Fewer Clicks, Lower Emissions: Eye-Tracking Analysis of Eco-Friendly Navigation in Tourism Websites
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Objective
2. Methods
2.1. Experiment Design
- Questionnaire Design and Distribution:
- Pre-Experiment:
- Generalized Test:
2.2. Experiment Material
2.3. Experiment Equipment
2.4. Participants
2.5. Procedure
2.5.1. Preliminary Experiment
2.5.2. Formal Experiment
3. Results
3.1. Survey
3.2. Eye Movement Heatmap Analysis (Browsing Areas)
3.3. Fixation Count and Dwell Time
3.4. AOI Fixation Count and Dwell Time
3.4.1. Partition of Homepage
3.4.2. Effective and Interference Areas
3.4.3. Analysis of Interference Zones
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Istrate, R.; Tulus, V.; Grass, R.N.; Vanbever, L.; Stark, W.J.; Guillén-Gosálbez, G. The Environmental Sustainability of Digital Content Consumption. Nat. Commun. 2024, 15, 3724. [Google Scholar] [CrossRef]
- Ozcan, B.; Apergis, N. The Impact of Internet Use on Air Pollution: Evidence from Emerging Countries. Environ. Sci. Pollut. Res. 2018, 25, 4174–4189. [Google Scholar] [CrossRef] [PubMed]
- Lokmic-Tomkins, Z.; Davies, S.; Block, L.J.; Cochrane, L.; Dorin, A.; von Gerich, H.; Lozada-Perezmitre, E.; Reid, L.; Peltonen, L.-M. Assessing the Carbon Footprint of Digital Health Interventions: A Scoping Review. J. Am. Med. Inform. Assoc. 2022, 29, 2128–2139. [Google Scholar] [CrossRef]
- Paul, S.G.; Saha, A.; Arefin, M.S.; Bhuiyan, T.; Biswas, A.A.; Reza, A.W.; Alotaibi, N.M.; Alyami, S.A.; Moni, M.A. A Comprehensive Review of Green Computing: Past, Present, and Future Research. IEEE Access 2023, 11, 87445–87494. [Google Scholar] [CrossRef]
- Osipov, A.V.; Pleshakova, E.S.; Gataullin, S.T. Production Processes Optimization through Machine Learning Methods Based on Geophysical Monitoring Data. Comput. Opt. 2024, 48, 633–642. [Google Scholar] [CrossRef]
- Adelaar, T.; Chang, S.; Lancendorfer, K.M.; Lee, B.; Morimoto, M. Effects of Media Formats on Emotions and Impulse Buying Intent. J. Inf. Technol. 2003, 18, 247–266. [Google Scholar] [CrossRef]
- Townsend, C.; Kahn, B.E. The “Visual Preference Heuristic”: The Influence of Visual versus Verbal Depiction on Assortment Processing, Perceived Variety, and Choice Overload. J. Consum. Res. 2014, 40, 993–1015. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, M. The Effects of Home Page Design on Consumer Responses: Moderating Role of Centrality of Visual Product Aesthetics. Comput. Hum. Behav. 2014, 38, 240–247. [Google Scholar] [CrossRef]
- Amsl, S.; Watson, I.; Teller, C.; Wood, S. Presenting Products on Websites—The Importance of Information Quality Criteria for Online Shoppers. Int. J. Retail Distrib. Manag. 2023, 51, 1213–1238. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Peng, C.-H.; Sia, C.-L.; Ke, W. Effects of Visual-Preview and Information-Sidedness Features on Website Persuasiveness. Decis. Support Syst. 2025, 188, 114361. [Google Scholar] [CrossRef]
