Unequal Paths to Decarbonization in an Aging Society: A Multi-Scale Assessment of Japan’s Household Carbon Footprints
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Methodological Approaches for HCF Estimation
1.2.2. Aging Impacts Across National Contexts
1.2.3. Demographic Aging and HCF Pathways
1.2.4. Multidimensional Inequalities in HCF
1.3. Research Purpose
2. Materials and Methods
2.1. HCF Assessment Framework
2.1.1. National-Scale HCF
2.1.2. Prefectural-Scale HCF
2.2. Approach to Carbon Inequality Assessment
2.2.1. Income-Based HCF Inequality
2.2.2. Spatial-Based HCF Inequality
2.3. Evaluation of the Influence of Population Dynamics on HCF
2.4. Data
3. Results and Discussion
3.1. National-Level HCF
3.1.1. HCF Patterns by Age and Income Strata
3.1.2. Income-Related Carbon Inequality Across Age Cohorts
3.2. Prefecture-Level HCF
3.2.1. Overall HCF by Prefecture
3.2.2. Age-Specific HCF Across Prefectures
3.2.3. Projected Trends in Prefecture-Level HCF
3.2.4. Decomposition of Spatial HCF Inequalities
3.3. Research Limitations
4. Conclusions and Policy Implication
- Japan’s per-household HCF exhibits an inverted U-shaped age profile, peaking at 50–54 s (2.16 tCO2). Disaggregating HCF by age and income reveals that, although HCF generally increases with income, it falls at both lower and upper ends of the income spectrum within the 70–84 s. Carbon inequality reveals a U-shaped pattern, with higher CF-Gini coefficients in the younger and elderly groups.
- While the inverted U-shape in per-household HCF holds across prefectures, its peak shifts: 60–64 s in high-GRP prefectures (e.g., Tokyo) versus 45–49 s in low-GRP prefectures (e.g., Aomori). Moreover, late-life HCF rebounds in two prefecture types: high-aging, low-GRP prefectures (e.g., Akita) via essential expenditures, and low-aging, high-GRP prefectures (e.g., Chiba) via energy-intensive eldercare services.
- Population aging’s long-term impact on HCF exhibits marked regional heterogeneity. In low-GRP prefectures, HCF among young and middle-aged cohorts declines obviously from 2020 to 2050 (e.g., a 58% reduction in Akita’s 0–29 s). In high-GRP prefectures, these declines are marginal, while HCF among the elderly rises markedly (e.g., 44% growth in Tokyo’s 60–69 s).
- Aggregate spatial inequality in HCF exhibits a U-shaped pattern. Intragroup disparities decline with age. In contrast, intergroup disparities increase over the life course: the high–low and middle–low disparities, initially 0.142 and 0.155, narrow to approximately 0.10 in midlife, then the middle–low disparities rebound to 0.126 in the 85 s–, reflecting unequal access to medical and eldercare services.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix
Age | The Number of Households by Income Group | Average Household Size (Person) | Average Annual Housheold Income | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0– 200 | 200– 300 | 300– 400 | 400– 500 | 500– 600 | 600– 700 | 700– 800 | 800– 1000 | 1000– 1500 | 1500– | |||
0–29 s | 416,388 | 803,869 | 1,143,757 | 911,629 | 463,847 | 154,418 | 91,262 | 165,307 | 21,602 | 0 | 1.69 | 386.7 |
30–34 s | 178,895 | 255,612 | 473,428 | 534,216 | 483,269 | 374,470 | 206,290 | 193,847 | 134,098 | 15,974 | 2.34 | 544.4 |
35–39 s | 115,678 | 318,692 | 427,661 | 529,869 | 503,397 | 478,034 | 320,104 | 369,383 | 277,905 | 37,207 | 2.79 | 601 |
40–44 s | 229,379 | 274,005 | 393,289 | 459,337 | 554,260 | 567,284 | 443,517 | 508,149 | 492,093 | 76,593 | 2.88 | 652 |
44–49 s | 347,913 | 328,701 | 432,610 | 531,148 | 496,155 | 559,105 | 523,026 | 692,103 | 579,109 | 173,072 | 2.67 | 681.1 |
