Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.2.1. Mixture Design
2.2.2. Mortar Preparation, Mixing, Placing, and Curing
2.3. Testing Methods
2.3.1. Weight Loss
2.3.2. Compressive Strength Measurement
2.3.3. Characterization of the Products
3. Results and Discussion
3.1. Physical, Chemical, and Mineralogical Characterization
3.2. Sulfate Attack
3.2.1. Visual Characterization
3.2.2. Impact of Binder Mixture on Weight Variation of Specimens Subjected to Sulfate
3.2.3. Impact of Binder Mixture on Residual Compressive Strength After Sulfate Attack
3.2.4. FTIR Analysis
3.2.5. Characterization of Samples Using SEM and EDX After Sulfate Attack
4. Future Perspectives
- Extended Long-Term Durability Assessment:
- 2.
- Advanced Microstructural Characterization Techniques:
- 3.
- Assessment Under Coupled Environmental Stresses:
- 4.
- Life Cycle Assessment (LCA) and Cost–Benefit Analysis:
- 5.
- Scale-Up and Structural Performance Evaluation:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aydın, S.; Baradan, B. Sulfate resistance of alkali-activated slag and Portland cement based reactive powder concrete. J. Build. Eng. 2021, 43, 103205. [Google Scholar] [CrossRef]
- Dener, M.; Karatas, M.; Mohabbi, M. Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate. Constr. Build. Mater. 2021, 304, 124671. [Google Scholar] [CrossRef]
- Li, X.; Li, O.X.; Rao, F.; Song, S.; Ortiz-Lara, N.; Aguilar-Reyes, E.A. Microstructural evolution in sulfate solutions of alkali-activated binders synthesized at various calcium contents. J. Mater. Res. Technol. 2020, 9, 10377–10385. [Google Scholar] [CrossRef]
- Ye, H.; Huang, L. Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability. Constr. Build. Mater. 2020, 246, 118477. [Google Scholar] [CrossRef]
- Lee, J.; Lee, T.; Lee, S.; Choi, H. Performance Evaluation of Cementless Composites with Alkali-Sulfate Activator for Field Application. Materials 2020, 13, 5410. [Google Scholar] [CrossRef]
- Zhao, W.; Fan, Z.; Li, X.; Kong, L.; Zhang, L. Characterization and Comparison of Corrosion Layer Microstructure between Cement Mortar and Alkali-Activated Fly Ash/Slag Mortar Exposed to Sulfuric Acid and Acetic Acid. Materials 2022, 15, 1527. [Google Scholar] [CrossRef]
- Gevaudan, J.P.; Caicedo-Ramirez, A.; Hernandez, M.T.; Srubar, W.V. Copper and cobalt improve the acid resistance of alkali-activated cements. Cem. Concr. Res. 2019, 115, 327–338. [Google Scholar] [CrossRef]
- Pouya, J.; Neji, M.; De Windt, L.; Péralès, F.; Socié, A.; Corvisier, J. Mineralogical Evolution and Expansion of Cement Pastes in a Sulfate-Confined Environment. Minerals 2022, 13, 1. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, C.; Ju, J.W. A numerical chemo-micromechanical damage model of sulfate attack in cementitious materials. Int. J. Damage Mech. 2022, 31, 1613–1638. [Google Scholar] [CrossRef]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.-M.; Roussel, N.; Divet, L.; de Lacaillerie, E. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- El Inaty, F.; Marchetti, M.; Quiertant, M.; Metalssi, O.O. Chemical Mechanisms Involved in the Coupled Attack of Sulfate and Chloride Ions on Low-Carbon Cementitious Materials: An In-Depth Study. Appl. Sci. 2023, 13, 11729. [Google Scholar] [CrossRef]
- Ma, X.; Çopuroğlu, O.; Schlangen, E.; Han, N.; Xing, F. Expansion and degradation of cement paste in sodium sulfate solutions. Constr. Build. Mater. 2018, 158, 410–422. [Google Scholar] [CrossRef]
- Chen, F.; Gao, J.; Qi, B.; Shen, D. Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Constr. Build. Mater. 2017, 154, 849–856. [Google Scholar] [CrossRef]
- Jabbour, M.; Metalssi, O.O.; Quiertant, M.; Baroghel-Bouny, V. A Critical Review of Existing Test-Methods for External Sulfate Attack. Materials 2022, 15, 7554. [Google Scholar] [CrossRef]
- Sothornchaiwit, K.; Dokduea, W.; Tangchirapat, W.; Keawsawasvong, S.; Thongchom, C.; Jaturapitakkul, C. Influences of Silica Fume on Compressive Strength and Chemical Resistances of High Calcium Fly Ash-Based Alkali-Activated Mortar. Sustainability 2022, 14, 2652. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Al Khattab, R. Fresh Properties and Sulfuric Acid Resistance of Sustainable Mortar Using Alkali-Activated GGBS/Fly Ash Binder. Polymers 2022, 14, 591. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, Y.; Zhu, L.; Liu, T.; Xu, P.; Hou, Z. Research on the Sulfate-resistant Chemical Attack Mechanism of Concrete with Mineral Admixture. IOP Conf. Ser. Earth Environ. Sci. 2020, 558, 022055. [Google Scholar] [CrossRef]
