applications. Starch-Starke 2023, 76, 2300048. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Villabona-Ortíz, Á.; Ortega-Toro, R. Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers 2024, 16, 2913. [Google Scholar] [CrossRef]
- Rada-Mendoza, M.D.P.; Villamiel-Guerra, M.D.M.; Hoyos-Saavedra, O.L.; Alvira, L.F. Quantification of lead using atomic absorption spectrometry in thermoformed and biodegradable flexible films made from cassava (Manihot esculenta crantz). DYNA 2018, 85, 236–242. [Google Scholar] [CrossRef]
- Rada-Mendoza, M.; Arciniegas-Herrera, J.L.; Hoyos-Saavedra, O.L.; Del Castillo, R.; Chito-Trujillo, D. Atomic absorption spectrometry for the quantification of cadmium in thermoformed and biodegradable flexible films made from cassava (Manihot esculenta crantz). J. Thermoplast. Compos. Mater. 2019, 34, 657–670. [Google Scholar] [CrossRef]
- Maite, R.-M.; Diana, C.-T.; Lucía, H.-S.O.; Luis, A.-H.J.; Janneth, M.-T.N. Determination of zinc in cassava based polymeric materials. J. Thermoplast. Compos. Mater. 2021, 36, 615–625. [Google Scholar] [CrossRef]
- Luchese, C.L.; Pavoni, J.M.F.; dos Santos, N.Z.; Quines, L.K.; Pollo, L.D.; Spada, J.C.; Tessaro, I.C. Effect of chitosan addition on the properties of films prepared with corn and cassava starches. J. Food Sci. Technol. 2018, 55, 2963–2973. [Google Scholar] [CrossRef]
- Alarcón-Hernández, C.d.J.; González-García, E.A.; Medina-Torres, L.; Morales-Pacheco, P. Rheological effect of the concentration of nanoparticles in cassava starch. MRS Adv. 2019, 4, 2889–2896. [Google Scholar] [CrossRef]
- Colivet, J.; Garcia, V.A.d.S.; Lourenço, R.V.; Yoshida, C.M.P.; de Oliveira, A.L.; Vanin, F.M.; de Carvalho, R.A. Characterization of Films Produced with Cross-Linked Cassava Starch and Emulsions of Watermelon Seed Oils. Foods 2022, 11, 3803. [Google Scholar] [CrossRef]
- Ramos, A.R.; Manalo, R.D.; Ong, H.L.; Herrera, M.U.; Balela, M.D.L. The Effects of Citric Acid as Crosslinking Agent on Selected Properties of Cassava Starch Films. Mater. Sci. Forum 2023, 1087, 29–34. [Google Scholar] [CrossRef]
- Hernández, M.S.; Ludueña, L.N.; Flores, S.K. Citric acid, chitosan and oregano essential oil impact on physical and antimicrobial properties of cassava starch films. Carbohydr. Polym. Technol. Appl. 2023, 1–13. [Google Scholar] [CrossRef]
- Lacovone, C.; Guz, L.; Famá, L. Sustainable innovations in food packaging: Antioxidant basil-enriched cassava starch films with UV protection and enhanced water and mechanical resistance. Food Packag. Shelf Life 2024, 45, 101324. [Google Scholar] [CrossRef]
- Ridhwan, J.; Mohamad, R.; Fareeq, R.; Faudzi, M.; Aziz; Ruzanna, A.; Keshavarz; Meysam; Salleh; Suhaimi, T.; et al. Water Transport Properties of Thermoplastic Cassava Starch/Beeswax Reinforced with Cogon Grass Fiber. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 95, 55–61. [Google Scholar] [CrossRef]
- Jumaidin, R.; Wong, J.; Aziz, A.R.; Keshavarz, M.; Salleh, T.S.; Ilyas, R.A.; Munir, F.A.; Taha, M.M.; Razali, N.; Saleman, A.R.; et al. Water Absorption and Environmental Properties of Thermoplastic Cassava Starch Reinforced with Durian Skin Fiber. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 96, 115–121. [Google Scholar] [CrossRef]
