Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis to Identify the Major Research Trends in Livestock Buildings and Building Materials
2.2. Research Trends in Sustainable Building Materials and Their Use in Rural Environments
2.3. Bibliometric Analysis on Building Concepts and Possible Application in Rural Areas
2.4. Rural Buildings and Landscape Integration
Sect. | Item | Goal | Method Description | ||||
---|---|---|---|---|---|---|---|
Scientific Paper Collection | Further Selection Principles | Use | Software | ||||
2.1 | Preliminary survey | Which are the main research fields connected to livestock building? | Kw search: ‘livestock building’, ‘livestock housing’ | None | Numerical elaboration | Vos Viewer v. 2.0 | |
Which are the main research fields connected to building materials? | Kw search: ‘building materials’ | None | Numerical elaboration | Vos Viewer v. 2.0 | |||
2.2 | Materials sustainability and livestock buildings | Which materials could enter in the composition of new sustainable building materials? | a | Kw search: ‘building materials’ + ‘sustainable’ + ‘recycled’; building materials’ + “sustainable’ + ‘composites’; ‘building materials’ + ‘sustainable’ + ‘bio-based’ | The nine most recurrent components of sustainable building materials were considered | Numerical elaboration and content review | Excel (v. 2505) |
Which new sustainable building materialshave been used in non-urban buildings (livestock, rural, vernacular)? | b | The selected articles (2.2a) were refined by using the following Kws: ‘rural’, ‘vernacular’, ‘livestock’, ‘poultry’, ‘barn’ ‘animal housing’, and ‘pigsty’ | Only new materials applied to livestock, vernacular, and agricultural buildings were considered | Content review | None | ||
2.3 | Building Design Concepts: Strategies for Sustainability | What are the main building design concepts developed and relative research trends over the last 20 years? | a | Kw search: ‘nZEB’, ‘environmental building’, ‘sustainable building’, ‘green building’, ‘low-carbon building’, and ‘passive building’ (‘passive house’ and ‘passivhaus’). | The seven most active countries in energy-saving strategy research were considered | Numerical elaboration | RAWGraphs Excel (v. 2505) |
What are the definitions and key factors characterising the abovementioned building design concepts? | b | The selected articles (2.3a) were refined by using the following Kws: ‘definition’ and ‘characteristics’ | Priority was given to international official documents and to scientists affiliated with reference institutions | Content review | None | ||
Which ones have been reported for livestock, rural, and vernacular buildings? | c | The selected articles (2.3a) were refined by using the following Kws: ‘rural’, ‘vernacular’, ‘livestock’, ‘poultry’, ‘barn’ ‘animal housing’, and ‘pigsty’ | Energy saving strategies applied to rural buildings were considered | Content review | None | ||
2.4 | Rural buildings and landscape integration | What is the present level of knowledge on typological and morphological methods to analyse rural architecture? | Kw search: ‘rural settlement analysis’ + ‘farm building landscape’; ‘landscape quality’ + ‘farm buildings’ analysis’; ‘vernacular farm buildings’ + ‘landscape planning’; ‘rural settlement’ + landscape analysis’; ‘farm buildings’ + ‘landscape integration’ | Only papers focused on typological analysis of rural building were considered | Content review | None |
3. Results and Discussion
3.1. Livestock Buildings Research Trends
3.2. Building Materials Research Trends and Sustainable Building Materials
3.3. Building Design Research Trends and Concepts
Term | 1st Record | Research Peak | Key Features | References |
---|---|---|---|---|
Sustainable Building | 1991 (WoS); 1996 (Scopus) | 2024 (WoS); 2024 (Scopus) | High efficiency in energy, water, and material use. Reduced impacts on health and the environment throughout its life cycle. Social and economic aspects are included | [38,39,40] |
Green Building | 1992 (WoS); 1990 (Scopus) | 2022 (WoS); 2024 (Scopus) | Maximised efficiency with which buildings and their sites use resources—energy, water, and materials. Minimises harm to the environment and improves the health of building occupants. | [41] |
Passive Building (Passivhaus, Passive House) | 1991 (WoS); 1979 (Scopus) | 2021 (WoS); 2023 (Scopus) | Based on building science principles devoted to energy efficiency, such as solar orientation, high insulation, high-performance windows and doors, air-tight enclosures, andbalanced ventilation with energy recovery. It should also fulfil different energetic conditions *. | [42,59] |
Low-Carbon Building | 2010 (WoS); 2007 (Scopus) | 2024 (WoS); 2024 (Scopus) | Prioritised energy efficiency and renewable energy. Low-carbon materials used to reduce carbon dioxide emissions in the entire life cycle of the building. | [44,60] |
Nearly Zero-Energy Building (nZEB) | 2008 (Scopus); 2011 (WoS) | 2021 (WoS); 2019 (Scopus) | Reduced energy needs (energy efficiency), renewable energy use (to cover needs nearly year-round), reduced GHG emissions. | [49,61] |
3.4. Building Design Concepts Facing Livestock Buildings
3.5. Rural Buildings, Landscape Integration, Sustainable Materials, and Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organisation (FAO) of United Nations: Rome, Italy, 2013; Available online: https://openknowledge.fao.org/handle/20.500.14283/i3437e (accessed on 2 February 2025).