- Capucho, J.; Leitão, J.; Alves, H. Mapping and Linking Well-Being, Tourism Economics, Sustainable Tourism and Sustainable Development: An Integrative Systematisation of the Literature and Bibliometric Analysis. Discov. Sustain. 2025, 6, 291. [Google Scholar] [CrossRef]
- Zeqiri, A.; Ben Youssef, A.; Maherzi Zahar, T. The Role of Digital Tourism Platforms in Advancing Sustainable Development Goals in the Industry 4.0 Era. Sustainability 2025, 17, 3482. [Google Scholar] [CrossRef]
- Bortko, K.; Jankowski, J.; Bartków, P.; Pazura, P.; Śmiałkowska, B. Attracting User Attention to Visual Elements within Website with the Use of Fitts’s Law and Flickering Effect. Procedia Comput. Sci. 2020, 176, 2756–2763. [Google Scholar] [CrossRef]
- Bakaev, M.; Heil, S.; Jagow, J.; Speicher, M.; Bauer, K.; Gaedke, M. A Taxonomy of User Behavior Model (UBM) Tools for UI Design and User Research. In Web Engineering, ICWE 2023; Garrigos, I., Rodriguez, J.M.M., Wimmer, M., Eds.; Springer International Publishing Ag: Cham, Switzerland, 2023; Volume 13893, pp. 236–244. [Google Scholar]
- Qing, H.; Ibrahim, R.; Nies, H.W. Analysis of Web Design Visual Element Attention Based on User Educational Background. Sci. Rep. 2024, 14, 4657. [Google Scholar] [CrossRef]
- Priyadarshini, A.P. The Impact of User Interface Design on User Engagement. Int. J. Eng. Res. 2024, 13, IJERTV13IS030232. [Google Scholar]
- Sonmez, F.; Aydin, U.; Perdahci, Z.N. Investigation of University Websites from Technology Acceptance Model and Information Architecture Perspective: A Case Study. J. Inf. Sci. 2024, 50, 466–480. [Google Scholar] [CrossRef]
- King, A.J.; Lazard, A.J.; White, S.R. The Influence of Visual Complexity on Initial User Impressions: Testing the Persuasive Model of Web Design. Behav. Inf. Technol. 2020, 39, 497–510. [Google Scholar] [CrossRef]
- Ramya, P.; Jai Sai Chaitanya, K.; Fardeen, S.K.; Prabhakar, G. Web Design as an Important Factor in the Success of a Website. In Smart Technologies in Data Science and Communication; Ogudo, K.A., Saha, S.K., Bhattacharyya, D., Eds.; Springer Nature: Singapore, 2023; pp. 51–60. [Google Scholar]
- Lee, J.; Morrison, A.M. A Comparative Study of Web Site Performance. J. Hosp. Tour. Technol. 2010, 1, 50–67. [Google Scholar] [CrossRef]
- Munoz-Leiva, F.; Hernandez-Mendez, J.; Gomez-Carmona, D. Measuring Advertising Effectiveness in Travel 2.0 Websites through Eye-Tracking Technology. Physiol. Behav. 2019, 200, 83–95. [Google Scholar] [CrossRef]
- Ruel Novabos, C.; Matias, A.; Mena, M. How Good Is This Destination Website: A User-Centered Evaluation of Provincial Tourism Websites. In Proceedings of the 6th International Conference on Applied Human Factors and Ergonomics (Ahfe 2015) and the Affiliated Conferences, AHFE 2015, Caesars Palace, LV, USA, 26–30 July 2015; Ahram, T., Karwowski, W., Schmorrow, D., Eds.; Elsevier Science Bv: Amsterdam, The Netherlands, 2015; Volume 3, pp. 3478–3485. [Google Scholar]
