Traditional Rice Varieties, Consumer Segmentation, and Preferences: A Case Study from Kerala, India
Abstract
:1. Introduction
- To assess the physicochemical and nutritional properties of selected commercially grown TRVs and MRVs.
- To evaluate the sensory (organoleptic) characteristics of these varieties as perceived by consumers.
- To determine whether sensory attributes influence overall consumer preferences.
- To examine correlations between consumer preferences and these varieties’ physicochemical and nutritional profiles.
- To identify and analyze consumer segments and their preferences for TRVs in purchasing and consumption behavior.
2. Materials and Methods
2.1. Physicochemical and Nutritional Attributes
2.1.1. Moisture
2.1.2. Total Carbohydrate
2.1.3. Protein
2.1.4. Total Fat
2.1.5. Fiber
2.1.6. Calcium
2.1.7. Iron
2.1.8. Phosphorous
2.1.9. Sodium
2.1.10. Potassium
2.1.11. Anthocyanin
2.2. Total Antioxidant Activity
2.3. Kendall’s W Test
2.4. Two-Sample Unpaired t-Test
2.5. Multiple Linear Regression
2.6. Cluster Analysis
2.7. Canonical Discriminant Analysis
2.8. Canonical Discriminant Function Determination–Wilks’ Lambda Test
3. Results
3.1. Physicochemical and Nutritional Attributes of Selected Traditional and Modern Rice Varieties
3.2. Organoleptic Evaluation of the Selected Rice Varieties
3.3. Do Sensory Attributes Influence Consumer Preference?
3.4. Relationship Between Physicochemical and Nutritional Attributes and Consumer Preference for Selected Rice Varieties
3.5. Clustering of Consumers Based on Their Preferences
Attributes | Cluster | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Age | 2 | 1 | 2 | 2 |
Gender | 2 | 1 | 1 | 2 |
Marital status | 1 | 2 | 1 | 1 |
Education | 4 | 2 | 3 | 4 |
Family_size | 3 | 2 | 4 | 2 |
Location | 5 | 3 | 1 | 2 |
Occupation | 2 | 1 | 8 | 9 |
Knowledge | 1 | 2 | 2 | 3 |
Information_sources | 2 | 3 | 1 | 3 |
Buying_decision | 2 | 1 | 1 | 2 |
Source_of_purchase | 3 | 2 | 5 | 5 |
Reason_not_buying_TR | 2 | 4 | 1 | 4 |
Willingness_to_pay more_for_TR | 5 | 1 | 4 | 2 |
Type_of_rice | 2 | 3 | 3 | 1 |
- Cluster 1: Young Cosmopolites
- Cluster 2: Young Locals
- Cluster 3: Senior Urbanites
- Cluster 4: Senior Semi-Urbanites
3.6. Confirmation of Cluster Analysis Using Discriminant Analysis
3.7. Cluster Centroids Based on Canonical Discriminant Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dwiningsih, Y. Utilizing the Genetic Potentials of Traditional Rice Varieties and Conserving Rice Biodiversity with System of Rice Intensification Management. Agronomy 2023, 13, 3015. [Google Scholar] [CrossRef]
- Muralikrishnan, L.; Padaria, R.N.; Dass, A.; Choudhary, A.K.; Kakade, B.; Shokralla, S.; El-Abedin, T.K.Z.; Almutairi, K.F.; Elansary, H.O. Elucidating Traditional Rice Varieties for Consilient Biotic and Abiotic Stress Management under Changing Climate with Landscape-Level Rice Biodiversity. Land 2021, 10, 1058. [Google Scholar] [CrossRef]
- Kowsalya, P.; Sharanyakanth, P.S.; Mahendran, R. Traditional rice varieties: A comprehensive review on its nutritional, medicinal, therapeutic and health benefit potential. J. Food Compost. Anal. 2022, 114, 104742. [Google Scholar] [CrossRef]
- George, R. Resurrecting Climate-Resilient Rice in India. 2022. Available online: https://www.resilience.org/stories/2022-12-20/resurrecting-climate-resilient-rice-in-india/ (accessed on 8 November 2024).