50–54 s | 385,887 | 373,559 | 354,285 | 376,207 | 386,643 | 458,727 | 382,128 | 672,941 | 725,131 | 304,298 | 2.55 | 749 |
55–59 s | 341,745 | 295,340 | 297,250 | 340,756 | 386,260 | 408,003 | 339,205 | 659,127 | 695,942 | 285,197 | 2.31 | 746.4 |
60–64 s | 512,847 | 516,144 | 525,754 | 572,912 | 435,892 | 339,108 | 309,861 | 399,300 | 425,545 | 202,006 | 2.49 | 629.6 |
65–69 s | 717,189 | 732,400 | 848,910 | 729,036 | 516,584 | 381,416 | 279,763 | 309,731 | 268,508 | 125,881 | 2.48 | 523 |
70–74 s | 770,436 | 898,066 | 957,374 | 677,523 | 503,564 | 291,955 | 193,383 | 262,332 | 260,338 | 89,540 | 2.54 | 473.8 |
75–79 s | 867,380 | 985,646 | 850,586 | 471,640 | 257,861 | 161,626 | 97,474 | 150,354 | 109,785 | 57,307 | 2.63 | 418.8 |
80–84 s | 934,955 | 776,894 | 657,186 | 326,314 | 184,050 | 89,748 | 61,662 | 87,570 | 111,743 | 30,440 | 2.42 | 374.5 |
85 s– | 536,197 | 662,786 | 497,521 | 248,855 | 132,784 | 68,124 | 71,828 | 44,448 | 60,224 | 27,352 | 2.57 | 361.4 |
No. | Prefecture | GRP Per Household (Unit: Million JPY) |
---|---|---|
1 | Hokkaido | 8.2 |
2 | Aomori | 8.6 |
3 | Iwate | 9.3 |
4 | Miyagi | 9.7 |
5 | Akita | 9.4 |
6 | Yamagata | 10.1 |
7 | Fukushima | 11.0 |
8 | Ibaraki | 10.9 |
9 | Tochigi | 11.6 |
10 | Gunma | 10.5 |
11 | Saitama | 7.8 |
12 | Chiba | 8.4 |
13 | Tokyo | 16.9 |
14 | Kanagawa | 8.7 |
15 | Niigata | 11.3 |
16 | Toyama | 13.0 |
17 | Ishikawa | 11.1 |
18 | Fukui | 12.6 |
19 | Yamanashi | 10.0 |
20 | Nagano | 10.8 |
21 | Gifu | 10.6 |
22 | Shizuoka | 12.5 |
23 | Aichi | 12.9 |
24 | Mie | 11.3 |
25 | Shiga | 12.6 |
26 | Kyoto | 9.3 |
27 | Osaka | 10.8 |
28 | Hyogo | 9.1 |
29 | Nara | 7.7 |
30 | Wakayama | 9.5 |
31 | Tottori | 9.7 |
32 | Shimane | 9.3 |
33 | Okayama | 10.5 |
34 | Hiroshima | 9.9 |
35 | Yamaguchi | 10.0 |
36 | Tokushima | 9.7 |
37 | Kagawa | 9.8 |
38 | Ehime | 8.5 |
39 | Kochi | 7.4 |
40 | Fukuoka | 9.0 |
41 | Saga | 10.0 |
42 | Nagasaki | 7.8 |
43 | Kumamoto | 8.5 |
44 | Oita | 9.2 |
45 | Miyazaki | 7.8 |
46 | Kagoshima | 7.7 |
47 | Okinawa | 7.5 |
Age | 0–29 s | 30–34 s | 35–39 s | 40–44 s | 44–49 s | 50–54 s | 55–59 s | 60–64 s | 65–69 s | 70–74 s | 75–79 s | 80–84 s | 85 s– | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prefecture | ||||||||||||||
1 | 180,754 | 135,358 | 147,690 | 186,799 | 217,802 | 196,744 | 198,742 | 195,224 | 238,834 | 229,271 | 181,182 | 161,815 | 116,240 | |
334.8 | 456.2 | 554.3 | 536.6 | 579.1 | 603.9 | 630 | 502.5 | 436 | 361 | 275.9 | 283.5 | 266.9 | ||
2 | 21,301 | 17,281 | 23,466 | 33,181 | 37,969 | 41,233 | 42,367 | 54,829 | 62,304 | 55,687 | 43,099 | 39,733 | 23,515 | |
420.5 | 459.6 | 529.2 | 599.2 | 607.5 | 665.9 | 585.2 | 584.1 | 473.9 | 411.6 | 360.9 | 312.6 | 314.8 | ||
3 | 24,964 | 18,715 | 23,065 | 31,071 | 35,267 | 40,424 | 39,027 | 51,617 | 57,163 | 51,326 | 40,081 | 34,369 | 22,187 | |
389.5 | 475.9 | 573.4 | 617.5 | 579.5 | 708.6 | 612.3 | 580.5 | 576.3 | 477.5 | 392.8 | 373.5 | 414.6 | ||
4 | 71,885 | 44,582 | 54,217 | 68,689 | 74,070 | 74,278 | 72,986 | 91,889 | 99,391 | 86,135 | 61,228 | 54,709 | 37,570 | |
367.8 | 569.7 | 521.5 | 609.3 | 642.8 | 737.1 | 794 | 607 | 563.8 | 589.8 | 370.9 | 386 | 437.4 | ||
5 | 13,238 | 11,736 | 16,737 | 20,662 | 24,756 | 28,587 | 31,943 | 43,566 | 49,596 | 43,471 | 35,460 | 34,776 | 24,552 | |
320.6 | 550 | 480.9 | 821.1 | 626.1 | 645.7 | 606.1 | 633.7 | 521.4 | 480.5 | 395.4 | 333.5 | 436.9 | ||
6 | 17,433 | 14,827 | 18,750 | 22,010 | 24,139 | 30,046 | 31,725 | 43,978 | 48,102 | 43,040 | 32,376 | 30,599 | 22,661 | |