- Lei, X.; Yang, D. Analysis on the Impact of Internet Use on Residents’ Tourism Consumption Behavior and the Mechanism of Action. PLoS ONE 2024, 19, e0311998. [Google Scholar] [CrossRef]
- Majeed, S.; Zhou, Z.; Lu, C.; Ramkissoon, H. Online Tourism Information and Tourist Behavior: A Structural Equation Modeling Analysis Based on a Self-Administered Survey. Front. Psychol. 2020, 11, 599. [Google Scholar] [CrossRef]
- Uthaisar, S.; Eves, A.; Wang, X.L. Tourists’ Online Information Search Behavior: Combined User-Generated and Marketer-Generated Content in Restaurant Decision Making. J. Travel Res. 2024, 63, 1549–1573. [Google Scholar] [CrossRef]
- Chatterjee, A. (Ed.) Chapter C—Information Users. In Elements of Information Organization and Dissemination; Chandos Publishing: Hull, UK, 2017; pp. 47–71. ISBN 978-0-08-102025-8. [Google Scholar]
- Wilson, T.D. Approaches to Information-Seeking Behaviour in Psychology: A Comparison of Early and Contemporary Studies. Inf. Res. 2024, 29, 34–53. [Google Scholar] [CrossRef]
- Ben Mimoun, M.S.; Garnier, M.; Ladwein, R.; Benavent, C. Determinants of E-Consumer Productivity in Product Retrieval on a Commercial Website: An Experimental Approach. Inf. Manag. 2014, 51, 375–390. [Google Scholar] [CrossRef]
- Huang, Z. Usability of Tourism Websites: A Case Study of Heuristic Evaluation. New Rev. Hypermedia Multimed. 2020, 26, 55–91. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, X.; Che, R. An Investigation of Task Characteristics and Users ? Evaluation of Interaction Design in Different Online Health Information Systems. Inf. Process. Manag. 2021, 58, 102476. [Google Scholar] [CrossRef]
- Song, G.F.; Salvendy, G. A Framework for Reuse of User Experience in Web Browsing. Behav. Inf. Technol. 2003, 22, 79–90. [Google Scholar] [CrossRef]
- García, M.; Cano, S. Eye Tracking to Evaluate the User eXperience (UX): Literature Review. In Social Computing and Social Media: Design, User Experience and Impact; Meiselwitz, G., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 134–145. [Google Scholar]
- Poole, A.; Ball, L.J. Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects; Idea Group Reference: Hershey, PA, USA, 2004. [Google Scholar]
- Guo, F.; Ding, Y.; Liu, W.; Liu, C.; Zhang, X. Can Eye-Tracking Data Be Measured to Assess Product Design?: Visual Attention Mechanism Should Be Considered. Int. J. Ind. Ergon. 2016, 53, 229–235. [Google Scholar] [CrossRef]
- Ho, C.-H.; Lu, Y.-N. Can Pupil Size Be Measured to Assess Design Products? Int. J. Ind. Ergon. 2014, 44, 436–441. [Google Scholar] [CrossRef]
- Carter, B.T.; Luke, S.G. Best Practices in Eye Tracking Research. Int. J. Psychophysiol. 2020, 155, 49–62. [Google Scholar] [CrossRef]
- Alemdag, E.; Cagiltay, K. A Systematic Review of Eye Tracking Research on Multimedia Learning. Comput. Educ. 2018, 125, 413–428. [Google Scholar] [CrossRef]
- Tian, X.; Fang, Z.; Liu, W. Decreased Humidity Improves Cognitive Performance at Extreme High Indoor Temperature. Indoor Air 2021, 31, 608–627. [Google Scholar] [CrossRef]