- Pongsa, U.; Sangrayub, P.; Saengkhiao, P.; Lumsakul, P.; Kaweegitbundit, P.; Kasemsiri, P.; Hiziroglu, S. Properties of biodegradable foam composites made from coconut residue as a function of the re-inforcing phase of cassava starch. Eng. Appl. Sci. Res. 2023, 50, 270–277. [Google Scholar] [CrossRef]
- Méité, N.; Kouakou, L.P.M.-S.; Kouamé, A.N.; Kouassi, S.S.; e Silva, C.S.; Sandé, S.L.S.; Pereira, S.D.F.P.; Konan, L.K. Physical and chemical properties of cassava starch biopolymer reinforced with coconut fiber and/or metakaolin. J. Indian Chem. Soc. 2024, 101, 101185. [Google Scholar] [CrossRef]
- Maitha, I.M.; Okoth, M.W.; Njue, L.G.; Mbuge, D.O. Development of eco-friendly food packaging bio-film from cassava starch plasticized with coconut oil. East Afr. J. Sci. Technol. Innov. 2024, 5, 1–14. [Google Scholar]
- Jumaidin, R.; Rahman, A.H.A.; Sapuan, S.M.; Rushdan, A.I. Effect of sugarcane bagasse on thermal and mechanical properties of thermoplastic cassava starch/beeswax composites. Phys. Sci. Rev. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Kamaruddin, Z.H.; Jumaidin, R.; Ilyas, R.A.; Selamat, M.Z.; Alamjuri, R.H.; Yusof, F.A.M. Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Properties. Polymers 2022, 14, 514. [Google Scholar] [CrossRef] [PubMed]
- Tarique, J.; Sapuan, S.; Zainudin, E.; Khalina, A.; Ilyas, R.; Hazrati, K.; Aliyu, I. A comparative review of the effects of different fibre concentrations on arrowroot fibre and other fibre-reinforced composite films. Mater. Today Proc. 2022, 74, 411–414. [Google Scholar] [CrossRef]
- Diyana, Z.N.; Jumaidin, R.; Selamat, M.Z.; Suan, M.S.M.; Hazrati, K.Z.; Yusof, F.A.M.; Ilyas, R.A.; Eldin, S.M. Effect of Pandanus Amaryllifolius Fibre on Physio-Mechanical, Thermal and Biodegradability of Thermoplastic Cassava Starch/Beeswax Composites. J. Polym. Environ. 2023, 32, 1406–1422. [Google Scholar] [CrossRef]
- Marhaini, M.; Fernianti, D.; Harbi, J.; Sintya, G. Sorbitol-Based Biodegradable Plastics from Rubberized Cassava Starch and Tofu Dregs Starch. J. Ecol. Eng. 2024, 25, 380–385. [Google Scholar] [CrossRef]
- Fan, W.; Zhao, J.; Zong, H.; Li, Q. Effect of chitosan concentration on physicochemical properties of starch-based straws. Green Mater. 2023, 11, 50–59. [Google Scholar] [CrossRef]
- Albar, N.; Anuar, S.T.; Azmi, A.A.; Soh, S.K.C.; Bhubalan, K.; Ibrahim, Y.S.; Khalik, W.M.A.W.M.; Abdullah, N.S.; Yahya, N.K.E. Chemical, Mechanical, and Wettability Properties of Bioplastic Material from Manihot esculenta Cassava–Chitosan Blends as Plastic Alternative. Starch-Starke 2024, 77, 2300278. [Google Scholar] [CrossRef]
- Worawut, K.; Phungpis, B.; Kaewkumsan, P.; Noppawan, P. Film Development of Chitosan from Mussel Shells and Pacific White Shrimp Shells. ASEAN J. Sci. Technol. Rep. 2024, 27, 254066. [Google Scholar] [CrossRef]
- Promhuad, K.; Bumbudsanpharoke, N.; Wadaugsorn, K.; Sonchaeng, U.; Harnkarnsujarit, N. Maltol-Incorporated Acetylated Cassava Starch Films for Shelf-Life-Extension Packaging of Bakery Products. Polymers 2022, 14, 5342. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Sun, H.; Nagassa, M.; Li, X.; Pei, H.; Liu, S.; Gu, Y.; He, S. Edible film preparation by anthocyanin extract addition into acetylated cassava starch/sodium carboxymethyl cellulose matrix for oxidation inhibition of pumpkin seeds. Int. J. Biol. Macromol. 2024, 267, 131439. [Google Scholar] [CrossRef]