426.5 | 499.4 | 636.5 | 573 | 668.1 | 752.5 | 774.2 | 639.7 | 552.9 | 559.7 | 460.9 | 462.9 | 461.3 | ||
7 | 37,135 | 27,898 | 36,428 | 49,840 | 55,288 | 61,737 | 63,665 | 80,812 | 85,382 | 74,820 | 52,026 | 49,456 | 35,086 | |
375.5 | 465.6 | 546.1 | 571.9 | 679.3 | 770 | 635.8 | 628.5 | 503.6 | 470 | 390.3 | 403.3 | 345.5 | ||
8 | 72,307 | 57,572 | 67,452 | 83,366 | 94,858 | 95,837 | 101,336 | 104,036 | 110,222 | 109,403 | 89,600 | 64,918 | 44,989 | |
433.4 | 554.6 | 635.2 | 681.8 | 683.9 | 816.3 | 788.3 | 658.6 | 547.5 | 491.5 | 440.3 | 432.9 | 370.1 | ||
9 | 51,471 | 42,502 | 46,777 | 57,893 | 62,831 | 64,796 | 68,996 | 71,431 | 73,183 | 68,834 | 56,114 | 35,649 | 23,702 | |
388.7 | 512.1 | 556.6 | 594.7 | 757.6 | 772.5 | 799.2 | 626.1 | 588.3 | 529.1 | 460.6 | 303.1 | 340.3 | ||
10 | 50,608 | 35,239 | 46,777 | 57,207 | 65,836 | 62,085 | 64,879 | 66,388 | 74,125 | 71,021 | 60,627 | 48,846 | 35,584 | |
441.1 | 544.7 | 597.2 | 586.9 | 641.4 | 743.6 | 792.5 | 625.8 | 559 | 441.5 | 436.3 | 330.6 | 348.5 | ||
11 | 222,764 | 171,757 | 193,817 | 246,660 | 284,367 | 271,388 | 236,226 | 236,751 | 269,650 | 290,436 | 232,826 | 162,744 | 93,397 | |
403.8 | 546.7 | 644.3 | 651.8 | 677.9 | 752 | 881.3 | 668.3 | 508.8 | 510.2 | 396.9 | 394 | 392.6 | ||
12 | 199,138 | 140,275 | 159,189 | 193,801 | 231,391 | 214,221 | 192,601 | 188,225 | 222,733 | 230,617 | 190,588 | 133,825 | 77,745 | |
410.3 | 557.1 | 564.7 | 698.9 | 770.6 | 793.6 | 858.8 | 674 | 539.5 | 502.6 | 400.5 | 342.6 | 417.2 | ||
13 | 793,446 | 514,154 | 499,859 | 522,312 | 600,076 | 549,980 | 435,356 | 368,671 | 431,567 | 440,678 | 395,874 | 336,692 | 260,731 | |
415.8 | 665.3 | 705.3 | 774 | 690.8 | 845.8 | 752.2 | 768 | 580.6 | 515 | 578.7 | 434.6 | 385.1 | ||
14 | 367,982 | 256,176 | 283,589 | 337,285 | 407,634 | 370,894 | 303,392 | 272,077 | 318,997 | 332,535 | 285,921 | 222,622 | 155,673 | |
415.5 | 577.1 | 634.3 | 698.7 | 752.2 | 867.2 | 832.1 | 708 | 512.6 | 494 | 437.3 | 477.3 | 389.4 | ||
15 | 56,248 | 39,043 | 36,960 | 57,236 | 60,526 | 68,301 | 68,544 | 86,887 | 88,911 | 86,112 | 68,320 | 61,264 | 46,626 | |
408 | 557 | 552.7 | 597 | 583.4 | 677.3 | 727.3 | 643.1 | 502.8 | 539.5 | 504.9 | 394.7 | 396.5 | ||
16 | 23,840 | 17,715 | 18,031 | 28,918 | 30,172 | 31,046 | 28,248 | 35,886 | 44,125 | 44,476 | 30,260 | 27,796 | 20,574 | |
443.1 | 540.9 | 603.8 | 663.4 | 636.9 | 808.5 | 817.5 | 749.9 | 580.6 | 574.6 | 440.9 | 513.5 | 493 | ||
17 | 35,746 | 22,384 | 22,672 | 37,758 | 36,307 | 37,668 | 32,676 | 39,487 | 46,863 | 46,355 | 31,066 | 26,122 | 18,943 | |
385.2 | 562 | 574.8 | 682.6 | 659.3 | 741.6 | 733.2 | 655.1 | 565 | 477.3 | 367.9 | 395.1 | 486.6 | ||
18 | 17,668 | 12,934 | 12,643 | 16,415 | 20,551 | 23,365 | 22,312 | 26,658 | 29,677 | 29,549 | 21,355 | 17,213 | 14,030 | |
427.6 | 568.2 | 708.9 | 668 | 635.1 | 794.3 | 821.4 | 693.1 | 577.9 | 551.4 | 520.9 | 475.7 | 388 | ||
19 | 17,954 | 13,720 | 17,020 | 20,344 | 25,636 | 29,393 | 29,078 | 27,067 | 29,117 | 30,855 | 27,160 | 23,570 | 19,539 | |
350.9 | 526 | 561.3 | 583.3 | 642.9 | 700.9 | 779.8 | 573.1 | 487.3 | 510.8 | 390.9 | 427.7 | 316.3 | ||
20 | 44,725 | 35,144 | 44,018 | 54,274 | 62,976 | 64,717 | 66,823 | 65,830 | 75,303 | 78,238 | 67,726 | 61,109 | 51,488 | |
374.1 | 576.9 | 590 | 599.8 | 717.3 | 701.3 | 732.8 | 589.2 | 589 | 543.1 | 439.5 | 386 | 348.5 | ||
21 | 39,505 | 33,111 | 44,035 | 56,065 | 62,624 | 64,237 | 57,148 | 66,356 | 78,186 | 79,882 | 65,138 | 46,594 | 33,577 | |
402.9 | 530.4 | 650.8 | 617 | 721.8 | 732.7 | 917.6 | 688.7 | 564.3 | 499.7 | 471.1 | 405.7 | 532.1 | ||