- Murugan, V.; Nair, J. Cauvery Delta Farmers are Gaining Resilience by Cultivating Indigenous Rice Varieties. 2024. Available online: https://www.downtoearth.org.in/agriculture/cauvery-delta-farmers-are-gaining-resilience-by-cultivating-indigenous-rice-varieties (accessed on 8 November 2024).
- Pillai, C.; Faseela, K.; Thampi, H. Nutritional composition of selected traditional rice varieties of Kerala. J. Trop. Agric. 2020, 58, 41. Available online: https://jtropag.kau.in/index.php/ojs2/article/view/834 (accessed on 7 May 2025).
- Longvah, T.; Prasad, V.S.S. Nutritional variability and milling losses of rice landraces from Arunachal Pradesh, Northeast India. Food Chem. 2020, 318, 126385. [Google Scholar] [CrossRef]
- Gopi, G.; Manjula, M. Speciality rice biodiversity in Kerala: Need for incentivising conservation in the era of changing climate. Curr. Sci. 2018, 114, 997–1006. Available online: http://www.jstor.org/stable/26495193 (accessed on 3 October 2024). [CrossRef]
- AOAC [Association of Official Chemists]. Official and Tentative Methods of Analysis, 13th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1980; p. 1218. Available online: https://dokumen.pub/qdownload/official-methods-of-analysis-of-the-association-of-official-analytical-chemists-13nbsped-0935584145.html (accessed on 23 September 2024).
- Sadasivam, S.; Manickam, A. Biochemical Methods, 2nd ed.; New Age International private limited: New Delhi, India; Tamil Nadu Agricultural University: Coimbatore, India, 1992; p. 254. [Google Scholar]
- Chopra, S.L.; Kanwar, J.S. Analytical Agricultural Chemistry; Kalyani Publishers: New Delhi, India, 1976; pp. 337–346. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of soil analysis. Part 2. Chemical and microbiological properties. In Agronomy; Soil Science Society of America: Madison, WI, USA, 1982; p. 1159. [Google Scholar]
- Raghuramulu, N.; Madhavan, N.K.; Kalyanasundaram, S. A Manual of Laboratory Techniques, National Institute of Nutrition; Indian Council of Medical Research: Hyderabad, India, 2003; pp. 56–58. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India: New Delhi, India, 1973; p. 299. [Google Scholar]
- Neff, M.M.; Chory, J. Genetic Interactions between Phytochrome A, Phytochrome B, and Cryptochrome 1 during Arabidopsis Development. Plant Physiol. 1998, 118, 27–35. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Kendall, M.G.; Smith, B.B. The problem of m rankings. Ann. Math. Stat. 1939, 10, 275–287. [Google Scholar] [CrossRef]
- Gearhart, A.; Booth, D.T.; Sedivec, K.; Schauer, C. Use of Kendall’s coefficient of concordance to assess agreement among observers of very high-resolution imagery. Geocarto Int. 2013, 28, 517–526. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research, 1st ed.; Chapman and Hall: New York, NY, USA, 1990; 624p. [Google Scholar] [CrossRef]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research; John Wiley & Sons: Oxford, UK, 2008; p. 832. [Google Scholar]
- Bryman, A.; Cramer, D. Quantitative data analysis for social scientists. Estud Geogr. 1992, 53, 347. [Google Scholar]
- Banoula, M. All About K-Means Clustering Algorithm. 2024. Available online: https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm (accessed on 11 September 2024).