- Jati, I.R.A.; Kamaluddin, M.A.; Utomo, A.R.; Setijawaty, E.; Edward, E.; Nugraha, D.T. Red cabbage and eggshell powder as active agent on cassava starch-based edible films: It’s physicochemical properties and application. Nutr. Food Sci. 2024, 55, 423–437. [Google Scholar] [CrossRef]
- Thipchai, P.; Punyodom, W.; Jantanasakulwong, K.; Thanakkasaranee, S.; Hinmo, S.; Pratinthong, K.; Kasi, G.; Rachtanapun, P. Preparation and Characterization of Cellulose Nanocrystals from Bamboos and Their Application in Cassava Starch-Based Film. Polymers 2023, 15, 2622. [Google Scholar] [CrossRef] [PubMed]
- Jumaidin, R.; Gazari, A.S.; Kamaruddin, Z.H.; Zakaria, N.H.; Kudus, S.I.A.; Yob, M.S.; Munir, F.A.; Keshavarz, M. Mechanical Properties of Thermoplastic Cassava Starch/Coconut Fibre Composites: Effect of Fibre Size. Pertanika J. Sci. Technol. 2024, 32, 91–113. [Google Scholar] [CrossRef]
- Boonphayak, P.; Muenyong, N.; Chinchao, R.; Khansumled, S. Development of a Biodegradable Cassava Starch Biofilm based on a Combination of Plasticizers with Bio-SiO2 Extracted from Sugarcane Leaves. Starch-Starke 2024, 77, 2300164. [Google Scholar] [CrossRef]
- Promsorn, J.; Harnkarnsujarit, N. Oxygen absorbing food packaging made by extrusion compounding of thermoplastic cassava starch with gallic acid. Food Control. 2022, 142, 109273. [Google Scholar] [CrossRef]
- Joshi, P.; Gupta, K.; Uniyal, P.; Jana, A.; Banerjee, A.; Kumar, N.; Ghosh, D.; Srivastava, M.; Ray, A.; Khatri, O.P. Cassava starch-derived aerogels as biodegradable packaging materials. Mater. Chem. Phys. 2022, 296, 127282. [Google Scholar] [CrossRef]
- Kavas, E.; Terzioğlu, P.; Sıcak, Y. Betanin and Nano-Calcium Carbonate Incorporated Polyvinyl alcohol/Starch Films for Active and Intelligent Packaging Applications. J. Polym. Environ. 2023, 31, 4919–4929. [Google Scholar] [CrossRef]
- Dilkushi, H.; Jayarathna, S.; Manipura, A.; Chamara, H.; Edirisinghe, D.; Vidanarachchi, J.; Priyashantha, H. Development and characterization of biocomposite films using banana pseudostem, cassava starch and poly(vinyl alcohol): A sustainable packaging alternative. Carbohydr. Polym. Technol. Appl. 2024, 7, 100472. [Google Scholar] [CrossRef]
- Krümmel, A.; Pagno, C.H.; Malheiros, P.D.S. Active Films of Cassava Starch Incorporated with Carvacrol Nanocapsules. Foods 2024, 13, 1141. [Google Scholar] [CrossRef]
- Bazana, M.T.; da Silveira Cáceres de Menezes, M.F.; da Silva, S.S.; Deus, C.; Lucas, B.N.; Codevilla, C.F.; Mazutti, M.; Barin, J.S.; de Bona da Silva, C.; de Menezes, C.R. Study of stability and antioxidant capacity of nanoemulsions containing the extract of the calyx of Physalis peruviana. In Proceedings of the 1st International Congress on Bioactive Compounds and 2nd International Workshop on Bioactive Compounds, Galoá, Fiji, 22–23 November 2018; Available online: https://proceedings.science/icbc/icbc-2018/papers/study-of-stability-and-antioxidant-capacity-of-nanoemulsions-containing-the-extr?lang=en (accessed on 22 April 2025).