22 | 80,606 | 68,477 | 84,850 | 104,021 | 124,797 | 124,589 | 112,326 | 124,186 | 139,277 | 145,323 | 117,480 | 90,901 | 63,489 | |
409 | 544.3 | 641.3 | 643.2 | 684.7 | 747.7 | 744.4 | 650.3 | 597.6 | 552.9 | 421.1 | 395.1 | 453 | ||
23 | 258,997 | 192,876 | 222,900 | 273,259 | 302,865 | 282,484 | 220,450 | 225,755 | 262,795 | 281,035 | 222,482 | 165,199 | 104,415 | |
378.8 | 545.4 | 653 | 718.7 | 787.8 | 791.2 | 733.1 | 773.8 | 608.8 | 495.9 | 431.1 | 416.3 | 406.3 | ||
24 | 41,558 | 34,272 | 44,272 | 57,010 | 61,898 | 62,588 | 55,853 | 56,860 | 68,780 | 71,711 | 60,451 | 48,626 | 35,120 | |
426.2 | 624.9 | 622.6 | 621.4 | 715.7 | 921.4 | 801.3 | 567.8 | 557.1 | 470.6 | 454.5 | 402.1 | 337.4 | ||
25 | 47,799 | 25,696 | 40,482 | 41,346 | 52,768 | 45,680 | 45,575 | 42,703 | 48,537 | 43,676 | 35,157 | 28,666 | 20,506 | |
411 | 596.5 | 590.1 | 617.6 | 729.8 | 816.6 | 850.3 | 632.5 | 573.1 | 525.5 | 424.3 | 464 | 452.9 | ||
26 | 101,182 | 44,320 | 71,063 | 77,000 | 101,372 | 89,498 | 84,806 | 80,626 | 105,964 | 106,237 | 89,729 | 69,497 | 52,041 | |
319.8 | 516.8 | 507 | 698.4 | 759.9 | 715.5 | 662.6 | 623.1 | 494.2 | 453.5 | 429.1 | 365.4 | 308.1 | ||
27 | 346,565 | 195,250 | 273,528 | 294,481 | 394,810 | 333,847 | 291,525 | 277,607 | 347,900 | 380,638 | 333,373 | 238,931 | 159,529 | |
377 | 457.8 | 544.5 | 589.7 | 611.2 | 699.8 | 655.5 | 586.3 | 465.3 | 421 | 381.7 | 298.1 | 345.4 | ||
28 | 168,425 | 98,157 | 147,950 | 158,528 | 221,792 | 192,149 | 187,743 | 177,963 | 214,242 | 220,677 | 189,107 | 147,309 | 107,172 | |
396 | 477.9 | 569.5 | 653.9 | 735.3 | 733.9 | 823 | 599.6 | 525.2 | 438 | 402 | 361.3 | 377.7 | ||
29 | 28,802 | 19,091 | 30,487 | 34,888 | 50,012 | 44,210 | 45,208 | 44,481 | 53,914 | 57,799 | 49,660 | 35,172 | 24,270 | |
308.4 | 485.4 | 539.9 | 569.2 | 655.9 | 798.1 | 759.1 | 571.9 | 538.7 | 440.9 | 383.5 | 428.2 | 352.7 | ||
30 | 14,604 | 12,978 | 20,360 | 22,075 | 28,797 | 29,807 | 32,503 | 31,817 | 37,631 | 40,332 | 36,720 | 30,833 | 24,532 | |
338.2 | 507.1 | 488.1 | 593.8 | 606.6 | 598.5 | 724.9 | 484.9 | 426.6 | 497.8 | 377.1 | 272 | 300.6 | ||
31 | 12,112 | 10,072 | 10,812 | 14,756 | 14,928 | 17,082 | 16,483 | 22,886 | 22,524 | 22,086 | 17,237 | 15,411 | 12,466 | |
334.3 | 526.4 | 490.3 | 569.8 | 710.9 | 726.1 | 754.4 | 603 | 518.4 | 524.9 | 442.2 | 366.4 | 363.6 | ||
32 | 15,329 | 11,916 | 12,269 | 16,861 | 16,575 | 19,191 | 19,032 | 27,378 | 28,911 | 28,230 | 21,450 | 20,370 | 7860 | |
357.9 | 572.3 | 510.5 | 679.8 | 715.2 | 773.4 | 655.6 | 628.2 | 611.7 | 516.5 | 510.7 | 372.2 | 377.3 | ||
33 | 61,559 | 40,823 | 41,341 | 58,914 | 51,212 | 57,756 | 49,872 | 66,162 | 75,285 | 82,289 | 59,103 | 52,291 | 40,629 | |
398.7 | 547.1 | 544.4 | 576.8 | 659.8 | 844 | 932 | 576.6 | 681.4 | 499.9 | 401.6 | 390.8 | 330.1 | ||
34 | 102,145 | 68,360 | 68,856 | 96,659 | 96,649 | 90,909 | 78,463 | 97,390 | 114,618 | 122,720 | 87,479 | 73,943 | 63,710 | |
389.1 | 485.7 | 612.3 | 575.8 | 706.3 | 646.8 | 756.1 | 592.9 | 574.6 | 429 | 404.2 | 329.9 | 349.3 | ||
35 | 41,061 | 24,780 | 27,859 | 39,723 | 39,364 | 41,753 | 39,172 | 54,609 | 62,728 | 66,508 | 52,001 | 48,670 | 38,339 | |
364.1 | 518.5 | 572.2 | 594 | 656.5 | 706.3 | 779 | 531.5 | 474.8 | 412.7 | 416 | 338.6 | 287.7 | ||
36 | 17,457 | 11,866 | 13,177 | 19,702 | 22,149 | 23,353 | 23,973 | 30,625 | 30,947 | 33,265 | 23,709 | 23,395 | 16,764 | |
298.9 | 510.5 | 587.9 | 665.7 | 687.9 | 677 | 685.6 | 511.8 | 468.5 | 398.8 | 385.6 | 370.9 | 319.5 | ||