- Ikotun, A.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Klecka, W.R.; Iversen, G.R.; Klecka, W.R. Discriminant Analysis; Sage: New York, NY, USA, 1980; Volume 19. [Google Scholar]
- Jieling, W.; Saito, M.; Endo, N. Cluster Analysis and Discriminant Analysis for Determining Post-Earthquake Road Recovery Patterns. Sensors 2022, 22, 2213. [Google Scholar] [CrossRef]
- Singh, N.; Singh, D. The nutritional composition of local rice varieties in Guyana. Greener J. Agric. Sci. 2019, 9, 138–145. [Google Scholar] [CrossRef]
- Zenna, N.; Senthilkumar, K.; Sie, M. Rice Production in Africa. In Rice Production Worldwide; Chauhan, B., Jabran, K., Mahajan, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 117–135. [Google Scholar] [CrossRef]
- Rutsaert, P.; Demont, M.; Verbeke, W. Consumer preferences for rice in Africa. In Realising Africa’s Rice Promise, 1st ed.; Wopereis, M.C.S., Johnson, D.E., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; CABI: Wallingford, UK, 2013; pp. 294–302. [Google Scholar] [CrossRef]
- Demont, M.; Rutsaert, P.; Ndour, M.; Verbeke, W. Reversing urban bias in African rice markets: Evidence from Senegal. World Dev. 2013, 45, 63–74. [Google Scholar] [CrossRef]
- Suwannaporn, P.; Linnemann, A.; Chaveesuk, R. Consumer preference mapping for rice product concepts. Br. Food J. 2008, 110, 595–606. [Google Scholar] [CrossRef]
- Krishnankutty, J.; Blakeney, M.; Raju, R.K.; Siddique, K.H. Sustainability of traditional rice cultivation in Kerala, India-a socio-economic analysis. Sustainability 2021, 13, 980. [Google Scholar] [CrossRef]
- Krishnankutty, J.; Raju, R.K.; Blakeney, M.; Siddique, K.H. Is traditional rice reviving? An exploratory study in Kerala, India. Int. J. Agric. Res. Gov. Ecol. 2021, 17, 15–37. [Google Scholar] [CrossRef]
- Ghosh, S.; Chattopadhyay, K.S.; Bengal, W. A Study on Indigenous Rice Varieties in Sundarban Delta and Their Role in Ensuring Local Food Security in the Face of Climate Change Threats; Agro-Economic Research Centre: West Bengal, India, 2017; pp. 1–13. [Google Scholar]
- Anang, B.T.; Adjetey, S.N.A.; Abiriwe, S.A. Consumer preferences for rice quality characteristics and the effects on price in the Tamale Metropolis, Northern Region, Ghana. Int. J. Agric. Sci. 2011, 1, 67–74. Available online: https://www.researchgate.net/publication/215591227_Consumer_Preferences_for_Rice_Quality_Characteristics_and_the_Effects_on_Price_in_the_Tamale_Metropolis_Northern_Region_Ghana (accessed on 9 November 2024).
- Mgendi, G.S. Consumers Preferences for Rice Attributes in Dar es Salaam City of Tanzania. Ph.D. Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2014; 76p. Available online: https://www.suaire.sua.ac.tz/server/api/core/bitstreams/ad8de0f6-47be-44f6-816f-5db34a6d5f2a/content (accessed on 9 November 2024).