- Lin, Z.; Cheng, H.; He, K.; McClements, D.J.; Jin, Z.; Xu, Z.; Meng, M.; Peng, X.; Chen, L. Recent progress in the hydrophobic modification of starch-based films. Food Hydrocoll. 2024, 151, 109860. [Google Scholar] [CrossRef]
- Kumari, S.; Kaur, B.P.; Thiruvalluvan, M. Ultrasound modified millet starch: Changes in functional, pasting, thermal, structural, in vitro digestibility properties, and potential food applications. Food Hydrocoll. 2024, 153, 110008. [Google Scholar] [CrossRef]
- Jayarathna, S.; Andersson, M.; Andersson, R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers 2022, 14, 4557. [Google Scholar] [CrossRef] [PubMed]
- Sivapragasam, N.; Maqsood, S.; Rupasinghe, H.V. Berry bioactive compounds immobilized in starch matrix for active and intelligent packaging: A review. Futur. Foods 2024, 10, 100397. [Google Scholar] [CrossRef]
- Cuaces, A.F.V.; Moreira, W.L.C.; Anchundia, B.J.C. Obtención de polímeros biodegradables a partir del almidón de yuca. MQRInvestigar 2023, 7, 2680–2700. [Google Scholar] [CrossRef]
- Subroto, E.; Cahyana, Y.; Indiarto, R.; Rahmah, T.A. Modification of Starches and Flours by Acetylation and Its Dual Modifications: A Review of Impact on Physicochemical Properties and Their Applications. Polymers 2023, 15, 2990. [Google Scholar] [CrossRef]
- León-Méndez, G.; León-Méndez, D.; Monroy-Arellano, M.R.; Espriella-Angarita, D.L.; Herrera-Barros, A. Modificación química de almidones Chemical modification of starches through esterification reactions and their potential use in the cosmetic industry. AVFT Arch. Venez. De Farmacol. Y Terapéutica 2020, 5, 620–629. [Google Scholar] [CrossRef]
- Marta, H.; Wijaya, C.; Sukri, N.; Cahyana, Y.; Mohammad, M. A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers 2022, 14, 4875. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.S.; Ludueña, L.N.; Flores, S.K. Combined effect of oregano essential oil and glycerol on physicochemical properties of antimicrobial films based on chitosan and acetylated cassava starch. Food Hydrocoll. 2024, 156, 110259. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Suri, S.; Barua, S.; Phimolsiripol, Y. Native and modified biodegradable starch-based packaging for shelf-life extension and safety of fruits/vegetables. Int. J. Food Sci. Technol. 2022, 58, 862–870. [Google Scholar] [CrossRef]
- Muñoz-Gimena, P.F.; Oliver-Cuenca, V.; Peponi, L.; López, D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers 2023, 15, 2972. [Google Scholar] [CrossRef] [PubMed]
- Monroy, Y.; Cabezas, D.M.; Rivero, S.; García, M.A. Structural analysis and adhesive capacity of cassava starch modified with NaOH:urea mixtures. Int. J. Adhes. Adhes. 2023, 126, 103470. [Google Scholar] [CrossRef]
- Monroy, Y.; García, M.; Deladino, L.; Rivero, S. Valorization of a by-product of the yerba mate industry by assembling with cassava starch adhesive for packaging material production. Int. J. Biol. Macromol. 2024, 266, 131271. [Google Scholar] [CrossRef]
- Reyes, G.V.C.; Marinero-Orantes, E.A.; Funes-Guadrón, C.R.; Toruño, P.J. Biopolímeros para uso agro industrial: Alternativa sostenible para la elaboración de una película de almidón termo plástico biodegradable. Rev. Iberoam. Bioecon. Cambio Clim. 2020, 6, 1359–1382. [Google Scholar] [CrossRef]
- Tafa, T.G.; Engida, A.M. Preparation of green film with improved physicochemical properties and enhanced antimicrobial activity using ingredients from cassava peel, bamboo leaf and rosemary leaf. Heliyon 2022, 8, 10130. [Google Scholar] [CrossRef]
- Nogueira, M.R.; Paiva, P.D.D.O.; Neto, A.R.D.C.; dos Reis, M.V.; Nascimento, Â.M.P.; Timoteo, C.D.O. Starch-based films for Red Torch ginger inflorescences postharvest conservation. Cienc. E Agrotecnologia 2023, 47, 017822. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A. Compatibilization of biopolymer blends: A review. Adv. Ind. Eng. Polym. Res. 2024, 7, 373–404. [Google Scholar] [CrossRef]