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organisation (FAO) of United Nations: Rome, Italy, 2006. [Google Scholar]
- Sarkodie, S.A.; Strezov, V. Economic, social and governance adaptation readiness for mitigation of climate change vulnerability: Evidence from 192 countries. Sci. Total Environ. 2019, 656, 150–164. [Google Scholar] [CrossRef]
- Santamouris, M.; Vasilakopoulou, K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. e-Prime-Adv. Elect. Eng. Electron. Energy 2021, 1, 100002. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Ali, S.; Ciacci, L.; Fishman, T.; Heeren, N.; Masanet, E.; Ashgari, F.N.; Olivetti, E.; Paulik, S.; Tu, Q.; et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—A review. Environ. Res. Lett. 2019, 14, 043004. [Google Scholar] [CrossRef]
- Maialetti, M.; Ciaschini, C.; Quaranta, G.; Salvia, R.; Scarpitta, D.; Bigiotti, S.; Chelli, F.M.; Salvati, L. Investigating ‘Land-Use Trajectories’ in Mediterranean Rural Areas with Official Statistics and a Multiway Factor Analysis. Sustainability 2024, 16, 7644. [Google Scholar] [CrossRef]
- Fraser, D. Farm animal production: Changing agriculture in a changing culture. In Food Animal Husbandry and the New Millennium; Serpell, J.A., Parsons, T.D., Eds.; Psychology Press: New York, NY, USA, 2001; pp. 175–190. [Google Scholar] [CrossRef]
- Gunderson, R. The metabolic rifts of livestock agribusiness. Organ. Environ. 2011, 24, 404–422. [Google Scholar] [CrossRef]
- Drozdz-Szczybura, M. Traditional farms as element of rural areas landscape identity. IOP Con Ser. Mate Sci. Eng. 2019, 471, 082009. [Google Scholar] [CrossRef]
- Vázquez-Torres, M.D.R.; Castillo-Reyes, A.R.; Morales Ortega, J.A.; Montero-Urrusquieta, R.Á. Vernacular architecture as heritage. J. Arch. Design 2020, 4, 1–10. [Google Scholar] [CrossRef]
- Parlato, M.C.; Valenti, F.; Porto, S.M. Sustainable promotion of traditional rural buildings as built heritage attractions: A heritage interpretation methodology applied in south Italy. Sustainability 2022, 14, 16206. [Google Scholar] [CrossRef]
- Orsini, F.; Marrone, P. Approaches for a low-carbon production of building materials: A review. J. Clean. Prod. 2019, 241, 118380. [Google Scholar] [CrossRef]
- Rheude, F.; Kondrasch, J.; Röder, H.; Fröhling, M. Review of the terminology in the sustainable building sector. J. Clean. Prod. 2021, 286, 125445. [Google Scholar] [CrossRef]
- Salvucci, G.; Scarpitta, D.; Maialetti, M.; Rontos, K.; Bigiotti, S.; Sateriano, A.; Muolo, A. Measuring Data Quality from Building Registers: A Case Study in Italy. Geographies 2024, 4, 596–611. [Google Scholar] [CrossRef]
- Bigiotti, S.; Costantino, C.; Patriarca, A.; Mancini, G.; Provolo, G.; Recanatesi, F.; Ripa, M.N.; Marucci, A. Energy Efficiency and Environmental Sustainability in Rural Buildings: A Life Cycle Assessment of Photovoltaic Integration in Poultry Tunnels—A Case Study in Central Italy. Appl. Sci. 2025, 15, 5094. [Google Scholar] [CrossRef]
- Plieninger, T.; Bieling, C. Resilience-based perspectives to guiding high-nature-value farmland through socioeconomic change. Ecol. Soc. 2013, 18, 20. [Google Scholar] [CrossRef]
- ELC, European Landscape Convention, Europe Council. The Proceedings of the Seminars Are Published in the Council of Europe’s “European Spatial Planning and Landscape” Series. 2000. Available online: http://www.coe.int/EuropeanLandscapeConvention (accessed on 2 February 2025).