- Abukari, I.; Donkoh, S.A.; Ehiakpor, D.S. Perceived quality characteristics influencing households’ preference for local and imported rice and their effect on price in the northern region, Ghana. Ghana J. Dev. Stud. 2019, 16, 135–154. [Google Scholar] [CrossRef]
- Mayorga, C.G.; Cubero-Castillo, E.; Azofeifa, A.; Montero, M.L.; Araya-Morice, A. Physicochemical characterization and consumer preference of rice (Oryza sativa) varieties grown in Costa Rica. Arch. Latinoam. Nutr. 2022, 72, 185–195. [Google Scholar] [CrossRef]
- Custodio, M.C.; Cuevas, R.P.; Ynion, J.; Laborte, A.G.; Velasco, M.L.; Demont, M. Rice quality: How is it defined by consumers, industry, food scientists, and geneticists? Trends Food Sci. Technol. 2019, 92, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Bairagi, S.; Mohanty, S.; Custodio, M.C. Consumers’ preferences for rice attributes in Cambodia: A choice modeling approach. J. Agribus. Dev. Emerg. Econ. 2019, 9, 94–108. [Google Scholar] [CrossRef]
- Bulambo, K.; Azadi, H.; Polepole, S.; Nabintu, M.; Bembeleza, E.; Dontsop, P.; Masimane, J.; Haurez, B.; Fofana, M.; Lassois, L. Consumer Preference for Rice Grain Quality in the South Kivu and Tanganyika Provinces, Eastern DR Congo. Foods 2023, 12, 3995. [Google Scholar] [CrossRef]
SI No. | Traditional Varieties | Modern Varieties |
---|---|---|
1 | Valichoori | Shreyas |
2 | Ayirammeni | Athira |
3 | Thondi | Uma |
4 | Chembavu | Jaya |
5 | Kaipad | Ponmani |
Kendall’s W Mean Ranks | ||||
---|---|---|---|---|
Grain Size and Length | Color | Odor | Taste | Overall Acceptance |
Ayirammeni (7.02) | Valichoori (6.87) | Valichoori (6.71) | Valichoori (7.05) | Valichoori (6.90) |
Valichoori (6.90) | Aayirammeni (6.82) | Aayirammeni (6.27) | Thondi (6.78) | Aayirammeni (6.83) |
Thondi (6.22) | Chembavu (5.95) | Thondi (5.78) | Aayirammeni (6.64) | Thondi (6.17) |
Sreyas (6.15) | Thondi (5.87) | Uma (5.74) | Uma (6.00) | Chembavu (6.04) |
Athira (5.68) | Athira (5.38) | Chembavu (5.57) | Sreyas (5.69) | Sreyas (5.93) |
Uma (5.54) | Sreyas (5.24) | Kaipad (5.50) | Chembavu (5.59) | Uma (5.52) |
Chembavu (5.51) | Uma (5.11) | Sreyas (5.39) | Athira (5.26) | Athira (5.05) |
Kaipad (4.37) | Kaipad (4.94) | Ponmani (4.99) | Ponmani (4.36) | Kaipad (4.72) |
Ponmani (4.15) | Jaya (4.51) | Athira (4.76) | Kaipad (4.10) | Ponmani (4.37) |
Jaya (3.46) | Ponmani (4.32) | Jaya (4.30) | Jaya (3.52) | Jaya (3.47) |
Attribute | Mean | t-Value | p-Value | |
---|---|---|---|---|
Traditional Varieties | Modern Varieties | |||
Carbohydrate | 76.04 | 75.81 | 0.115 | 0.911 NS |
Fiber | 2.718 | 2.640 | 0.142 | 0.891 NS |
Fat | 1.732 | 1.752 | −0.05 | 0.961 NS |
Protein | 7.014 | 7.420 | −1.479 | 0.178 ** |