- Mueller, E.; Hoffmann, T.G.; Schmitz, F.R.W.; Helm, C.V.; Roy, S.; Bertoli, S.L.; de Souza, C.K. Development of ternary polymeric films based on cassava starch, pea flour and green banana flour for food packaging. Int. J. Biol. Macromol. 2023, 256, 128436. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, X.; Wei, Y.; Liu, P.; Deng, X.; Lei, Y.; Zhang, J. Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol. Food Chem. 2023, 435, 137597. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.D.D.F.; Siqueira, L.D.V.; Tadini, C.C.; Favaro-Trindade, C.S. Characterization of Cassava Starch Extruded Sheets Incorporated with Tucumã Oil Microparticles. Processes 2023, 11, 876. [Google Scholar] [CrossRef]
- Khan, A.A.; Ullah, M.W.; Qayum, A.; Khalifa, I.; Ul-Islam, M.; Bacha, S.A.S.; Zeb, U.; Yao, F.-J.; Alharbi, S.A.; Shrahili, M.; et al. Structure-property relationship of ultrasound-assisted nanoemulsion-impregnated bioactive polysaccharide films for enhanced shelf life of mushrooms. Food Packag. Shelf Life 2024, 46, 101372. [Google Scholar] [CrossRef]
- Khan, A.A.; Cui, F.-J.; Ullah, M.W.; Qayum, A.; Khalifa, I.; Bacha, S.A.S.; Ying, Z.-Z.; Khan, I.; Zeb, U.; Alarfaj, A.A.; et al. Fabrication and characterization of bioactive curdlan and sodium alginate films for enhancing the shelf life of Volvariella volvacea. Food Biosci. 2024, 62, 105137. [Google Scholar] [CrossRef]
Study | Year | Source | Category | Results |
---|---|---|---|---|
Effect of chitosan coating on thermoplastic foams derived from potato, cassava, and corn starches. | 2017 | [42] | Use of fibers as reinforcement material, especially lignocellulosic materials | Incorporating hydrophobic materials in starch-based biofilms reduces their water affinity. The addition of fibers to starch improves mechanical properties such as tensile strain and maximum bending stress. The tensile strength improves with the incorporation of reinforcing materials, attributed to the interfacial interaction between the fiber and the starch matrix. However, caution is needed regarding the fiber content as high proportions may interfere with expandability and introduce discontinuities in the starch matrix, thereby diminishing breaking strength. It is necessary to evaluate the size and distribution of the materials used as reinforcement for starch-based biofilms. |
Cassava starch nanocomposites reinforced with cellulose nanofibers sourced from sisal. | 2017 | [48] | ||
Influence of broken rice flour on properties of cassava starch-based foams. | 2018 | [43] | ||
Role of particle size distribution in biocomposites formulated with cassava starch and bagasse. | 2019 | [46] | ||
Use of pineapple shell fibers to strengthen cassava starch foam trays. | 2019 | [30] | ||
Cassava starch films reinforced with cellulose and starch nanoparticles: morphology, barrier, and mechanical behavior. Findings support their suitability in creating reinforced biodegradable materials. | 2019 | [49] | ||
Application of cellulose nanofibrils derived from peach palm agro-industrial residue in cassava starch-based films. | 2020 | [45] | ||
Biodegradable foams based on cassava starch formulated with rice husk waste as macro-filler. | 2020 | [44] | ||
Cassava husk waste and beeswax show promise as components in bioplastic production. | 2020 | [67] | ||
Thermoplastic corn starch composites utilizing by-products from cassava and ahipa starch extraction as fillers. | 2020 | [68] | ||
Assessment of environmental footprint of native starch foams reinforced with peanut skin and chemically modified by acetylation. | 2022 | [41] | ||