- Al-Sodani, K.A.A.; Adewumi, A.A.; Mohd Ariffin, M.A.; Salami, B.A.; Yusuf, M.O.; Ibrahim, M.; AlAteah, A.H.; Al-Tholaia, M.M.H.; Shamsah, S.M.I.; Ismail, M. Acid Resistance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar. Sustainability 2022, 14, 14451. [Google Scholar] [CrossRef]
- Salami, B.A.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.; Adewumi, A.A. Impact of Al(OH)3 addition to POFA on the compressive strength of POFA alkali-activated mortar. Constr. Build. Mater. 2018, 190, 65–82. [Google Scholar] [CrossRef]
- Winnefeld, F.; Gluth, G.J.G.; Bernal, S.A.; Bignozzi, M.C.; Carabba, L.; Chithiraputhiran, S.; Dehghan, A.; Dolenec, S.; Dombrowski-Daube, K.; Dubey, A.; et al. RILEM TC 247-DTA round robin test: Sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes. Mater. Struct. 2020, 53, 140. [Google Scholar] [CrossRef]
- Kanaan, D.; Soliman, A.M.; Suleiman, A.R. Zero-Cement Concrete Resistance to External Sulfate Attack: A Critical Review and Future Needs. Sustainability 2022, 14, 2078. [Google Scholar] [CrossRef]
- Wen, N.; Peys, A.; Hertel, T.; Pontikes, Y. Performance of Fe-Rich Alkali-Activated Materials in Na2SO4 Solution: Role of MgO/(MgO + CaO) in the Slag. Mater. Proc. 2021, 5, 125. [Google Scholar] [CrossRef]
- Zhu, H.; Liang, G.; Li, H.; Wu, Q.; Zhang, C.; Yin, Z.; Hua, S. Insights to the sulfate resistance and microstructures of alkali-activated metakaolin/slag pastes. Appl. Clay Sci. 2021, 202, 105968. [Google Scholar] [CrossRef]
- Allahverdi, A.; Akhondi, M.; Mahinroosta, M. Superior Sodium Sulfate Resistance of a Chemically Activated Phosphorus Slag–Based Composite Cement. J. Mater. Civ. Eng. 2017, 29, 30. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Zhang, S.; Guo, Z.; Ma, Z.; Sun, X.; Xing, J. Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders. Constr. Build. Mater. 2020, 250, 118603. [Google Scholar] [CrossRef]
- ASTM C10/C10M-19; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 1999. [CrossRef]
- Nasir, M.; Johari, M.A.M.; Maslehuddin, M.; Yusuf, M.O. Magnesium sulfate resistance of alkali/slag activated silico-manganese fume-based composites. Constr. Build. Mater. 2020, 265, 120851. [Google Scholar] [CrossRef]
Composition (%) | LSP | NP |
---|---|---|
CaO | 94.1 | 2.0 |
Al2O3 | 0.8 | 13.0 |
SiO2 | 2.5 | 74 |
Fe2O3 | 1.2 | 1.5 |
MgO | 0.6 | 0.5 |
Na2O | 0 | 4.0 |
K2O | 0.3 | 5.0 |
Mix # | Designation | NP | LP | SS/NH | SS | NaOH | H₂O | F.A |
---|---|---|---|---|---|---|---|---|
M1 | AN60L40 | 363 | 242 | 1.0 | 152 | 152 | 61 | 1210 |
M2 | AN50L50 | 303 | 302 | 1.0 | 152 | 152 | 61 | 1210 |
M3 | AN40L60 | 242 | 363 | 1.0 | 152 | 152 | 61 | 1210 |
Materials | Specific Gravity | Mean Particle Size (µm) | Surface Area (cm2/g) |
---|---|---|---|
NP | 2.3 | 5.8 | 3.1 |
LSP | 2.7 | 12.1 | 0.6 |
Binder Ratio | Sulfate Solution | 3—Month | 6—Month | 9—Month | 12—Month |
---|---|---|---|---|---|
AN40L60 | Solution A | 22.59% | 39.26% | 44.00% | 47.22% |
AN50L50 | 19.39% | 34.35% | 40.31% | 41.76% | |
AN60L40 | 11.88% | 26.00% | 29.60% | 35.52% | |
AN40L60 | Solution B | 28.37% | 35.67% | 51.04% | 58.11% |
AN50L50 | 23.09% | 28.85% | 43.21% | 52.29% | |
AN60L40 | 15.00% | 22.84% | 30.20% | 33.44% | |
AN40L60 | Solution C | 21.11 | 24.81 | 37.56 | 55.89 |
AN50L50 | 33.97 | 38.02 | 43.21 | 42.41 | |
AN60L40 | 11.40 | 15.20 | 19.76 | 22.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewumi, A.A.; Salami, B.A.; Ariffin, M.A.B.M.; Yusuf, M.O.; Al-Sodani, K.A.A.; Ibrahim, M. Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments. Sustainability 2025, 17, 5611. https://doi.org/10.3390/su17125611
Adewumi AA, Salami BA, Ariffin MABM, Yusuf MO, Al-Sodani KAA, Ibrahim M. Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments. Sustainability. 2025; 17(12):5611. https://doi.org/10.3390/su17125611
Chicago/Turabian StyleAdewumi, Adeshina Adewale, Babatunde Abiodun Salami, Mohd Azreen Bin Mohd Ariffin, Moruf Olalekan Yusuf, Khaled A. Alawi Al-Sodani, and Mohammed Ibrahim. 2025. "Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments" Sustainability 17, no. 12: 5611. https://doi.org/10.3390/su17125611
APA StyleAdewumi, A. A., Salami, B. A., Ariffin, M. A. B. M., Yusuf, M. O., Al-Sodani, K. A. A., & Ibrahim, M. (2025). Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments. Sustainability, 17(12), 5611. https://doi.org/10.3390/su17125611