Sustainable Development Through the Lens of Climate Change: A Diagnosis of Attitudes in Southeastern Rural Poland
Abstract
:1. Introduction
- –
- ‘a fair transition to a low-carbon, circular and resource-efficient economy;
- –
- Transition towards a socially inclusive society and economy—decent work and human rights;
- –
- Transition to sustainable food production and consumption;
- –
- Investing in innovation and long-term infrastructure modernisation and encouraging sustainable businesses;
- –
- Making trade work for global sustainable development’ [12].
2. Sustainable Development and Climate Change
- –
- Goal 2. End hunger, achieve food security and improved nutrition, and promote sustainable agriculture;
- –
- Goal 6. Ensure availability and sustainable management of water and sanitation for all;
- –
- Goal 7. Ensure access to affordable, reliable, sustainable, and modern energy for all;
- –
- Goal 13. Take urgent action to combat climate change and its impacts;
- –
- Goal 14. Conserve and sustainably use the oceans, seas, and marine resources for sustainable development;
- –
- Goal 15. Protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, halt and reverse land degradation, and halt biodiversity loss [22].
3. Climate Change in the Context of Poland
- –
- ‘decarbonisation
- –
- energy efficiency
- –
- energy security
- –
- internal energy market
- –
- research, innovation and competitiveness’ [75].
4. Materials and Methods
- –
- Used to compare proportions of answers across groups;
- –
- Fisher’s exact tests are employed when χ2 test assumptions are not satisfied:
- (a)
- No more than 20% of cells have expected counts below 5;
- (b)
- The minimum expected count is greater than 1.
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Commission on Environment and Development (WCED). Our Common Future; Raport Brundtland; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Mondini, G. Sustainability Assessment: From Brundtland Report to Sustainable Development Goals. J. Valori Valutazioni 2019, 23, 129–137. [Google Scholar]
- Ben-Eli, M. Sustainability: Definition and Five Core Principles A New Framework; A Sustainability Laboratory Publication: New York, NY, USA, 2015. [Google Scholar]
- Ehrenfeld, J.R. Sustainability by Design: A Subversive Strategy for Transforming Our Consumer Culture; Yale University Press: New Haven, UK, 2008. [Google Scholar]
- Rosen, M. Issues, concepts and applications for sustainability. Glocalism J. Cult. Politics Innov. 2018, 3. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E. Innovation as an Attribute of the Sustainable Development of Pharmaceutical Companies. Sustainability 2025, 17, 2417. [Google Scholar] [CrossRef]
- Kuhlman, T.; Farrington, J. What is Sustainability? Sustainability 2010, 2, 3436–3448. [Google Scholar] [CrossRef]
- Lewis, D. Promoting Socially Responsible Business, Ethical Trade and Acceptable Labour Standards, Social Development Department. SD SCOPE Paper. Nr 8. 2000. Available online: https://www.semanticscholar.org/paper/Promoting-Socially-Responsible-Business%2C-Ethical-Lewis/5151f78773e45acc09bd3a5c8b0a457fa88f8d73 (accessed on 22 April 2025).
- Strange, T.; Bayley, A. Sustainable Development. In Linking Economy, Society, Environment; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2008. [Google Scholar]
- UN. Agenda for Development; United Nations: New York, NY, USA, 1997. [Google Scholar]
- UE. Development and Cooperation. Available online: https://european-union.europa.eu/priorities-and-actions/actions-topic/development-and-cooperation_en (accessed on 12 May 2025).
- UE1. Sustainable Development. Available online: https://www.eesc.europa.eu/en/policies/policy-areas/sustainable-development (accessed on 14 May 2025).