- Tangmanee, C. FIXATION AND RECALL OF YOUTUBE AD BANNERS: AN EYE-TRACKING STUDY. Int. J. Electron. Commer. Stud. 2016, 7, 49–76. [Google Scholar] [CrossRef]
Question | Choice | Number | Percentage (%) |
---|---|---|---|
1. Age | Under 18 | 5 (2, 3) | 2.16 |
18–25 | 76 (35, 41) | 32.76 | |
26–35 | 77 (32, 45) | 33.19 | |
36–45 | 35 (14, 21) | 15.09 | |
46–55 | 22 (11, 11) | 9.48 | |
Over 56 | 17 (6, 11) | 7.33 | |
2. Gender | Male | 100 | 43.10 |
Female | 132 | 56.90 | |
3. Do you know that the Internet is the biggest source of carbon emissions? | Fully understand | 12 (8, 4) | 5.17 |
Heard of it, but don’t know the details | 114 (60, 54) | 49.14 | |
Know a little about | 103 (31, 72) | 44.40 | |
Never heard of it | 3 (1, 2) | 1.29 | |
4. How frequently do you visit travel websites? | Daily | 8 (2, 6) | 3.45 |
Weekly | 34 (16, 18) | 14.66 | |
Monthly | 124 (60, 64) | 53.45 | |
Occasionally | 56 (16, 40) | 24.14 | |
Never | 10 (6, 4) | 4.31 | |
5. What is your main purpose for visiting travel websites? (multiple choice) | Flight booking | 131 (60, 71) | 56.47 |
Hotel booking | 121 (41, 80) | 52.16 | |
Guidance searching | 107 (48, 59) | 46.12 | |
Destination searching/information | 74 (30, 44) | 31.90 | |
Prices comparison | 68 (28, 40) | 29.31 | |
6. What is the main device you use to access travel websites? | Smartphone | 109 (49, 60) | 46.98 |
Tablet | 21 (5, 16) | 9.05 | |
Laptop/Desktop | 94 (44, 50) | 40.52 | |
Other | 8 (2, 6) | 3.45 | |
7. When choosing a travel website, do you consider whether the website adopts a low-carbon and environmentally friendly design? | Always | 4 (2, 2) | 1.72 |
Often | 16 (5, 11) | 6.90 | |
Sometimes | 66 (30, 36) | 28.45 | |
Seldom | 102 (46, 56) | 43.97 | |
Never | 44 (17, 27) | 18.97 | |
8. Which travel website do you visit most frequently? | www.Ly.com | 53 (21, 32) | 23.70 |
www.Qunar.com | 49 (24, 25) | 21.12 | |
www.Tuniu.com | 68 (30, 38) | 29.31 | |
www.Ctrip.com | 23 (11, 12) | 9.91 | |
www.Fliggy.com | 19 (9, 10) | 8.19 | |
Other (please specify) | 20 (5, 15) | 8.62 | |
9. What is the main reason for choosing this website? (multiple choice) | User-friendly interface | 72 (39, 33) | 31.03 |
Comprehensive Information | 95 (55, 40) | 40.95 | |
Price advantages | 55 (25, 30) | 23.71 | |
Quality service | 80 (48, 32) | 34.48 | |
Fast website operation | 40 (18, 22) | 17.24 | |
Other (please specify) | 10 (4, 6) | 4.31 | |
10. Which function or service do you value most when using travel websites? | Quick search | 81 (36, 45) | 34.91 |
User reviews | 64 (30, 34) | 27.59 | |
Customized function recommendations | 50 (20, 30) | 21.55 | |
Maps and navigation | 37 (14, 23) | 15.95 |
Eye Movement Index | Sample | Gender | Mean | Mean | Standard Deviation | Standard Deviation | p |
---|---|---|---|---|---|---|---|
Fixation Count (n) | QN | Male | 75.50 | 83.88 | 42.51 | 43.72 | 0.00 |
Female | 91.33 | 38.97 | |||||
TC | Male | 36.14 | 40.10 | 7.80 | 15.74 | ||
Female | 42.07 | 18.45 | |||||
TN | Male | 84.60 | 95.27 | 14.15 | 30.80 | ||