37 | 22,218 | 14,545 | 19,369 | 30,542 | 30,402 | 29,930 | 29,596 | 36,911 | 40,302 | 43,617 | 30,137 | 28,590 | 22,653 | |
357.9 | 534.5 | 584.2 | 652.1 | 686.7 | 736.9 | 826.8 | 579 | 505.4 | 456.9 | 324.5 | 411.1 | 318 | ||
38 | 33,539 | 29,080 | 26,229 | 40,801 | 41,434 | 44,811 | 44,328 | 56,458 | 56,277 | 64,508 | 46,200 | 45,005 | 39,358 | |
295.3 | 469.1 | 662.3 | 572.9 | 611.8 | 585.8 | 561.1 | 588.2 | 521.5 | 473.7 | 381.3 | 314.1 | 271.9 | ||
39 | 16,297 | 13,482 | 14,058 | 20,949 | 20,703 | 22,920 | 23,635 | 29,582 | 31,958 | 36,281 | 26,118 | 27,071 | 23,155 | |
288.3 | 454.2 | 551 | 608.3 | 655.7 | 531.9 | 596.8 | 596.3 | 401.8 | 372.4 | 308.5 | 278.7 | 277.9 | ||
40 | 182,030 | 110,465 | 158,484 | 169,226 | 188,309 | 167,528 | 156,192 | 185,707 | 226,705 | 200,533 | 153,251 | 127,946 | 93,966 | |
315.8 | 445.5 | 524 | 622.1 | 589.4 | 629.7 | 650.1 | 581.3 | 443.6 | 413 | 356.3 | 354.8 | 330.2 | ||
41 | 17,998 | 11,011 | 18,216 | 18,583 | 22,568 | 22,554 | 24,645 | 30,250 | 34,678 | 30,153 | 24,811 | 19,872 | 15,350 | |
366.2 | 484.5 | 533.3 | 588.7 | 715.4 | 780 | 726.1 | 627.3 | 511.2 | 486 | 419.7 | 437 | 374.6 | ||
42 | 31,695 | 19,867 | 31,463 | 35,361 | 42,782 | 43,115 | 45,617 | 54,674 | 62,435 | 53,703 | 46,161 | 42,694 | 34,481 | |
318.1 | 441 | 577.9 | 632.7 | 552.2 | 710.4 | 658.9 | 470.8 | 424.5 | 411.2 | 383.3 | 310 | 346.7 | ||
43 | 45,906 | 30,910 | 43,532 | 43,500 | 50,711 | 50,850 | 55,452 | 64,968 | 73,269 | 62,933 | 56,063 | 48,933 | 41,322 | |
315.1 | 484.6 | 546.9 | 584.1 | 620.2 | 584.8 | 706.9 | 581.6 | 465.5 | 516.5 | 462.8 | 299 | 330.8 | ||
44 | 33,447 | 19,404 | 29,354 | 30,032 | 34,440 | 32,301 | 36,845 | 42,946 | 54,105 | 48,188 | 39,085 | 33,596 | 25,862 | |
345.2 | 468.6 | 558 | 611.5 | 604.7 | 632.9 | 640 | 515.6 | 443.7 | 398.8 | 332.7 | 319.1 | 302.8 | ||
45 | 26,744 | 18,580 | 29,332 | 29,892 | 31,950 | 31,701 | 36,838 | 43,002 | 50,383 | 42,884 | 36,340 | 33,496 | 26,979 | |
312.2 | 450.6 | 505.2 | 570.7 | 596.1 | 665.3 | 648 | 512.3 | 467.2 | 370.2 | 317 | 329.5 | 235 | ||
46 | 48,248 | 30,222 | 42,405 | 43,981 | 52,033 | 53,577 | 57,740 | 68,080 | 72,965 | 64,279 | 57,994 | 59,669 | 54,432 | |
386.5 | 402.9 | 507 | 517.2 | 610 | 586.8 | 617.8 | 461.1 | 380 | 366.5 | 371.4 | 246.8 | 226 | ||
47 | 42,380 | 31,472 | 42,094 | 44,028 | 52,544 | 44,642 | 46,882 | 48,077 | 58,858 | 32,168 | 30,335 | 30,054 | 23,314 | |
373.3 | 393.8 | 497.7 | 480.8 | 494.6 | 532.3 | 497.1 | 350.2 | 454.5 | 399.4 | 273.8 | 337.9 | 241.1 |
References
- Peters, G.P.; Andrew, R.M.; Canadell, J.G.; Fuss, S.; Jackson, R.B.; Korsbakken, J.I.; Le Quéré, C.; Nakicenovic, N. Key Indicators to Track Current Progress and Future Ambition of the Paris Agreement. Nat. Clim. Change 2017, 7, 118–122. [Google Scholar] [CrossRef]
- Shigetomi, Y.; Matsumoto, K.; Ogawa, Y.; Shiraki, H.; Yamamoto, Y.; Ochi, Y.; Ehara, T. Driving Forces Underlying Sub-National Carbon Dioxide Emissions within the Household Sector and Implications for the Paris Agreement Targets in Japan. Appl. Energy 2018, 228, 2321–2332. [Google Scholar] [CrossRef]
- Peters, G.P. From Production-Based to Consumption-Based National Emission Inventories. Ecol. Econ. 2008, 65, 13–23. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q. Examining Factors Driving Household Carbon Emissions from Elderly Families—Evidence from Japan. Financ. Res. Lett. 2024, 65, 105511. [Google Scholar] [CrossRef]
- Ministry of the Environment Introduction of the Tax for Global Warming Countermeasures. Available online: https://www.env.go.jp/policy/tax/about.html (accessed on 14 May 2025).