- Ikerd, J. Business Management for Sustainability. Sustainability 2024, 16, 3714. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Glossner, S.; Homanen, M. Catering through transparency: Voluntary ESG disclosure by asset managers and fund flows. SSRN Electron. J. 2022, 1, 1–51. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; UN: Geneva, Switzerland, 2020. [Google Scholar]
- Bick, N.; Keele, D. Sustainability and climate change: Understanding the political use of environmental terms in municipal governments. Curr. Res. Environ. Sustain. 2022, 4, 100145. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land; UN: Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. Climate Change. In AR6 Synthesis Report; UN: Geneva, Switzerland, 2023. [Google Scholar]
- Bocken, N.M.P.; Rana, P.; Short, S.W. Value mapping for sustainable business thinking. J. Ind. Prod. Eng. 2015, 32, 67–81. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, S. What Drives Sustainable Development of Enterprises? Focusing on ESG Management and Green Technology Innovation. Sustainability 2022, 14, 11695. [Google Scholar] [CrossRef]
- The Sustainable Development Goals Report; United Nations Publications: New York, NY, USA, 2024.
- UN THE 17 GOALS. Available online: https://sdgs.un.org/goals (accessed on 3 April 2025).
- Li, T.T.; Wang, K.; Sueyoshi, T.; Wang, D.D. ESG: Research progress and future prospects. Sustainability 2021, 13, 11663. [Google Scholar]
- Galdeano-Gómez, E.; Céspedes-Lorente, J.; Rodríguez-Rodríguez, M. Productivity and environmental performance in marketing cooperatives: An analysis of the Spanish horticultural sector. J. Agric. Econ. 2006, 57, 479–500. [Google Scholar] [CrossRef]
- Pelenc, J.; Weak versus Strong Sustainability. Technical Report, March 2015. Available online: https://www.researchgate.net/publication/280979919_Weak_versus_Strong_Sustainability (accessed on 14 June 2025).
- DesRoches, C.T. Some Truths Don’t Matter: The Case of Strong Sustainability. Ethics Policy Environ. 2019, 22, 184–196. [Google Scholar] [CrossRef]
- Hajiyev, A. Weak and strong sustainable development models analysis. Przegląd Eur. 2021, 2021, 4. [Google Scholar] [CrossRef]
- Murphy, K. The social phillar of sustainable development: A literature review and framework for policy analysis. Sustainability 2012, 8, 15–29. [Google Scholar] [CrossRef]
- Urbańczyk, E.; Kokiel, A.; Dyrka, S.; Chomać-Pierzecka, E. Sustainable HR and Employee Psychological Well-Being in Shaping the Performance of a Business. Sustainability 2024, 16, 10913. [Google Scholar] [CrossRef]
- Universal Declaration of Human Rights. Available online: https://www.gov.pl/attachment/af132db5-7064-4b9a-815e-1e30697d0868 (accessed on 14 June 2025).
- Marotta, A.; Porras-Amores, C.; Rodríguez Sánchez, A.; Villoria Sáez, P.; Masera, G. Greenhouse Gas Emissions Forecasts in Countries of the European Union by Means of a Multifactor Algorithm. Appl. Sci. 2023, 13, 8520. [Google Scholar] [CrossRef]
- Palombo, M.R. Thinking about the Biodiversity Loss in This Changing World. Geosciences 2021, 11, 370. [Google Scholar] [CrossRef]
- Kleespies, M.W.; Dierkes, P.W. Personal Assessment of Reasons for the Loss of Global Biodiversity—An Empirical Analysis. Sustainability 2020, 12, 4277. [Google Scholar] [CrossRef]
- Lazarus, E.; Lin, D.; Martindill, J.; Hardiman, J.; Pitney, L.; Galli, A. Biodiversity Loss and the Ecological Footprint of Trade. Diversity 2015, 7, 170–191. [Google Scholar] [CrossRef]
- Lindenmayer, D.B. Forest Biodiversity Declines and Extinctions Linked with Forest Degradation: A Case Study from Australian Tall, Wet Forests. Land 2023, 12, 528. [Google Scholar] [CrossRef]