Cellulose nanofibrils extracted from wheat and oats employed in packaging systems for strawberry storage. | 2023 | [50] | ||
Cassava starch-based polymers reinforced with lignocellulosic fibers from spent brewery grains. | 2024 | [1] | ||
Cassava starch biofilms enhanced with aerial fibers from topinambur (Helianthus tuberosus). | 2024 | [39] | ||
Integration of microbial levan in cassava starch edible films. | 2018 | [69] | Elaboration of biofilms destined to manufacture food packaging | Microbial levan serves as a reinforcement that improves the barrier and mechanical properties of biofilms intended for food packaging. Some reinforcing materials, such as grape residue, can be used for packaging food with a low moisture content. Conversely, blending cassava starch with soy protein produces a material with low permeability to water vapor and oil, as well as low dispersive energy and transparency. Therefore, this mixture can be used for packaging foods with a high lipid content. It is essential to consider the specific type of food when designing bio-packaging solutions. There is a successful interaction between protein and starch, resulting in an optimal material for packaging. Adding essential oils as natural additives enhances the functionality of biopolymers, making them viable replacements for single-use plastics. Combining cassava starch with yerba mate improves the properties necessary for food packaging. It increases the phenolic compound content and antioxidant activity of starch films. This attribute is favorable for packaging fatty foods since fatty acids are susceptible to oxidative processes that can change their sensory and nutritional qualities. Antioxidants mitigate these reactions. Also, yerba mate exhibits a plasticizing effect on cassava starch films, leading to increased elongation. |
Design and evaluation of pH-sensitive films made with cassava starch and blueberry residue via thermocompression. | 2019 | [70] | ||
Development of starch-based biodegradable foams incorporating grape stalks for use in food packaging. | 2019 | [71] | ||
Active starch films containing yerba mate extracts, which act as plasticizers in cassava starch formulations. | 2019 | [72] | ||
Characterization of biopolymer films made from cassava starch, chitosan, and carnauba wax. | 2020 | [73] | ||
Biodegradable trays produced from cassava starch blended with agro-industrial residues. | 2020 | [74] | ||
Cassava starch and soy protein isolate blends characterized after extrusion and thermocompression processing. | 2021 | [75] | ||
Sunflower oil by-product applied as natural filler in biocomposite foams for packaging purposes. | 2021 | [76] | ||
Biofilms prepared with apple pomace. | 2021 | [77] | ||
Impact of polymer mixtures on rheological and processing traits of composite films from acoupa weakfish (Cynoscion acoupa) and cassava starch (Manihot esculenta C.). | 2021 | [78] | ||
Cassava starch films developed using wine industry residues and fortified with pink pepper extract. | 2021 | [79] | ||
Antimicrobial and physicochemical features of thermoplastic films made from bitter cassava starch, nanocellulose, and rosemary oil. | 2022 | [80] | ||
Production of bioplastics via casting and extrusion using cassava starch modified through dry heat treatment (DHT). | 2022 | [81] | ||
Composite biofilms based on cassava starch with microparticles from red cabbage and beet as reinforcing fillers. | 2022 | [82] | ||
Extruded biodegradable plastic developed with cassava starch and Brazilian propolis industry by-product. | 2022 | [83] | ||
Rice husk ash reused as filler in cassava starch-based biodegradable films. | 2023 | [47] | ||