- Picuno, P. Use of traditional material in farm buildings for a sustainable rural environment. Int. J. Sust. Built Env. 2016, 5, 451–460. [Google Scholar] [CrossRef]
- Picuno, P. Farm buildings as drivers of the rural environment. Front. Built Environ. 2022, 8, 693876. [Google Scholar] [CrossRef]
- Picuno, P. Vernacular farm buildings in landscape planning: A typological analysis in a southern Italian region. J. Agric. Eng. 2012, 43, e20. [Google Scholar] [CrossRef]
- Costantino, C.; Bigiotti, S.; Marucci, A.; Gulli, R. Long-Term Comparative Life Cycle Assessment, Cost, and Comfort Analysis of Heavyweight vs. Lightweight Construction Systems in a Mediterranean Climate. Sustainability 2024, 16, 8959. [Google Scholar] [CrossRef]
- Bigiotti, S.; Santarsiero, M.L.; Del Monaco, A.I.; Marucci, A. A Typological Analysis Method for Rural Dwellings: Architectural Features, Historical Transformations, and Landscape Integration: The Case of “Capo Due Rami”, Italy. Land 2025, 14, 374. [Google Scholar] [CrossRef]
- Bigiotti, S.; Costantino, C.; Marucci, A. Decision-Making Tools for Sustainable Recovery of Rural Villages: Planning Policies and Implementation Strategies for Valorizing Small Communities in Inner Areas Under the Next Generation EU Programme. In WIT Transactions on Ecology and the Environment; Syngellakis, S., Ed.; WIT Press: Ashurst, UK, 2024; Volume 262, pp. 479–494. [Google Scholar]
- Lundberg, L. Bibliometric mining of research directions and trends for big data. J. Big Data 2023, 10, 112. [Google Scholar] [CrossRef]
- Wong, D. VOSviewer. Tech. Serv. Q. 2018, 35, 219–220. [Google Scholar] [CrossRef]
- Mauri, M.; Elli, T.; Caviglia, G.; Uboldi, G.; Azzi, M. RAWGraphs: A Visualisation Platform to Create Open Outputs. In Proceedings of the 12th Biannual Conference on Italian SIGCHI, Cagliari, Italy, 18–20 September 2017; ACM: New York, NY, USA, 2017; pp. 28:1–28:5. [Google Scholar] [CrossRef]
- Gebregeziabhear, E.; Ameha, N.; Zeit, D.; Dawa, D. The effect of stress on productivity of animals: A review. J. Biol. Agric. Healthc. 2015, 5, 165–172. [Google Scholar]
- Sobur, M.A.; Sabuj, A.A.M.; Sarker, R.; Rahman, A.T.; Kabir, S.L.; Rahman, M.T. Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet. World 2019, 12, 984. [Google Scholar] [CrossRef]
- Andreola, F.; Barbieri, L.; Lancellotti, I.; Leonelli, C.; Manfredini, T. Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies. Ceram. Int. 2016, 42, 13333–13338. [Google Scholar] [CrossRef]
- Harrison, E.; Berenjian, A.; Seifan, M. Recycling of waste glass as aggregate in cement-based materials. Environ. Sci. Ecotechnol. 2020, 4, 100064. [Google Scholar] [CrossRef]
- da Silva, R.C.; Puglieri, F.N.; de Genaro Chiroli, D.M.; Bartmeyer, G.A.; Kubaski, E.T.; Tebcherani, S.M. Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents. Sci. Total Environ. 2021, 771, 145276. [Google Scholar] [CrossRef]
- Purnell, P. The carbon footprint of reinforced concrete. Adv. Cem. Res. 2013, 25, 362–368. [Google Scholar] [CrossRef]
- Farfan, J.; Fasihi, M.; Breyer, C. Trends in the global cement industry and opportunities for long-term sustainable CCU potential for Power-to-X. J. Clean. Prod. 2019, 217, 821–835. [Google Scholar] [CrossRef]
- Cheng, D.; Reiner, D.M.; Yang, F.; Cui, C.; Meng, J.; Shan, Y.; Liu, Y.; Tao, S.; Guan, D. Projecting future carbon emissions from cement production in developing countries. Nat. Commun. 2023, 14, 8213. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Chen, X.; Crump, J.; Zhou, H.; Davies, D.G.; Zhou, G.; Zhang, N.; Jin, C. Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Constr. Build. Mater. 2018, 164, 275–285. [Google Scholar] [CrossRef]
- Alaux, N.; Vašatko, H.; Maierhofer, D.; Saade, M.R.M.; Stavric, M.; Passer, A. Environmental potential of fungal insulation: A prospective life cycle assessment of mycelium-based composites. Int. J. Life Cycle Assess. 2024, 29, 255–272. [Google Scholar] [CrossRef]
- Berardi, U. Clarifying the new interpretations of the concept of sustainable building. Sustain. Cities Soc. 2013, 8, 72–78. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings 2012, 2, 126–152. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Beyond Foundations: Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; United Nations Environment Programme: Nairobi, Kenya, 2023; p. 100. [Google Scholar]
- EPA Green Building Strategy. EPA-100-F-08-073. 2008. Available online: https://archive.epa.gov/greenbuilding/web/pdf/greenbuilding_strategy_nov08.pdf (accessed on 5 March 2025).
- Klingenberg, K. Passive House (Passivhaus). In Sustainable Built Environments; Springer: New York, NY, USA, 2020; pp. 327–349. [Google Scholar] [CrossRef]
- Schnieders, J.; Eian, T.D.; Filippi, M.; Florez, J.; Kaufmann, B.; Pallantzas, S.; Paulsen, M.; Reyes, E.; Wassouf, M.; Yeh, S.C. Design and realisation of the Passive House concept in different climate zones. Energy Effic. 2020, 13, 1561–1604. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, S. Low-carbon building evaluation index system based on hierarchical analysis method. J. Comput. Met. Sci. Engineer 2024, 24, 879–890. [Google Scholar] [CrossRef]
- EN 15978:2011; Sustainability Assessment of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. European Committee for Standardization: Brussels, Belgium, 2011.