- Ma, Y.; Gopal, S.; Ma, X.; Gallagher, K.; Koch, M.; Kaufman, L. The Deforestation and Biodiversity Risks of Power Plant Projects in Southeast Asia: A Big Data Spatial Analytical Framework. Sustainability 2023, 15, 14461. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Miglietta, P.P.; Porrini, D. Biodiversity Protection Practices in Supply Chain Management: A Novel Hybrid Grey Best–Worst Method/Axial Distance-Based Aggregated Measurement Multi-Criteria Decision-Making Model. Appl. Sci. 2025, 15, 1354. [Google Scholar] [CrossRef]
- El-Sharkawy, G.; Alotaibi, M.O.; Zuhair, R.; Mahmoud, E.; El Baroudy, A.; Omara, A.E.-D.; El-Sharkawy, M. Ecological Assessment of Polluted Soils: Linking Ecological Risks, Soil Quality, and Biota Diversity in Contaminated Soils. Sustainability 2025, 17, 1524. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Saxena, A.; Prakash Gupta, J.; Tiwary, J.K.; Kumar, A.; Sharma, S.; Pandey, G.; Biswas, S.; Raghav Chaturvedi, K. Innovative Pathways in Carbon Capture: Advancements and Strategic Approaches for Effective Carbon Capture, Utilization, and Storage. Sustainability 2024, 16, 10132. [Google Scholar] [CrossRef]
- Hou, H.; Lu, W.; Liu, B.; Hassanein, Z.; Mahmood, H.; Khalid, S. Exploring the Role of Fossil Fuels and Renewable Energy in Determining Environmental Sustainability: Evidence from OECD Countries. Sustainability 2023, 15, 2048. [Google Scholar] [CrossRef]
- Sustainable. Merriam-Webster Dictionary. Available online: https://www.merriam-webster.com/dictionary/sustainable (accessed on 22 January 2025).
- Spijkers, O. Intergenerational Equity and the Sustainable Development Goals. Sustainability 2018, 10, 3836. [Google Scholar] [CrossRef]
- Pan, H.; Liu, G.; Muller, J.-P.; Sun, Z.; Yao, Y.; Chang, Y.; Xiong, Z.; Zhang, Y. Comprehensive Assessment of Sustainable Development of Terrestrial Ecosystem Based on SDG 15—A Case Study of Guilin City. Remote Sens. 2025, 17, 63. [Google Scholar] [CrossRef]
- Zou, H.; Liu, Y.; Li, B.; Luo, W. Sustainable Development Efficiency of Cultural Landscape Heritage in Urban Fringe Based on GIS-DEA-MI, a Case Study of Wuhan, China. Int. J. Environ. Res. Public Health 2022, 19, 13061. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between circular economy and climate change mitigation in the built environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Yan, H.; Gusev, A.; Zhang, L.; He, Y.; Yang, S. Greenhouse gas emissions and reduction strategies for the world’s largest greenhouse gas emitters. Sci. Total Environ. 2024, 944, 173895. [Google Scholar] [CrossRef]
- Raport Espania. Climate Change and Sustainable Growth: International Initiatives and European Policies; Documentos Ocasionales N.º 2213; BANCO DE ESPAÑA: Madrid, Spain, 2022.
- Kutlu, L. Greenhouse Gas Emission Efficiencies of World Countries. Int. J. Environ. Res. Public Health 2020, 17, 8771. [Google Scholar] [CrossRef]
- Bougiatioti, A.; Gialesakis, N.; Sarafidis, Y.; Gini, M.I.; Mermigkas, M.; Kalkavouras, P.; Mirasgedis, S.; Ramonet, M.; Narbaud, C.; Lopez, M.; et al. Sources and Variability of Greenhouse Gases over Greece. Atmosphere 2024, 15, 1288. [Google Scholar] [CrossRef]
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Golec, R.D.C.; Jacobs, H.; Flammini, A.; et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef]
- Fusco, G.; Campobasso, F.; Laureti, L.; Frittelli, M.; Valente, D.; Petrosillo, I. The environmental impact of agriculture: An instrument to support public policy. Ecol. Indic. 2023, 147, 109961. [Google Scholar] [CrossRef]
- Tvaronavičienė, M. Effects of climate change on environmental sustainability. E3S Web Conf. 2021, 250, 01005. [Google Scholar] [CrossRef]
- Paris Agreement on Climate Change. Available online: https://www.consilium.europa.eu/en/policies/paris-agreement-climate/ (accessed on 10 May 2025).