- Tokyo Metropolitan Government Emissions Trading Scheme. Available online: https://www.kankyo.metro.tokyo.lg.jp/climate/large_scale/trade (accessed on 14 May 2025).
- Ministry of Environment Target-Based Emissions Trading Scheme. Available online: https://www.pref.saitama.lg.jp/a0502/torihikiseido.html (accessed on 14 May 2025).
- Agency for Natural Resources and Energy Net-Zero Energy House (ZEH). Available online: https://www.enecho.meti.go.jp/category/saving_and_new/saving/general/housing/index03.html (accessed on 13 May 2025).
- Chancel, L. Global Carbon Inequality over 1990–2019. Nat. Sustain. 2022, 5, 931–938. [Google Scholar] [CrossRef]
- Hailemariam, A.; Dzhumashev, R.; Shahbaz, M. Carbon Emissions, Income Inequality and Economic Development. Empir. Econ. 2020, 59, 1139–1159. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Cui, Y.; Zhang, Z. Unequal Age-Based Household Carbon Footprint in China. Clim. Policy 2023, 23, 577–592. [Google Scholar] [CrossRef]
- Li, K.; Li, H.; Wang, Y.; Yang, Z.; Liang, S. Household Carbon Footprints of Age Groups in China and Socioeconomic Influencing Factors. Sci. Total Environ. 2024, 923, 171402. [Google Scholar] [CrossRef]
- Shigetomi, Y.; Nansai, K.; Kagawa, S.; Tohno, S. Changes in the Carbon Footprint of Japanese Households in an Aging Society. Environ. Sci. Technol. 2014, 48, 6069–6080. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Long, Y.; Chapman, A.; Shigetomi, Y. How Population Aging Affects Carbon Footprints in US Households: A Comparative Study with Japan. Environ. Res. Commun. 2024, 6, 105021. [Google Scholar] [CrossRef]
- Huang, Y.; Shigetomi, Y.; Chapman, A.; Matsumoto, K. Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society. Energies 2019, 12, 3745. [Google Scholar] [CrossRef]
- Long, Y.; Yoshida, Y.; Meng, J.; Guan, D.; Yao, L.; Zhang, H. Unequal Age-Based Household Emission and Its Monthly Variation Embodied in Energy Consumption—A Cases Study of Tokyo, Japan. Appl. Energy 2019, 247, 350–362. [Google Scholar] [CrossRef]
- Kanemoto, K.; Shigetomi, Y.; Hoang, N.T.; Okuoka, K.; Moran, D. Spatial Variation in Household Consumption-Based Carbon Emission Inventories for 1200 Japanese Cities. Environ. Res. Lett. 2020, 15, 114053. [Google Scholar] [CrossRef]
- Huang, Y.; Shigetomi, Y.; Matsumoto, K. Evaluating Carbon Inequality by Household Type and Income Level across Prefectures in Japan. Sustain. Cities Soc. 2022, 87, 104236. [Google Scholar] [CrossRef]
- Huang, L.; Montagna, S.; Wu, Y.; Chen, Z.; Tanaka, K.; Yoshida, Y.; Long, Y. Extension and Update of Multiscale Monthly Household Carbon Footprint in Japan from 2011 to 2022. Sci. Data 2023, 10, 439. [Google Scholar] [CrossRef]
- Campos, C.; Laso, J.; Cristóbal, J.; Albertí, J.; Bala, A.; Fullana, M.; Fullana-i-Palmer, P.; Margallo, M.; Aldaco, R. Towards More Sustainable Tourism under a Carbon Footprint Approach: The Camino Lebaniego Case Study. J. Clean. Prod. 2022, 369, 133222. [Google Scholar] [CrossRef]
- Bin, S.; Dowlatabadi, H. Consumer Lifestyle Approach to US Energy Use and the Related CO2 Emissions. Energy Policy 2005, 33, 197–208. [Google Scholar] [CrossRef]
- Du, Z.; Xu, J.; Lin, B. What Does the Digital Economy Bring to Household Carbon Emissions?—From the Perspective of Energy Intensity. Appl. Energy 2024, 370, 123613. [Google Scholar] [CrossRef]
- Long, Y.; Jiang, Y.; Chen, P.; Yoshida, Y.; Sharifi, A.; Gasparatos, A.; Wu, Y.; Kanemoto, K.; Shigetomi, Y.; Guan, D. Monthly Direct and Indirect Greenhouse Gases Emissions from Household Consumption in the Major Japanese Cities. Sci. Data 2021, 8, 301. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Liu, X.; Zhong, M. From Aging to Greener Homes: Understanding the Link between Population Aging and Household Carbon Emissions in China. Environ. Impact Assess. Rev. 2024, 106, 107459. [Google Scholar] [CrossRef]
- Yu, B.; Wei, Y.M.; Kei, G.; Matsuoka, Y. Future Scenarios for Energy Consumption and Carbon Emissions Due to Demographic Transitions in Chinese Households. Nat. Energy 2018, 3, 109–118. [Google Scholar] [CrossRef]
- Long, Y.; Feng, J.; Sun, A.; Wang, R.; Wang, Y. Structural Characteristics of the Household Carbon Footprint in an Aging Society. Sustainability 2023, 15, 12825. [Google Scholar] [CrossRef]
- Menz, T.; Welsch, H. Population Aging and Carbon Emissions in OECD Countries: Accounting for Life-Cycle and Cohort Effects. Energy Econ. 2012, 34, 842–849. [Google Scholar] [CrossRef]