- Giesekam, J.; Barrett, J.; Taylor, P.; Owen, A. The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy Build. 2014, 78, 202–214. [Google Scholar] [CrossRef]
- Wiik, M.K.; Fufa, S.M.; Andresen, I. Design strategies for low embodied carbon in building materials. In Embodied Carbon in Buildings: Measurement, Management, and Mitigation; Pomponi, F., De Wolf, C., Moncaster, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 323–339. [Google Scholar] [CrossRef]
- EPBD EU. Directive 2010/31/EU, European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast); Official Journal of the European Union: Luxembourg, 2010; pp. 13–35. [Google Scholar]
- EPBD EU. Directive 2024/1275/EU European Parliament and of the Council of 24 April 2024 on the Energy Performance of Buildings (Recast). Available online: http://data.europa.eu/eli/dir/2024/1275/oj/eng (accessed on 7 March 2025).
- Crawley, D.; Pless, S.; Torcellini, P. Getting to Net Zero (No. NREL/JA-550-46382); National Renewable Energy Lab (NREL): Golden, CO, USA, 2009.
- Pless, S.; Torcellini, P. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options (No. NREL/TP-550-44586); National Renewable Energy Lab (NREL): Golden, CO, USA, 2010.
- ECEEE. Net Zero Energy Buildings: Definitions, Issues and Experience; European Council for an Energy Efficient Economy (ECEEE): Stockholm, Sweden, 2009. [Google Scholar]
- Marszal, A.J.; Heiselberg, P.; Bourrelle, J.S.; Musall, E.; Voss, K.; Sartori, I.; Napolitano, A. Zero Energy Building—A review of definitions and calculation methodologies. Energy Build. 2011, 43, 971–979. [Google Scholar] [CrossRef]
- D’Agostino, D. Assessment of the progress towards the establishment of definitions of Nearly Zero Energy Buildings (nZEBs) in European Member States. J. Build. Eng. 2015, 1, 20–32. [Google Scholar] [CrossRef]
- Schoenefeldt, H.; Nightingale, A.; Ringrose, J.; Seaman, R.; Willett, S.; Ashdown, S.; Bowers, K.; Gandhi, N.; Waterson, T.; Hayward, T.; et al. Interrogating the Technical, Economic and Cultural Challenges of Delivering the PassivHaus Standard in the UK. 2014. Available online: http://www.kent.ac.uk/architecture/conference/2014 (accessed on 12 March 2025).
- Fletcher, L.K. Green construction costs and benefits: Is national regulation warranted. Nat. Resour. Environ. 2009, 24, 18. [Google Scholar]
- Vierra, S. Green Building Standards and Certification Systems; National Institute of Building Sciences: Washington, DC, USA, 2016; 62p. [Google Scholar]
- Papoyan, A.; Zhan, C.; Li, G.; Han, X. Analysis of the current state of green buildings in the Russian Federation. Open House Int. 2022, 47, 152–166. [Google Scholar] [CrossRef]
- Peper, S.; Feist, W. Energy Efficiency of the Passive House Standard: Expectations Confirmed by Measurements in Practice; Passive House Institute: Darmstadt, Germany, 2015. [Google Scholar]
- Kibert, C.J.; Fard, M.M. Differentiating among low-energy, low-carbon and net-zero-energy building strategies for policy formulation. Build. Res. Inf. 2012, 40, 625–637. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- Kylili, A.; Ilic, M.; Fokaides, P.A. Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone. Resour. Conserv. Recycl. 2017, 116, 169–177. [Google Scholar] [CrossRef]
- Bigiotti, S.; Costantino, C.; Santarsiero, M.L.; Marucci, A. A Methodological Approach for Assessing the Interaction Between Rural Landscapes and Built Structures: A Case Study of Winery Architecture in Tuscany, Italy. Land 2025, 14, 152. [Google Scholar] [CrossRef]
- Parlato, M.C.; Valenti, F.; Midolo, G.; Porto, S.M. Livestock wastes sustainable use and management: Assessment of raw sheep wool reuse and valorization. Energies 2022, 15, 3008. [Google Scholar] [CrossRef]
- Arcidiacono, C. Engineered solutions for animal heat stress abatement in livestock buildings. Agric. Eng. Int. CIGR J. 2018, 1–22. [Google Scholar]
- Tikul, N.; Prachum, S. Passive cooling strategies for cattle housing on small farms: A case study. Maejo Int. J. Sci. Tech. 2022, 16, 25–39. [Google Scholar]
- Firfiris, V.K.; Martzopoulou, A.G.; Kotsopoulos, T.A. Passive cooling systems in livestock buildings towards energy saving: A critical review. Ener Build. 2019, 202, 109368. [Google Scholar] [CrossRef]
- Meschner, T.M.; Veenhuizen, M.A. Livestock Housing Ventilation: Natural Ventilation Design and Management for Dairy Housing. Ohio State University Ext: Columbus, OH, USA, 1998; pp. 113–119. [Google Scholar]
- Merritt, S.; Kelly, R.; Moakes, S. Organic Poultry Production for Meat; Little, T., Ed.; Organic Research Center Wales; 2009; pp. 1–37. Available online: https://www.organicresearchcentre.com/manage/authincludes/article_uploads/poultry%20guide%20english.pdf (accessed on 13 March 2025).