- Rogelj, J.; den Elzen, M.; Höhne, N. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Dagnachew, A.; Hof, A.; van Soest, H.; van Vuuren, D. Climate Change Measures and Sustainable Development Goals. In Mapping Synergies and Trade-Offs to Guide Multi-Level Decision-Making; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2021. [Google Scholar]
- Ekardt, F.; Bärenwaldt, M.; Heyl, K. The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets. Environments 2022, 9, 112. [Google Scholar] [CrossRef]
- Perissi, I.; Jones, A. Investigating European Union Decarbonization Strategies: Evaluating the Pathway to Carbon Neutrality by 2050. Sustainability 2022, 14, 4728. [Google Scholar] [CrossRef]
- UE i Porozumienie Paryskie: W Stronę Neutralności Klimatycznej. Available online: https://www.europarl.europa.eu/topics/en/article/20191115STO66603/eu-and-the-paris-agreement-towards-climate-neutrality (accessed on 4 May 2025).
- Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 2 May 2025).
- Fetting, C. The European Green Deal; ESDN Report December 2020; ESDN Office: Vienna, Austria, 2020. [Google Scholar]
- Eyring, V.; Gillettt, N. Human Influence on the Climate System. In Climate Change, (In:) IPCC, 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Leszczyński, P.; Markiewicz, J.; Mądry, T.; Mierzejewski, M.; Ogórek, S.; Rybacki, J. Wpływ Zmian Klimatu Na Gospodarkę Polski Na Przykładzie Wybranych Miast Wojewódzkich; Working Paper, nr 4; Polski Instytut Ekonomiczny: Warszawa, Poland, 2023. [Google Scholar]
- NASA. Available online: https://www.nasa.gov/centers-and-facilities/goddard/nasa-finds-summer-2024-hottest-to-date (accessed on 4 May 2025).
- European Environment Agency (1). Available online: https://www.eea.europa.eu/pl/ (accessed on 14 March 2025).
- Raport Copernicus: European State of the Climate; Copernicus Climate Change Service, European State of the Climate: Brussels, Belgium, 2023.
- European Environment Agency (2). Available online: https://www.eea.europa.eu/en/topics/in-depth/extreme-weather-floods-droughts-and-heatwaves?activeAccordion=98a3fcf3-da52-4b7d-9e6e-3976612a0613 (accessed on 18 April 2025).
- Prandecki, K.; Burchard-Dziubińska, M. (Eds.) Zmiana Klimatu—Skutki Dla Polskiego Społeczeństwa I Gospodarki; Komitet Prognoz „Polska 2000 Plus” przy Prezydium PAN: Warszawa, Poland, 2020; pp. 1–307. ISBN 978-83-63305-98-7. [Google Scholar]
- IOŚ PIB. Climate for Poland Poland for Climate 1988–2018–2050; Institue of Envoronmental Protecion; National Research Institute: Warsaw, Poland, 2018. [Google Scholar]
- Kundzewicz, Z.W.; Juda-Rezler, K. Zagrożenia związane ze zmianami klimatu. Nauka 2023, 4, 69–76. [Google Scholar]
- Kundzewicz, Z.W.; Hov, O.; Okruszko, T. Zmiany Klimatu I Ich Wpływ Na Wybrane Sektory W Polsce; Projekt CHASE-PL: Poznań, Poland, 2017. [Google Scholar]
- Chomać-Pierzecka, E. Investment in Offshore Wind Energy in Poland and Its Impact on Public Opinion. Energies 2024, 17, 3912. [Google Scholar] [CrossRef]
- National Energy and Climate Plan. Available online: https://www.gov.pl/web/climate/national-energy-and-climate-plan (accessed on 28 March 2025).
- National Air Protection Program. Available online: https://www.gov.pl/web/klimat/krajowy-program-ochrony-powietrza (accessed on 4 May 2025).
- Energy Policy of Poland Until 2040. Available online: https://www.gov.pl/web/climate/energy-policy-of-poland-until-2040-epp2040 (accessed on 21 April 2025).
- Regional Action Plan for Climate and Energy for the Małopolska Voivodeship. Available online: https://klimat.ekomalopolska.pl/dokumenty2/regionalny-plan-dzialan-dla-klimatu-i-energii/ (accessed on 11 April 2025).