- Koide, R.; Lettenmeier, M.; Kojima, S.; Toivio, V.; Amellina, A.; Akenji, L. Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan. Sustainability 2019, 11, 5983. [Google Scholar] [CrossRef]
- Hu, H.; Xu, J.; Zhang, X. The Role of Housing Wealth, Financial Wealth, and Social Welfare in Elderly Households’ Consumption Behaviors in China. Cities 2020, 96, 102437. [Google Scholar] [CrossRef]
- Huang, L.; Long, Y.; Chen, Z.; Li, Y.; Ou, J.; Shigetomi, Y.; Yoshida, Y. Increasing Single Households Challenges Household Decarbonization in Japan. Glob. Environ. Change 2024, 86, 102848. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Song, K. Household Carbon Inequality in the U.S. J. Clean. Prod. 2021, 278, 123994. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Guan, D.; Liu, Z.; Meng, J.; Zhang, N.; Wei, Y.M. Unequal Household Carbon Footprints in China. Nat. Clim. Change 2017, 7, 75–80. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Pan, H.; Yuan, Z.; Feng, K. Changes in the Socio-Economic Characteristics of Households Can Decouple Carbon Emissions and Consumption Growth in China. Sustain. Prod. Consum. 2023, 43, 168–180. [Google Scholar] [CrossRef]
- Wei, L.; Liu, Z. Spatial Heterogeneity of Demographic Structure Effects on Urban Carbon Emissions. Environ. Impact Assess. Rev. 2022, 95, 106790. [Google Scholar] [CrossRef]
- Huang, L.; Long, Y.; Chen, J.; Yoshida, Y. Sustainable Lifestyle: Urban Household Carbon Footprint Accounting and Policy Implications for Lifestyle-Based Decarbonization. Energy Policy 2023, 181, 113696. [Google Scholar] [CrossRef]
- Hubacek, K.; Baiocchi, G.; Feng, K.; Muñoz Castillo, R.; Sun, L.; Xue, J. Global Carbon Inequality. Energy Ecol. Environ. 2017, 2, 361–369. [Google Scholar] [CrossRef]
- Zheng, H.; Long, Y.; Wood, R.; Moran, D.; Zhang, Z.; Meng, J.; Feng, K.; Hertwich, E.; Guan, D. Author Correction: Ageing Society in Developed Countries Challenges Carbon Mitigation. Nat. Clim. Change 2022, 12, 593. [Google Scholar] [CrossRef]
- Mi, Z.; Zheng, J.; Meng, J.; Ou, J.; Hubacek, K.; Liu, Z.; Coffman, D.M.; Stern, N.; Liang, S.; Wei, Y.M. Economic Development and Converging Household Carbon Footprints in China. Nat. Sustain. 2020, 3, 529–537. [Google Scholar] [CrossRef]
- Hori, K.; Saito, O.; Hashimoto, S.; Matsui, T.; Akter, R.; Takeuchi, K. Projecting Population Distribution under Depopulation Conditions in Japan: Scenario Analysis for Future Socio-Ecological Systems. Sustain. Sci. 2021, 16, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Jia, X.; Gao, L.; Zhou, Y. Effects of Population Flow on Regional Carbon Emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 62628–62639. [Google Scholar] [CrossRef] [PubMed]
- Kira, N.; Long, Y.; Shigetomi, Y. Measuring the Rebound of Japan’s per-Industry Household Carbon Footprints and Emission Inequalities during the COVID-19 Pandemic in 2020–2021. Resour. Conserv. Recycl. 2024, 203, 107414. [Google Scholar] [CrossRef]
- Yu, M.; Meng, B.; Li, R. Analysis of China’s Urban Household Indirect Carbon Emissions Drivers under the Background of Population Aging. Struct. Change Econ. Dyn. 2022, 60, 114–125. [Google Scholar] [CrossRef]
- Leontief, W. Environmental Repercussions and the Economic Structure: An Input-Output Approach. Rev. Econ. Stat. 1970, 52, 262. [Google Scholar] [CrossRef]
- Kitzes, J. An Introduction to Environmentally-Extended Input-Output Analysis. Resources 2013, 2, 489–503. [Google Scholar] [CrossRef]
- Wiedmann, T. A Review of Recent Multi-Region Input-Output Models Used for Consumption-Based Emission and Resource Accounting. Ecol. Econ. 2009, 69, 211–222. [Google Scholar] [CrossRef]
- Dalton, H. The Measurement of the Inequality of Incomes. Econ. J. 1920, 30, 348. [Google Scholar] [CrossRef]
- Dagum, C. A New Approach to the Decomposition of the Gini Income Inequality Ratio. Empir. Econ. 1997, 22, 515–531. [Google Scholar] [CrossRef]
- Domma, F.; Condino, F.; Giordano, S. A New Formulation of the Dagum Distribution in Terms of Income Inequality and Poverty Measures. Phys. A Stat. Mech. Its Appl. 2018, 511, 104–126. [Google Scholar] [CrossRef]
- Xiao, W.; He, M. Characteristics, Regional Differences, and Influencing Factors of China’s Water-Energy-Food (W-E–F) Pressure: Evidence from Dagum Gini Coefficient Decomposition and PGTWR Model. Environ. Sci. Pollut. Res. 2023, 30, 66062–66079. [Google Scholar] [CrossRef]
- Agency for Natural Resources and Energy Prefectural Energy Consumption Statistics—Survey Results. Available online: https://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/results.html#headline1 (accessed on 28 May 2025).