- Ogunjimi, L.A.O.; Ogunwande, G.A.; Osunade, J.A. Thermal comfort status in a naturally ventilated tropical livestock building: Combined effect of orientation and amount of opening on rabbit production. Ife J. Technol. 2010, 19, 77–80. [Google Scholar]
- Menconi, M.E.; Grohmann, D. Optimization of sustainable buildings envelopes for extensive sheep farming through the use of dynamic energy simulation. J. Agric. Eng. 2013, 44. [Google Scholar] [CrossRef]
- Vox, G.; Maneta, A.; Schettini, E. Evaluation of the radiometric properties of roofing materials for livestock buildings and their effect on the surface temperature. Biosyst. Eng. 2016, 144, 26–37. [Google Scholar] [CrossRef]
- De Masi, R.F.; Ruggiero, S.; Tariello, F.; Vanoli, G.P. Passive envelope solutions to aid design of sustainable livestock buildings in Mediterranean climate. J. Clean. Prod. 2021, 311, 127444. [Google Scholar] [CrossRef]
- Li, Y.; Allacker, K.; Feng, H.; Heidari, M.D.; Pelletier, N. Net zero energy barns for industrial egg production: An effective sustainable intensification strategy? J. Clean. Prod. 2021, 316, 128014. [Google Scholar] [CrossRef]
- Wu, W.; Zhai, J.; Zhang, G.; Nielsen, P.V. Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atm. Environ. 2012, 63, 179–188. [Google Scholar] [CrossRef]
- Gilkeson, C.A.; Thompson, H.M.; Wilson, M.C.T.; Gaskell, P.H. Quantifying passive ventilation within small livestock trailers using Computational Fluid Dynamics. Comput. Electron. Agric. 2016, 124, 84–99. [Google Scholar] [CrossRef]
- Georg, H. Green roofing against dairy cow summer heat stress. Landtechnik 2007, 62, 346–347. [Google Scholar]
- Sultan, M.; Miyazaki, T.; Mahmood, M.H.; Khan, Z.M. Solar assisted evaporative cooling based passive air-conditioning system for agricultural and livestock applications. J. Eng. Sci. Technol. 2018, 13, 693–703. [Google Scholar]
- Harrouz, J.P.; Al Assaad, D.; Orabi, M.; Ghali, K.; Ouahrani, D.; Ghaddar, N. Modeling and optimization of poultry house passive cooling strategies in semiarid climates. Int. Energy Res. 2021, 45, 20795–20811. [Google Scholar] [CrossRef]
- De Souza, M.A.; De Sousa, F.C.; Da Silva, A.L.; Soares, T.C.; Oliveira, C.P.; Vigoderis, R.B.; da Costa Baêta, F.; Ferreira Tinôco, I.D.F. Effect of Green Roofs on the Thermal Environment of Prototype Broiler Houses. AgriEngineering 2025, 7, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, W.; Shi, H.; Li, B. Optimising the design of confined laying hen house insulation requirements in cold climates without using supplementary heat. Biosyst. Eng. 2018, 174, 282–294. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zheng, W. Optimum insulation thickness for the sandwich structure livestock buildings external envelopes in different climate regions of China. Int. J. Agric. Biol. Eng. 2020, 13, 29–41. [Google Scholar] [CrossRef]
- Costantino, A.; Calvet, S.; Fabrizio, E. Identification of energy-efficient solutions for broiler house envelopes through a primary energy approach. J. Clean. Prod. 2021, 312, 127639. [Google Scholar] [CrossRef]
- Chel, A.; Nayak, J.K.; Kaushik, G. Energy conservation in honey storage building using Trombe wall. Energy Build. 2008, 40, 1643–1650. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, T.; Ma, Q.; Fukuda, H. Thermal performance and optimizing of composite trombe wall with temperature-controlled DC fan in winter. Sustainability 2022, 14, 3080. [Google Scholar] [CrossRef]
- Massé, D.I.; Talbot, G.; Gilbert, Y. On farm biogas production: A method to reduce GHG emissions and develop more sustainable livestock operations. Anim. Feed. Sci. Technol. 2011, 166, 436–445. [Google Scholar] [CrossRef]
- Oree, V.; Anatah, H.K. Investigating the feasibility of positive energy residential buildings in tropical climates. Energy Effic. 2017, 10, 383–404. [Google Scholar] [CrossRef]
- Hu, X.; Xiang, Y.; Zhang, H.; Lin, Q.; Wang, W.; Wang, H. Active–passive combined energy-efficient retrofit of rural residence with non-benchmarked construction: A case study in Shandong province, China. Energy Rep. 2021, 7, 1360–1373. [Google Scholar] [CrossRef]
- Chang, H.; Hou, Y.; Lee, I.; Liu, T.; Acharya, T.D. Feasibility study and passive design of nearly zero energy building on rural houses in Xi’an, China. Buildings 2022, 12, 341. [Google Scholar] [CrossRef]