- Wilkin, J. Wielofunkcyjnóśc Rolnictwa i Obszarów Wiejskich. In Wyzwania Przed Obszarami Wiejskimi i Rolnictwem w Perspektywie lat 2014–2020; Kłodziński, M., Ed.; IRWiR PAN: Warsaw, Poland, 2008; pp. 9–20. [Google Scholar]
- Zyśk, J.; Wyrwa, A.; Raczyński, M.; Pluta, M.; Michalska, S.; Wyrwa, E.; Olkuski, T.; Suwała, W. Bilans energetyczny i emisyjny województwa małopolskiego w 2020 roku. Min.—Inform. Autom. Electr. Eng. 2023, 61, 1. [Google Scholar]
- Strategic: Małopolska. 2030. Available online: https://www.malopolska.pl/_userfiles/uploads/Rozwoj%20Regionalny/Strategia%20Ma%C5%82opolska%202030/JMP---Malopolska_2030__SRW_cz-I___v118_UA.pdf (accessed on 12 April 2025).
- Strategic Program Environmental Protection. 2021–2027. Available online: https://www.malopolska.pl/_userfiles/uploads/SR/SR-I/PO%C5%9A%20SWM%202712/Program%20Strategiczny%20Ochrona%20%C5%9Arodowiska.pdf (accessed on 2 April 2025).
- LIFE-IP EkoMałopolska. 2021. Available online: https://klimat.ekomalopolska.pl/life-ip-ekomalopolska/ (accessed on 17 April 2025).
- Regionalny Plan Działań Dla Klimatu I Energii Dla Województwa Małopolskiego; Sprawozdanie Za Rok 2022; Urząd Marszałkowski Województwa Małopolskiego: Kraków, Poland, 2022.
- Piotrowicz, K.; Bokwa, A.; Krzaklewski, P. Analiza Zmian Klimatu—Diagnoza Stanu Aktualnego Na Potrzeby Aktualizacji Regionalnego Planu Działań Dla Klimatu I Energii Dla Województwa Małopolskiego; LIFE-IP EKOMALOPOLSKA Wdrażanie Regionalnego Planu Działań dla Klimatu i Energii dla Województwa Małopolskiego; Kraków, Poland, 2022; Available online: https://klimat.ekomalopolska.pl/wp-content/uploads/2023/01/Opracowanie-ANALIZA-ZMIAN-KLIMATU-DIAGNOZA-STANU-AKTUALNEGO22.pdf (accessed on 17 April 2025).
- Raport The EIB Climate Survey. Citizens Call for Green Recovery; European Investment Bank: Luxembourg, 2022; Available online: https://www.eib.org/en/publications/the-eib-climate-survey-2021-2022 (accessed on 12 April 2025).
- Linking Climate and Development Policies. Available online: https://cordis.europa.eu/article/id/418189-coordinated-development-and-climate-policies-for-wider-acceptance-and-higher-impact (accessed on 15 April 2025).
- CD-LINKS. Available online: https://www.cd-links.org/ (accessed on 12 April 2025).
- Union of Concerned Scientists, Our Commitment to Sustainability. 2020. Available online: https://www.ucsusa.org/about/sustainability (accessed on 17 April 2025).
- Climate Change. Available online: https://europa.eu/eurobarometer/surveys/detail/2954 (accessed on 3 May 2025).
- Energy. Available online: https://europa.eu/eurobarometer/surveys/detail/3229 (accessed on 9 April 2025).
- Chen, X.M.; Sharma, A.; Liu, H. The Impact of Climate Change on Environmental Sustainability and Human Mortality. Environments 2023, 10, 165. [Google Scholar] [CrossRef]
- Raport CBOS. Polacy Wobec Zmian Klimatu. Komunikat z Badań Nr Nr 158/2018; CBOS: Warszawa, Poland, 2018. [Google Scholar]
- Raport CBOS. Transformacja Energetyczna—Oczekiwania i Postulaty. Komunikat z Badań Nr 70/2021; CBOS: Warszawa, Poland, 2021. [Google Scholar]
- CEM Instytut Badań Rynku i Opinii Publicznej. Zmiany Klimatu w Percepcji Mieszkańców Małopolski; LIFE EKOMALOPOLSKA-LIFE-TA-2019: Kraków, Poland, 2020. [Google Scholar]
- Raport O Stanie Zagospodarowania Przestrzennego I Sytuacji Społeczno-Gospodarczej Województwa Małopolskiego; Raport Małopolska; Departament Rozwoju Regionu, Urząd Marszałkowski Województwa Małopolskiego: Kraków, Poland, 2024.