Sodium | 5.358 | 4.166 | 1.026 | 0.335 NS |
Potassium | 96.040 | 100.980 | −0.388 | 0.708 NS |
Phosphorus | 144.72 | 171.520 | −0.929 | 0.380 NS |
Calcium | 19.686 | 21.252 | −0.554 | 0.595 NS |
Iron | 1.830 | 1.502 | 0.581 | 0.577 NS |
Anthocyanin | 23.176 | 24.358 | −0.155 | 0.881 NS |
Antioxidants | 1.106 | 0.740 | 4.083 | 0.004 * |
SI No. | Coefficients | Estimate | Standard Error | t-Value | p-Value |
---|---|---|---|---|---|
Valichoori | |||||
1 | Grain shape and size | 0.481 | 0.222 | 2.162 | 0.039 * |
2 | Color | 0.012 | 0.142 | 0.088 | 0.931 |
3 | Aroma | 0.277 | 0.105 | 2.638 | 0.013 * |
4 | Taste | 0.006 | 0.121 | 0.046 | 0.963 |
Ayirammeni | |||||
1 | Grain shape and size | 0.277 | 0.115 | 2.405 | 0.022 * |
2 | Color | 0.326 | 0.109 | 2.986 | 0.005 ** |
3 | Aroma | −0.146 | 0.091 | −1.609 | 0.117 *** |
4 | Taste | 0.539 | 0.104 | 5.160 | 0.000 ** |
Thondi | |||||
1 | Grain shape and size | 0.351 | 0.141 | 2.486 | 0.019 * |
2 | Color | −0.052 | 0.174 | −0.296 | 0.769 |
3 | Aroma | 0.320 | 0.102 | 3.136 | 0.004 ** |
4 | Taste | 0.052 | 0.102 | 0.506 | 0.617 |
Chembavu | |||||
1 | Grain shape and size | 0.172 | 0.127 | 1.350 | 0.187 *** |
2 | Color | 0.184 | 0.139 | 1.326 | 0.195 *** |
3 | Aroma | 0.061 | 0.110 | 0.553 | 0.584 |
4 | Taste | 0.438 | 0.113 | 3.891 | 0.001 ** |
Kaipad | |||||
1 | Grain shape and size | 0.883 | 0.227 | 3.886 | 0.001 ** |
2 | Color | −0.277 | 0.210 | −1.315 | 0.199 *** |
3 | Aroma | −0.083 | 0.162 | −0.513 | 0.612 |
4 | Taste | 0.514 | 0.142 | 3.630 | 0.001 ** |
Sreyas | |||||
1 | Grain shape and size | −0.084 | 0.261 | −0.322 | 0.750 |
2 | Color | 0.423 | 0.269 | 1.577 | 0.126 *** |
3 | Aroma | −0.076 | 0.152 | −0.503 | 0.619 |
4 | Taste | 0.520 | 0.162 | 3.206 | 0.003 ** |
Athira | |||||
1 | Grain shape and size | −0.109 | 0.214 | −0.508 | 0.615 |
2 | Color | 0.029 | 0.205 | 0.142 | 0.888 |
3 | Aroma | 0.346 | 0.142 | 2.439 | 0.021 * |
4 | Taste | 0.435 | 0.197 | 2.206 | 0.035 * |
Uma | |||||
1 | Grain shape and size | 0.148 | 0.149 | 0.997 | 0.327 |
2 | Color | 0.186 | 0.126 | 1.474 | 0.151 *** |
3 | Aroma | 0.088 | 0.142 | 0.619 | 0.541 |
4 | Taste | 0.468 | 0.160 | 2.931 | 0.006 ** |
Jaya | |||||
1 | Grain shape and size | 0.211 | 0.146 | 1.447 | 0.158 *** |
2 | Color | 0.424 | 0.150 | 2.833 | 0.008 ** |
3 | Aroma | 0.099 | 0.112 | 0.889 | 0.381 |
4 | Taste | 0.048 | 0.041 | 1.161 | 0.255 |
Ponmani | |||||
1 | Grain shape and size | 0.330 | 0.139 | 2.381 | 0.024 * |
2 | Color | 0.159 | 0.182 | 0.874 | 0.389 |
3 | Aroma | 0.228 | 0.195 | 1.168 | 0.252 |
4 | Taste | 0.353 | 0.155 | 2.273 | 0.030 * |
SI No. | Variables | Estimate | Standard Error | t-Value | p-Value |
---|---|---|---|---|---|