- Sang, J.; Liu, X.; Liang, C.; Feng, G.; Li, Z.; Wu, X.; Song, M. Differences between design expectations and actual operation of ground source heat pumps for green buildings in the cold region of northern China. Energy 2022, 252, 124077. [Google Scholar] [CrossRef]
- Sun, T.; Shan, M.; Rong, X.; Yang, X. Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images. Appl. Energy 2022, 315, 119025. [Google Scholar] [CrossRef]
- Liu, X.; Zuo, Y.; Yin, Z.; Liang, C.; Feng, G.; Yang, X. Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China. Energy 2023, 262, 125374. [Google Scholar] [CrossRef]
- Van Hoof, J.; Van Dijken, F. The historical turf farms of Iceland: Architecture, building technology and the indoor environment. Build. Environ. 2008, 43, 1023–1030. [Google Scholar] [CrossRef]
- Lešková, A.; Vaishar, A. The typology of countryside architectonical forms in South-Moravia, a region of Czechia. AUC Geogr. 2023, 58, 214–224. [Google Scholar] [CrossRef]
- Özhancı, E.; Yılmaz, H. 2019. Visual assessment of rural landscape with different characters. Forestist 2019, 69, 44–60. [Google Scholar] [CrossRef]
- Kaya, M.E.; Kaya, H.S.; Terzi, F.; Tolunay, D.; Alkay, E.; Bektaş Balçik, F.; Güler Tozluoğlu, E.; Serdar Yakut, S.E. The landscape identity of rural settlements. Urbani Izziv 2024, 35, 136–154. [Google Scholar] [CrossRef]
- Peña-Huaman, F.; Sifuentes-Rivera, D.; Yarasca-Aybar, C. Architectural typology of rural housing in Jaen, Peru. Built Herit. 2022, 6, 2. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Mao, L. Spatial Evolution of Traditional Village Dwellings in Heilongjiang Province. Sustainability 2023, 15, 5330. [Google Scholar] [CrossRef]
- Örteş, Ş.A.; Sağlık, C.H.; Saydamer Yaşar, A. On the trail of traditional Turkish neighbourhood and houses: Analysis of the rural settlement of Sadağı in Orhaneli. Int. J. Arch. Herit. 2024, 1–19. [Google Scholar] [CrossRef]
- Gökçen, D.; Özbayraktar, M. Integrating space syntax and system dynamics for understanding and managing change in rural housing morphology: A case study of traditional village houses in Düzce, Türkiye. Environ. Dev. Sustain. 2024, 1–29. [Google Scholar] [CrossRef]
- Čurović, Ž.; Čurović, M.; Spalević, V.; Janic, M.; Sestras, P.; Popović, S.G. Identification and evaluation of landscape as a precondition for planning revitalization and development of mediterranean rural settlements—Case study: Mrkovi Village, Bay of Kotor, Montenegro. Sustainability 2019, 11, 2039. [Google Scholar] [CrossRef]
- Torreggiani, D.; Tassinari, P. Landscape quality of farm buildings: The evolution of the design approach in Italy. J. Cult. Herit. 2012, 13, 59–68. [Google Scholar] [CrossRef]
- Maino, E.; Benni, S.; Torreggiani, D.; Barbaresi, A.; Tassinari, P. A quantitative physiognomic analysis of contemporary farm buildings to improve awareness in rural planning. Trans. ASABE 2016, 59, 509–519. [Google Scholar] [CrossRef]
- Benni, S.; Carfagna, E.; Torreggiani, D.; Maino, E.; Bovo, M.; Tassinari, P. Multidimensional measurement of the level of consistency of farm buildings with rural heritage: A methodology tested on an Italian case study. Sustainability 2019, 11, 4242. [Google Scholar] [CrossRef]
- García-Moruno, L.; Parejo, M.J.M.; Blanco, J.H.; Casares, S.L. Analysis of lines and forms in buildings to rural landscape integration. Spanish J. Agric. Res. 2010, 833–847. [Google Scholar] [CrossRef]
- Hernández, J.; López-Casares, S.; Montero, M.J. Methodological analysis of the relationship between building envelope and surroundings in rural areas to improve the landscape integration. Inf. Constr. 2013, 65, 497–508. [Google Scholar] [CrossRef]
- Das, O.; Restás, Á.; Shanmugam, V.; Sas, G.; Försth, M.; Xu, Q.; Jiang, L.; Hedenqvist, M.S.; Ramakrishna, S. Demystifying low-carbon materials. Mat. Circ. Econ. 2021, 3, 26. [Google Scholar] [CrossRef]
- Fedorik, F.; Zach, J.; Lehto, M.; Kymäläinen, H.R.; Kuisma, R.; Jallinoja, M.; Illikainen, K.; Alitalo, S. Hygrothermal properties of advanced bio-based insulation materials. Energy Build. 2021, 253, 111528. [Google Scholar] [CrossRef]
- Canto-Reyes, D.; Bartolo-Pérez, P.; Zaragoza, R.; Medina-Esquivel, R.A.; Acosta, M. From mayan heritage to modern material: Chaká wood as transparent biocomposite for sustainable building. Constr. Build. Mat. 2025, 459, 139800. [Google Scholar] [CrossRef]