- Raszkowski, A.; Bartniczak, B. On the Road to Sustainability: Implementation of the 2030 Agenda Sustainable Development Goals (SDG) in Poland. Sustainability 2019, 11, 366. [Google Scholar] [CrossRef]
- Barska, A.; Jędrzejczak-Gas, J.; Wyrwa, J.; Kononowicz, K. Multidimensional Assessment of the Social Deve-lopment of EU Countries in the Context of Implementing the Concept of Sustainable Development. Sustainability 2020, 12, 7821. [Google Scholar] [CrossRef]
- Widomski, M.K.; Musz-Pomorska, A. Sustainable Development of Rural Areas in Poland since 2004 in the Light of Sustainability Indicators. Land 2023, 12, 508. [Google Scholar] [CrossRef]
- Smedzik-Ambroży, K.; Guth, M.; Stępień, S.; Brelik, A. The Influence of the European Union’s Common Agri-cultural Policy on the Socio-Economic Sustainability of Farms (the Case of Poland). Sustainability 2019, 11, 7173. [Google Scholar] [CrossRef]
- Dziekański, P.; Prus, P. Financial Diversity and the Development Process: Case study of Rural Communes of Eastern Poland in 2009–2018. Sustainability 2020, 12, 6446. [Google Scholar] [CrossRef]
- Bednarska-Olejniczak, D.; Olejniczak, J.; Svobodová, L. How a Participatory Budget Can Support Sustainable Rural Development—Lessons from Poland. Sustainability 2020, 12, 2620. [Google Scholar] [CrossRef]
- Hvenegaard, G.T.; Hallstrom, L.K.; Brand, K.L.P. Implementation Dynamics for Sustainability Planning in Rural Canada. JRCD 2019, 14, 54–76. [Google Scholar]
- Gibbes, C.; Hopkins, A.L.; Díaz, A.I.; Jimenez-Osornio, J. Defining and measuring sustainability: A systematic review of studies in rural Latin America and the Caribbean. Environ. Dev. Sustain. 2020, 22, 447–468. [Google Scholar] [CrossRef]
- Montalván, R.A.V.; Araujo, L.A.; Giehl, A.L.; Feliciano, A.M. Conception of Managing Practices as Key Factor to Achieve Rural Development and Sustainability in Southern Brazil. Eur. J. Sustain. Dev. 2017, 6, 361–369. [Google Scholar] [CrossRef]
- Bartkowiak-Bakun, N. Diversification of Rural Development in Poland: Considerations in the Context of Sustainable Development. Sustainability 2025, 17, 519. [Google Scholar] [CrossRef]
- Ward, N.; Brown, D.L. Placing the Rural in Regional Development. Reg. Stud. 2009, 43, 1237–1244. [Google Scholar] [CrossRef]
- Soszyński, D.; Kociuba, P.; Tucki, A. Sustainable Spatial Development of Multifunctional Villages: A Case Study of Eastern Poland. Sustainability 2024, 16, 7965. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E. Value as an economic category in the light of the multidimensionality of the concept ‘value’. Lang. Relig. Identity 2021, 2, 155–166. [Google Scholar] [CrossRef]
- Widawski, K.; Krzemińska, A.; Zaręba, A.; Dzikowska, A. A Sustainable Approach to Tourism Development in Ru-ral Areas: The Example of Poland. Agriculture 2023, 13, 2028. [Google Scholar] [CrossRef]
- Ferrari, G.; Vargas-Vargas, M. Environmental sustainable management of small rural tourist enterprises. Int. J. Envi-ron. Res. 2010, 4, 407–414. [Google Scholar]
- Stasiak, J.; Chomać-Pierzecka, E. Domestic Tourism Preferences of Polish Tourist Services’ Market in Light of Contemporary Socio-economic Challenges. In Strategic Innovative Marketing and Tourism; ICSIMAT 2023; Springer Proceedings in Business and Economics; Kavoura, A., Borges-Tiago, T., Tiago, F., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Raport Zmiana Klimatu w Percepcji Mieszkańców Małopolski 2023. Raport Powstał Jako Realizacja Działania D2 Projektu LIFE-IP EKOMAŁOPOLSKA Wdrażanie Regionalnego Planu Działań dla Klimatu i Energii dla Województwa Małopolskiego: Kraków, Poland. 2023. Available online: https://klimat.ekomalopolska.pl/wp-content/uploads/2021/07/Zmiany-kliamtu-w-percepcji-mieszkancow-Malopolski.pdf (accessed on 17 April 2025).
Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | TOTAL | ||
---|---|---|---|---|---|---|---|
slow down or curb economic growth | N | 33 | 39 | 38 | 34 | 36 | 180 |
% | 55.0% | 65.0% | 63.3% | 56.7% | 60.0% | 60.0% | |
drive economic growth | N | 27 | 21 | 22 | 26 | 24 | 120 |
% | 45.0% | 35.0% | 36.7% | 43.3% | 40.0% | 40.0% |
Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | TOTAL | ||
---|---|---|---|---|---|---|---|
deteriorate standard of living | N | 25 | 25 | 27 | 28 | 22 | 25 |
% | 41.7% | 41.7% | 45.0% | 46.7% | 36.7% | 41.7% | |
improve standard of living | N | 35 | 35 | 33 | 32 | 38 | 35 |
% | 58.3% | 58.3% | 55.0% | 53.3% | 63.3% | 58.3% |
Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | |||
---|---|---|---|---|---|---|---|
introduce water-consumption limits | N | 23 | 27 | 22 | 19 | 14 | χ2 (4) = 6.89 p = 0.142 |
% | 38.30% | 45.00% | 36.70% | 31.70% | 23.30% | ||
introduce and enforce local emission limits for buildings and vehicles | N | 19 | 28 | 17 | 9 | 17 | χ2 (4) = 14.60 p = 0.006 V = 0.22 |
% | 31.70% | 46.70% | 28.30% | 15.00% | 28.30% | ||
establish local recycling centres | N | 26 | 22 | 27 | 28 | 27 | χ2 (4) = 1.49 p = 0.828 |
% | 43.30% | 36.70% | 45.00% | 46.70% | 45.00% | ||
introduce low-emission public transport | N | 33 | 24 | 23 | 20 | 27 | χ2 (4) = 6.64 p = 0.156 |
% | 55.00% | 40.00% | 38.30% | 33.30% | 45.00% | ||
require/build energy-efficient buildings | N | 13 | 14 | 12 | 12 | 14 | χ2 (4) = 0.39 p = 0.983 |
% | 21.70% | 23.30% | 20.00% | 20.00% | 23.30% | ||
promote public transport or eco-friendly vehicles | N | 25 | 19 | 27 | 11 | 24 | χ2 (4) = 12.02 p = 0.017 V = 0.20 |
% | 41.70% | 31.70% | 45.00% | 18.30% | 40.00% | ||
redesign streets/roads to encourage safe travel by bicycles and on foot | N | 26 | 22 | 30 | 29 | 32 | χ2 (4) = 4.08 p = 0.396 |
% | 43.30% | 36.70% | 50.00% | 48.30% | 53.30% | ||
create local composting centres or household waste-collection programmes | N | 14 | 25 | 13 | 10 | 15 | χ2 (4) = 11.29 p = 0.024 V = 0.20 |
% | 23.30% | 41.70% | 21.70% | 16.70% | 25.00% | ||
promote sustainable development among youth and older people | N | 11 | 11 | 14 | 9 | 21 | χ2 (4) = 8.63 p = 0.071 |
% | 18.30% | 18.30% | 23.30% | 15.00% | 35.00% | ||
other | N | 0 | 2 | 0 | 0 | 2 | Fisher’s exact test p = 0.222 |
% | 0.00% | 3.30% | 0.00% | 0.00% | 3.30% | ||
I don’t believe my community should do anything to be more sustainable | N | 1 | 11 | 3 | 6 | 4 | χ2 (4) = 12.66 p = 0.013 V = 0.21 |
% | 1.70% | 18.30% | 5.00% | 10.00% | 6.70% |
Wadowicki | Miechowski | Krakowski | Limanowski | Tarnowski | |||
---|---|---|---|---|---|---|---|
new ways to eliminate waste in the entire production industry | N | 43 | 33 | 38 | 35 | 44 | χ2 (4) = 6.77 p = 0.149 |