1 | Carbohydrate | −0.168 | 0.008 | −22.150 | 0.029 ** |
2 | Fiber | 0.450 | 0.028 | 16.307 | 0.039 ** |
3 | Fat | −0.472 | 0.040 | −11.726 | 0.054 * |
4 | Protein | 0.382 | 0.038 | 9.965 | 0.064 * |
5 | Sodium | 0.108 | 0.014 | 7.688 | 0.082 * |
6 | Potassium | 0.034 | 0.003 | 11.027 | 0.058 * |
7 | Phosphorus | −0.030 | 0.002 | −14.499 | 0.044 ** |
8 | Calcium | −0.005 | 0.008 | −0.662 | 0.628 |
Attributes | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | |
---|---|---|---|---|---|
Age | <30 years | 41.18 | 44.12 | 8.82 | 5.88 |
30–50 years | 30 | 35.71 | 17.14 | 17.14 | |
51–70 years | 24.62 | 6.15 | 41.54 | 27.69 | |
>70 years | 0 | 33.33 | 33.33 | 33.33 | |
Gender | Men | 25.33 | 34.67 | 22.67 | 17.33 |
Women | 32.99 | 19.59 | 26.80 | 20.62 | |
Marital status | Married | 26.52 | 22.73 | 28.79 | 21.97 |
Unmarried | 40 | 37.5 | 12.5 | 10 | |
Education | Secondary school | 0 | 20 | 20 | 60 |
High school | 0 | 16.67 | 33.33 | 50 | |
Graduate | 35.56 | 30 | 22.22 | 12.22 | |
Above graduation | 29.23 | 23.08 | 27.69 | 20 | |
Family size | 3–4 members | 51.22 | 7.32 | 23.17 | 18.29 |
5–6 members | 15.25 | 32.20 | 32.20 | 20.34 | |
>6 members | 0 | 64.52 | 16.13 | 19.35 | |
Location | Rural | 34.78 | 21.74 | 26.09 | 17.39 |
Small town | 26.53 | 42.86 | 16.33 | 14.29 | |
Semi-urban | 22.22 | 24.44 | 28.89 | 24.44 | |
Urban | 36.36 | 4.55 | 36.36 | 22.73 | |
Non-resident Keralite | 37.50 | 25 | 25 | 12.50 | |
Non-resident Indian | 50 | 16.33 | 12.17 | 21.50 | |
Occupation | Student | 70.59 | 29.41 | 0 | 0 |
Government sector | 73.53 | 26.47 | 0 | 0 | |
Private sector | 0 | 100 | 0 | 0 | |
Abroad | 31.82 | 68.18 | 0 | 0 | |
Teacher/ scientist | 0 | 0 | 61.90 | 38.10 | |
Farmer | 0 | 0 | 66.67 | 33.33 | |
Business | 0 | 0 | 47.06 | 52.94 | |
Unemployed | 0 | 0 | 53.33 | 46.67 | |
Others | 0 | 0 | 100 | 0 | |
Information about traditional rice varieties | Poor | 54.55 | 13.64 | 13.64 | 18.18 |
Moderate | 20.75 | 45.28 | 18.87 | 15.09 | |
Good | 28.87 | 18.56 | 30.93 | 21.65 | |
Information sources accessed on rice types | Low | 43.55 | 9.68 | 32.26 | 14.52 |
Medium | 27.12 | 30.51 | 23.73 | 18.64 | |
High | 15.69 | 41.18 | 17.65 | 25.49 | |
Criteria for rice variety preference | Low | 33.77 | 27.27 | 23.38 | 15.58 |
Medium | 23.61 | 23.61 | 29.17 | 23.61 | |
High | 34.78 | 30.43 | 17.39 | 17.39 | |
Main purchase source | Public distribution system | 30.33 | 33.33 | 19.67 | 16.67 |
Local retail shop | 28.79 | 34.85 | 22.73 | 13.64 | |
Supermarket | 31.46 | 22.47 | 23.60 | 22.47 | |
Online | 23.25 | 26.53 | 21.37 | 28.85 | |
Farmer outlet/farmer direct | 0 | 22.22 | 33.33 | 44.44 | |
Reason for not buying traditional rice | Higher price | 15.22 | 39.13 | 45.65 | 0 |