- Dorieh, A.; Pahlavan, F.; Hájková, K.; Hýsek, Š.; Pour, F.M.; Fini, E.H. Advancing Sustainable Building Materials: Reducing Formaldehyde Emissions in Medium Density Fiber Boards with Lignin Nanoparticles. Adv. Sust. Syst. 2024, 8, 2400102. [Google Scholar] [CrossRef]
- Olacia, E.; Pisello, A.L.; Chiodo, V.; Maisano, S.; Frazzica, A.; Cabeza, L.F. Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Constr. Build. Mater. 2020, 239, 117669. [Google Scholar] [CrossRef]
- Kuqo, A.; Mai, C. Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Constr. Build. Mater. 2021, 282, 122714. [Google Scholar] [CrossRef]
- Soussi, N.; Ammar, M.; Mokni, A.; Mhiri, H. Thermophysical properties and energy efficiency of a sustainable construction materials produced from local natural waste. Energy Rep. 2024, 12, 2283–2296. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Pergent, G.; Pergent-Martini, C.; Ruitton, S.; Thibaut, T.; Verlaque, M. The necromass of the Posidonia oceanica seagrass meadow: Fate, role, ecosystem services and vulnerability. Hydrobiologia 2016, 781, 25–42. [Google Scholar] [CrossRef]
- Leso, L.; Conti, L.; Rossi, G.; Barbari, M. Criteria of design for deconstruction applied to dairy cows housing: A case study in Italy. Agron. Res. 2018, 16, 794–805. [Google Scholar] [CrossRef]
- Nochaiya, T.; Suriwong, T.; Julphunthong, P. Acidic corrosion-abrasion resistance of concrete containing fly ash and silica fume for use as concrete floors in pig farm. Case Stud. Constr. Mater. 2022, 16, e01010. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, J.P.; Wang, D.; Zhou, W.; Hu, R.R.; Liu, D.L. Eco-friendly vernacular rural housing in western China: A case study of a reconstruction project after 2008 Sichuan earthquake. Appl. Mechan Mater. 2011, 99, 638–643. [Google Scholar] [CrossRef]
- Barreca, F.; Fichera, C.R. Wall panels of Arundo donax L. for environmentally sustainable agriculture buildings: Thermal performance evaluation. J. Food Agric. Environ. 2013, 11, 1353–1357. [Google Scholar]
- Lombardo, L.; Campisi, T.; Saeli, M. Spent coffee grounds-based thermoplaster system to improve heritage building energy efficiency: A Case Study in Madonie Park in Sicily. Sustainability 2024, 16, 6625. [Google Scholar] [CrossRef]
- Kassab, R.; Sadeghian, P. A comparative study on the mechanical properties of sandwich beams made with PET FRP facings and varied recycled PET cores. Compos. Struct. 2024, 344, 118340. [Google Scholar] [CrossRef]
- Mahpour, A.R.; Ardanuy, M.; Ventura, H.; Rosell, J.R.; Claramunt, J. Mechanical properties and durability of biobased fabric-reinforced lime composites intended for strengthening historical masonry structures. Constr. Build. Mater. 2024, 414, 134916. [Google Scholar] [CrossRef]
- Marras, G.; Carcangiu, G.; Meloni, P.; Careddu, N. Circular economy in marble industry: From stone scraps to sustainable water-based paints. Constr. Build. Mater. 2022, 325, 126768. [Google Scholar] [CrossRef]
- Moropoulou, A.; Zendri, E.; Ortiz, P.; Delegou, E.T.; Ntoutsi, I.; Balliana, E.; Becerra, J.; Ortiz, R. Scanning microscopy techniques as an assessment tool of materials and interventions for the protection of built cultural heritage. Scanning 2019, 2019, 5376214. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.G.; Vandenabeele, P.; Colomban, P. Raman Spectroscopy in Cultural Heritage Preservation; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Magdy, M. A Concise Look into Contact Angle Measurements in Heritage Characterization. Adv. Res. Conserv. Sci. 2024, 5, 54–69. [Google Scholar] [CrossRef]
- Pelosi, C.; Di Stasio, F.; Lanteri, L.; Zuena, M.; Sardara, M.; Sodo, A. The “Restoration of the Restoration”: Investigation of a Complex Surface and Interface Pattern in the Roman Wall Paintings of Volsinii Novi (Bolsena, Central Italy). Coatings 2024, 14, 408. [Google Scholar] [CrossRef]
- Isola, D.; Capobianco, G.; Tovazzi, V.; Pelosi, C.; Trotta, O.; Serranti, S.; Lanteri, L.; Zucconi, L.; Spizzichino, V. Biopatinas on Peperino Stone: Three Eco-Friendly Methods for Their Control and Multi-Technique Approach to Evaluate Their Efficacy. Microorganisms 2025, 13, 375. [Google Scholar] [CrossRef]
- Tiano, P.; Biagiotti, L.; Mastromei, G. Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 1999, 36, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Atanasio, P.; Buccini, L.; Kratter, M.; Mura, F.; Passeri, D.; Rossi, M.; Trippetta, F.; Rinaldi, T. Bioconsolidation strategies for carbonate lithologies: Effectiveness and mechanisms in calcarenite, travertine, and marble. Sci. Total Environ. 2025, 971, 179092. [Google Scholar] [CrossRef]