Bilayer film made with cassava starch, yerba mate extract, and starch-TiO2 nanoparticles to enhance food shelf life with antioxidant and antibacterial effects. | 2024 | [84] | ||
Comparative study of starch-based films from cereals and tubers applied to cherry tomato preservation. | 2024 | [85] | ||
Lead quantified in thermoformed biodegradable cassava films using atomic absorption spectrometry. | 2018 | [86] | Bioplastics safety | Upon evaluating the safety of biopolymers, it is concluded that cassava starch is indeed suitable for various applications. |
Detection of cadmium in flexible, biodegradable cassava films through atomic absorption spectrometry. | 2019 | [87] | ||
Measurement of zinc content in polymeric materials derived from cassava starch. | 2021 | [88] | ||
Influence of chitosan on physical properties of corn and cassava starch films. | 2018 | [89] | Evaluation of properties of bioplastics with cassava starch | The improvement of properties is reciprocal because fiber reinforces the characteristics of starch, while the attributes of starch benefit the fiber material. Starch films exhibit brittleness and low elongation due to hydrogen bond interactions between polymer chains. However, the incorporation of pullulan and bacterial cellulose mitigates interactions between starch chains, thereby increasing the flexibility of biofilms and improving their elongation. The addition of glycerol and oregano essential oil can improve stiffness, solubility, and antimicrobial action against E. coli and L. innocua in films. The use of basil extract can improve UV-shielding capabilities and mechanical properties. In cassava starch, the interaction between amylopectin and amylose is a key factor in film manufacturing, significantly influencing the material’s physical and mechanical properties. |
Rheological evaluation of cassava starch films with varying nanoparticle concentrations. | 2019 | [90] | ||
Rheological and structural analysis of cassava starch foams with both low and high amylose levels. | 2022 | [54] | ||
Biofilm characterization using cassava starch combined with emulsion of watermelon seed oil. | 2022 | [91] | ||
Evaluation of physical characteristics of biofilms derived from cassava starch and its nanocrystals. | 2023 | [37] | ||
Influence of citric acid on performance of cassava starch-based biopolymeric materials. | 2023 | [92] | ||
Impact of oregano essential oil and glycerol on physicochemical behavior of chitosan and acetylated cassava starch films. | 2024 | [93] | ||
Cassava starch biofilms enriched with basil extract showing antioxidant activity, UV shielding, and enhanced water and mechanical stability. | 2024 | [94] | ||
Fabrication of biodegradable plastic films using cassava starch as primary raw material. | 2024 | [55] | ||
Antimicrobial active film produced from cassava waste starch and clove essential oil. | 2025 | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapias Benítez, V.E.; Gutiérrez Bernal, J.M. A Scoping Review of Goldenberry Calyx Used as a Reinforcing Fiber for Cassava Starch Biopolymers. Sustainability 2025, 17, 5724. https://doi.org/10.3390/su17135724
Tapias Benítez VE, Gutiérrez Bernal JM. A Scoping Review of Goldenberry Calyx Used as a Reinforcing Fiber for Cassava Starch Biopolymers. Sustainability. 2025; 17(13):5724. https://doi.org/10.3390/su17135724
Chicago/Turabian StyleTapias Benítez, Vilma Estefanía, and Jesús Manuel Gutiérrez Bernal. 2025. "A Scoping Review of Goldenberry Calyx Used as a Reinforcing Fiber for Cassava Starch Biopolymers" Sustainability 17, no. 13: 5724. https://doi.org/10.3390/su17135724
APA StyleTapias Benítez, V. E., & Gutiérrez Bernal, J. M. (2025). A Scoping Review of Goldenberry Calyx Used as a Reinforcing Fiber for Cassava Starch Biopolymers. Sustainability, 17(13), 5724. https://doi.org/10.3390/su17135724