Unavailable | 38.10 | 19.05 | 42.86 | 0 | |
Lack of knowledge | 30.43 | 39.13 | 17.39 | 13.04 | |
Not applicable | 34.43 | 16.39 | 0 | 49.18 | |
Willingness to pay a higher price for traditional rice | Not willing | 10 | 52.5 | 30 | 7.5 |
Up to 5% extra | 27.78 | 30.56 | 27.78 | 13.89 | |
Up to 10% extra | 30 | 15 | 20 | 35 | |
Up to 20% extra | 42.55 | 14.89 | 21.28 | 21.28 | |
Up to 50% extra | 50 | 0 | 33.33 | 16.67 | |
>50% extra | 66.67 | 0 | 33.33 | 0 | |
Type of rice bought | Traditional red rice | 32.26 | 16.13 | 0 | 51.61 |
Traditional white rice | 54.55 | 18.18 | 22.73 | 4.55 | |
Modern red rice | 17.14 | 37.14 | 45.71 | 0 | |
Modern white rice | 24.53 | 33.96 | 41.51 | 0 |
Function | Eigen Value | Percentage of Variance | Canonical Coefficient | Wilks’ Lambda | Chi-Square | Sig |
---|---|---|---|---|---|---|
1 | 5.78 | 74.4 | 0.92 | 0.038 | 528.57 | 0.000 |
2 | 1.36 | 17.5 | 0.76 | 0.26 | 218.50 | 0.000 |
Cluster | Predicted Group Membership | Total | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
Original | Count | 1 | 49 | 2 | 0 | 0 | 51 |
2 | 1 | 44 | 0 | 0 | 45 | ||
3 | 0 | 0 | 43 | 0 | 43 | ||
4 | 0 | 0 | 0 | 33 | 33 | ||
Percent | 1 | 96.1 | 3.9 | 0.0 | 0.0 | 100.0 | |
2 | 2.2 | 97.8 | 0.0 | 0.0 | 100.0 | ||
3 | 0.0 | 0.0 | 100.0 | 0.0 | 100.0 | ||
4 | 0.0 | 0.0 | 0.0 | 100.0 | 100.0 | ||
98.3% of original grouped cases were correctly classified. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnankutty, J.; Sasidharan, L.P.; Raju, R.K.; Kaladharan, N.; Purath, A.U.; Sugathan, V.; Blakeney, M.; Siddique, K.H.M. Traditional Rice Varieties, Consumer Segmentation, and Preferences: A Case Study from Kerala, India. Sustainability 2025, 17, 5467. https://doi.org/10.3390/su17125467
Krishnankutty J, Sasidharan LP, Raju RK, Kaladharan N, Purath AU, Sugathan V, Blakeney M, Siddique KHM. Traditional Rice Varieties, Consumer Segmentation, and Preferences: A Case Study from Kerala, India. Sustainability. 2025; 17(12):5467. https://doi.org/10.3390/su17125467
Chicago/Turabian StyleKrishnankutty, Jayasree, Lakshmi Pottekkat Sasidharan, Rajesh K. Raju, Nadhika Kaladharan, Atheena Ul Purath, Vivek Sugathan, Michael Blakeney, and Kadambot H. M. Siddique. 2025. "Traditional Rice Varieties, Consumer Segmentation, and Preferences: A Case Study from Kerala, India" Sustainability 17, no. 12: 5467. https://doi.org/10.3390/su17125467
APA StyleKrishnankutty, J., Sasidharan, L. P., Raju, R. K., Kaladharan, N., Purath, A. U., Sugathan, V., Blakeney, M., & Siddique, K. H. M. (2025). Traditional Rice Varieties, Consumer Segmentation, and Preferences: A Case Study from Kerala, India. Sustainability, 17(12), 5467. https://doi.org/10.3390/su17125467