- Toreno, G.; Zucconi, L.; Caneva, G.; Meloni, P.; Isola, D. Recolonization dynamics of marble monuments after cleaning treatments: A nine-year follow-up study. Sci. Total Environ. 2024, 912, 169350. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Geoactive Fungal Roles in the Biosphere. In The Fungal Community: Its Organization and Role in the Ecosystem; CRC Press: Boca Raton, FL, USA, 2017; p. 121. [Google Scholar]
- Isola, D.; Scano, A.; Orrù, G.; Prenafeta-Boldú, F.X.; Zucconi, L. Hydrocarbon-contaminated sites: Is there something more than Exophiala xenobiotica? New insights into black fungal diversity using the long cold incubation method. J. Fungi 2021, 7, 817. [Google Scholar] [CrossRef]
- Gutarowska, B.; Pietrzak, K.; Machnowski, W.; Milczarek, J.M. Historical textiles—A review of microbial deterioration analysis and disinfection methods. Text. Res. J. 2017, 87, 2388–2406. [Google Scholar] [CrossRef]
- Pinto, A.C.; Palomar, T.; Alves, L.C.; da Silva, S.H.M.; Monteiro, R.C.; Macedo, M.F.; Vilarigues, M.G. Fungal biodeterioration of stained-glass windows in monuments from Belém do Pará (Brazil). Int. Biodeterior. Biodegrad. 2019, 138, 106–113. [Google Scholar] [CrossRef]
- Isola, D.; Lee, H.J.; Chung, Y.J.; Zucconi, L.; Pelosi, C. Once upon a Time, There Was a Piece of Wood: Present Knowledge and Future Perspectives in Fungal Deterioration of Wooden Cultural Heritage in Terrestrial Ecosystems and Diagnostic Tools. J. Fungi 2024, 10, 366. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.; Siligardi, C.; Barozzi, G.S. Review on the influence of biological deterioration on the surface properties of building materials: Organisms, materials, and methods. Int. J. Des. Nat. Ecodyn. 2015, 10, 21–39. [Google Scholar] [CrossRef]
- Shirakawa, M.A.; Zilles, R.; Mocelin, A.; Gaylarde, C.C.; Gorbushina, A.; Heidrich, G.; Giudice, M.C.; Del Negro, G.M.B.; John, V.M. Microbial colonization affects the efficiency of photovoltaic panels in a tropical environment. J. Environ. Manag. 2015, 157, 160–167. [Google Scholar] [CrossRef]
- Dyer, T. Biodeterioration of Concrete; CRC Press: Boca Raton, FL, USA, 2017; p. 210. [Google Scholar] [CrossRef]
- Prenafeta-Boldú, F.X.; Medina-Armijo, C.; Isola, D. Black fungi in the built environment—The good, the bad, and the ugly. In Viruses, Bacteria and Fungi in the Built Environment; Woodhead Publishing: Sawston, UK, 2022; pp. 65–99. [Google Scholar] [CrossRef]
- Sanmartín, P.; Miller, A.Z.; Prieto, B.; Viles, H.A. Revisiting and reanalysing the concept of bioreceptivity 25 years on. Sci. Total Environ. 2021, 770, 145314. [Google Scholar] [CrossRef]
- Molina, M.T.; Cano, E.; Ramírez-Barat, B. Protective coatings for metallic heritage conservation: A review. J. Cult. Herit. 2023, 62, 99–113. [Google Scholar] [CrossRef]
- Isola, D.; Bartoli, F.; Casanova Municchia, A.; Lee, H.J.; Jeong, S.H.; Chung, Y.J.; Caneva, G. Green biocides for the conservation of hypogeal mural paintings raised from Western and Eastern traditions: Evaluation of interference on pigments and substrata and multifactor parameters affecting their activity. J. Cult. Herit. 2023, 61, 116–126. [Google Scholar] [CrossRef]
- Bartoli, F.; Hosseini, Z.; Graziani, V.; Zuena, M.; Venettacci, C.; Della Ventura, G.; Totora, L.; Sodo, A.; Caneva, G. In Situ Evaluation of New Silica Nanosystems as Long-Lasting Methods to Prevent Stone Monument Biodeterioration. Coatings 2024, 14, 163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isola, D.; Bigiotti, S.; Marucci, A. Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management. Sustainability 2025, 17, 5644. https://doi.org/10.3390/su17125644
Isola D, Bigiotti S, Marucci A. Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management. Sustainability. 2025; 17(12):5644. https://doi.org/10.3390/su17125644
Chicago/Turabian StyleIsola, Daniela, Stefano Bigiotti, and Alvaro Marucci. 2025. "Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management" Sustainability 17, no. 12: 5644. https://doi.org/10.3390/su17125644
APA StyleIsola, D., Bigiotti, S., & Marucci, A. (2025). Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management. Sustainability, 17(12), 5644. https://doi.org/10.3390/su17125644