% | 71.70% | 55.00% | 63.30% | 58.30% | 73.30% | ||
new technologies to curb carbon and GHG emissions | N | 41 | 31 | 34 | 33 | 39 | χ2 (4) = 4.92 p = 0.296 |
% | 68.30% | 51.70% | 56.70% | 55.00% | 65.00% | ||
new technologies for scraping and monitoring air pollutants | N | 38 | 29 | 40 | 26 | 29 | χ2 (4) = 10.28 p = 0.036 |
% | 63.30% | 48.30% | 66.70% | 43.30% | 48.30% | ||
solutions to address the impact of extreme-weather events | N | 18 | 23 | 22 | 17 | 20 | χ2 (4) = 1.95 p = 0.745 |
% | 30.00% | 38.30% | 36.70% | 28.30% | 33.30% | ||
fuel-efficient vehicles available and affordable to all | N | 36 | 25 | 40 | 24 | 30 | χ2 (4) = 12.81 p = 0.012 V = 0.21 |
% | 60.00% | 41.70% | 66.70% | 40.00% | 50.00% | ||
harvesting clean drinking water from rainwater and fog | N | 34 | 21 | 27 | 19 | 21 | χ2 (4) = 10.44 p = 0.034 V = 0.19 |
% | 56.70% | 35.00% | 45.00% | 31.70% | 35.00% | ||
support for popularisation of public electric transport | N | 33 | 26 | 28 | 17 | 19 | χ2 (4) = 11.93 p = 0.018 V = 0.20 |
% | 55.00% | 43.30% | 46.70% | 28.30% | 31.70% | ||
prediction of the best time and place for planting and seeding to prevent food waste | N | 14 | 21 | 20 | 11 | 19 | χ2 (4) = 6.07 p = 0.194 |
% | 23.30% | 35.00% | 33.30% | 18.30% | 31.70% | ||
support for research on life in space and other planets to address environmental protection challenges (such as overpopulation and climate change) | N | 7 | 4 | 4 | 9 | 7 | χ2 (4) = 3.38 p = 0.496 |
% | 11.70% | 6.70% | 6.70% | 15.00% | 11.70% | ||
other | N | 1 | 1 | 0 | 1 | 2 | Fisher’s exact test p = 0.961 |
% | 1.70% | 1.70% | 0.00% | 1.70% | 3.30% | ||
I don’t know | N | 1 | 14 | 3 | 10 | 3 | χ2 (4) = 22.09 p < 0.001 V = 0.27 |
% | 1.70% | 23.30% | 5.00% | 16.70% | 5.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, M.; Chomać-Pierzecka, E. Sustainable Development Through the Lens of Climate Change: A Diagnosis of Attitudes in Southeastern Rural Poland. Sustainability 2025, 17, 5568. https://doi.org/10.3390/su17125568
Kowalska M, Chomać-Pierzecka E. Sustainable Development Through the Lens of Climate Change: A Diagnosis of Attitudes in Southeastern Rural Poland. Sustainability. 2025; 17(12):5568. https://doi.org/10.3390/su17125568
Chicago/Turabian StyleKowalska, Magdalena, and Ewa Chomać-Pierzecka. 2025. "Sustainable Development Through the Lens of Climate Change: A Diagnosis of Attitudes in Southeastern Rural Poland" Sustainability 17, no. 12: 5568. https://doi.org/10.3390/su17125568
APA StyleKowalska, M., & Chomać-Pierzecka, E. (2025). Sustainable Development Through the Lens of Climate Change: A Diagnosis of Attitudes in Southeastern Rural Poland. Sustainability, 17(12), 5568. https://doi.org/10.3390/su17125568