- Agency for Natural Resources and Energy Comprehensive Energy Statistics—National Aggregated Results. Available online: https://www.enecho.meti.go.jp/statistics/total_energy/results.html#headline2 (accessed on 28 May 2025).
- National Institute of Population and Social Security Research Estimated Future Population by Region in Japan. Available online: https://www.ipss.go.jp/pp-shicyoson/j/shicyoson23/t-page.asp (accessed on 25 April 2025).
- Ministry of Internal Affairs and Communications Input-Output Table of Japan. Available online: https://www.soumu.go.jp/toukei_toukatsu/data/io/ichiran.htm (accessed on 25 April 2025).
- Ministry of Internal Affairs and Communications National Survey of Family Income and Expenditure. Available online: https://www.e-stat.go.jp/stat-search?page=1&toukei=00200564 (accessed on 25 April 2025).
- Hasegawa, R.; Kagawa, S.; Tsukui, M. Carbon Footprint Analysis through Constructing a Multi-Region Input–Output Table: A Case Study of Japan. J. Econ. Struct. 2015, 4, 5. [Google Scholar] [CrossRef]
- Shigetomi, Y.; Nansai, K.; Kagawa, S.; Tohno, S. Trends in Japanese Households’ Critical-Metals Material Footprints. Ecol. Econ. 2015, 119, 118–126. [Google Scholar] [CrossRef]
- Ministry of Economy, Trade and Industry. Input–Output Structural Survey (Margin Survey). Available online: https://www.e-stat.go.jp/stat-search?page=1&toukei=00550470&survey=%E7%94%A3%E6%A5%AD%E9%80%A3%E9%96%A2%E8%A1%A8 (accessed on 17 May 2025).
- Cravino, J.; Levchenko, A.; Rojas, M. Population Aging and Structural Transformation. Am. Econ. J. Macroecon. 2022, 14, 479–498. [Google Scholar] [CrossRef]
- Higo, M.; Khan, H.T. Global Population Aging: Unequal Distribution of Risks in Later Life between Developed and Developing Countries. Glob. Soc. Policy 2015, 15, 146–166. [Google Scholar] [CrossRef]
- Varlamova, J.; Larionova, N. Macroeconomic and Demographic Determinants of Household Expenditures in OECD Countries. Procedia Econ. Financ. 2015, 24, 727–733. [Google Scholar] [CrossRef]
- Yagita, Y.; Iwafune, Y. Residential Energy Use and Energy-Saving of Older Adults: A Case from Japan, the Fastest-Aging Country. Energy Res. Soc. Sci. 2021, 75, 102022. [Google Scholar] [CrossRef]
- Long, Y.; Yoshida, Y.; Huang, L.; Chen, P.; Wu, Y.; Gasparatos, A. Demographic Transitions Hinder Climate Change Mitigation for Japan’s Shrinking and Aging Households. Cell Rep. Sustain. 2024, 1, 100053. [Google Scholar] [CrossRef]
- Ando, A.; Modigliani, F. The “Life Cycle” Hypothesis of Saving: Aggregate Implications and Tests. Am. Econ. Rev. 1963, 53, 55–84. [Google Scholar]
- Gao, Z.; Jia, Z.; Zhao, Y.; Hao, Y. Enhancing the Synergistic Pathways of Industrial Pollution and Carbon Reduction (PCR) in China: An Energy Efficiency Perspective. Energies 2025, 18, 2413. [Google Scholar] [CrossRef]
- Mochi, P. Perspective on Challenges and Opportunities in Integrated Electricity-Hydrogen Market. Energy Sustain. Dev. 2025, 87, 101728. [Google Scholar] [CrossRef]
- Cabinet Office Prefectural Economic Calculation (2006–2018). Available online: https://www.esri.cao.go.jp/jp/sna/data/data_list/kenmin/files/contents/main_2018.html (accessed on 27 January 2022).
- Ministry of Internal Affairs and Communications. The Japanese National Census in 2005. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00200521&tstat=000001007251&result_page=1 (accessed on 19 May 2025).
- Geospatial Information Authority of Japan. The Map of Japan. Available online: https://www.gsi.go.jp/tizu-kutyu.html (accessed on 19 May 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, X.; Guo, X. Unequal Paths to Decarbonization in an Aging Society: A Multi-Scale Assessment of Japan’s Household Carbon Footprints. Sustainability 2025, 17, 5627. https://doi.org/10.3390/su17125627
Huang Y, Li X, Guo X. Unequal Paths to Decarbonization in an Aging Society: A Multi-Scale Assessment of Japan’s Household Carbon Footprints. Sustainability. 2025; 17(12):5627. https://doi.org/10.3390/su17125627
Chicago/Turabian StyleHuang, Yuzhuo, Xiang Li, and Xiaoqin Guo. 2025. "Unequal Paths to Decarbonization in an Aging Society: A Multi-Scale Assessment of Japan’s Household Carbon Footprints" Sustainability 17, no. 12: 5627. https://doi.org/10.3390/su17125627
APA StyleHuang, Y., Li, X., & Guo, X. (2025). Unequal Paths to Decarbonization in an Aging Society: A Multi-Scale Assessment of Japan’s Household Carbon Footprints. Sustainability, 17(12), 5627. https://doi.org/10.3390/su17125627