Female | 104.17 | 39.09 | |||||
Dwell Time (s) | QN | Male | 28.89 | 34.23 | 14.15 | 14.60 | 0.00 |
Female | 38.97 | 14.12 | |||||
TC | Male | 12.66 | 14.08 | 3.54 | 5.62 | ||
Female | 14.79 | 6.42 | |||||
TN | Male | 34.27 | 38.49 | 5.18 | 12.20 | ||
Female | 42.00 | 15.60 |
Website | Dwell Time of Effective Areas (s) | Fixation Count of Effective Areas (n) | Dwell Time of Interference Areas (s) | Fixation Count of Interference Areas (n) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
QN | Mean | Male | 62.22 | 48.74 | 234.38 | 185.18 | 35.97 | 40.68 | 143.38 | 149.65 |
Female | 36.74 | 141.44 | 44.87 | 155.22 | ||||||
Standard deviation | Male | 21.66 | 23.50 | 78.43 | 87.46 | 27.72 | 28.65 | 110.76 | 109.79 | |
Female | 18.72 | 73.09 | 30.45 | 115.33 | ||||||
Variance | Male | 469.02 | 552.14 | 6151.70 | 7648.80 | 768.64 | 820.83 | 12,267.41 | 12,054.24 | |
Female | 350.24 | 5342.79 | 927.14 | 13,300.19 | ||||||
TC | Mean | Male | 18.10 | 16.34 | 70.71 | 61.71 | 57.12 | 63.83 | 216.00 | 238.81 |
Female | 15.46 | 57.21 | 67.19 | 250.21 | ||||||
Standard deviation | Male | 8.11 | 6.86 | 42.39 | 29.73 | 24.06 | 22.12 | 83.46 | 78.13 | |
Female | 6.28 | 21.56 | 21.19 | 75.87 | ||||||
Variance | Male | 65.83 | 47.05 | 1796.91 | 883.61 | 578.96 | 489.24 | 6965.67 | 6104.76 | |
Female | 39.49 | 464.64 | 449.00 | 5756.80 | ||||||
TN | Mean | Male | 56.73 | 48.13 | 227.75 | 186.70 | 15.28 | 30.02 | 63.25 | 112.40 |
Female | 42.40 | 159.33 | 39.84 | 145.17 | ||||||
Standard deviation | Male | 14.63 | 15.40 | 29.84 | 69.91 | 4.40 | 19.20 | 26.59 | 69.98 | |
Female | 14.14 | 77.56 | 19.02 | 71.89 | ||||||
Variance | Male | 213.95 | 237.15 | 890.25 | 4887.12 | 19.34 | 368.49 | 706.92 | 4896.49 | |
Female | 200.06 | 6015.87 | 361.81 | 5168.57 | ||||||
Total | Mean | Male | 44.81 | 34.44 | 172.68 | 131.48 | 39.40 | 48.59 | 153.26 | 180.90 |
Female | 27.64 | 104.48 | 54.60 | 199.00 | ||||||
Standard deviation | Male | 26.15 | 22.66 | 97.72 | 88.22 | 27.42 | 27.53 | 102.88 | 102.42 | |
Female | 17.37 | 70.83 | 26.35 | 99.72 | ||||||
Variance | Male | 683.87 | 513.59 | 9548.56 | 7782.09 | 751.64 | 757.97 | 10,584.98 | 10,488.99 | |
Female | 301.63 | 5017.47 | 694.28 | 9944.29 | ||||||
p | 0.00 | 0.00 | 0.001 | 0.001 |
Website | Dwell Time of Picture-Based Interference Area (s) | Fixation Count of Picture-Based Interference Area (n) | Dwell Time of Text-Based Interference Area (s) | Fixation Count of Text-Based Interference Area (n) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
QN | Mean | Male | 24.64 | 27.16 | 99.88 | 100.53 | 11.33 | 13.52 | 43.50 | 49.12 |
Female | 29.40 | 101.11 | 15.47 | 54.11 | ||||||
Standard deviation | Male | 24.97 | 25.47 | 103.82 | 99.76 | 4.24 | 12.39 | 16.71 | 43.26 | |
Female | 27.19 | 102.34 | 16.80 | 58.64 | ||||||
Variance | Male | 623.30 | 648.51 | 10,779.24 | 9952.52 | 17.96 | 153.42 | 279.14 | 1871.11 | |
Female | 739.51 | 10,472.36 | 282.08 | 3438.36 | ||||||
TC | Mean | Male | 50.52 | 56.60 | 192.86 | 214.52 | 6.59 | 7.23 | 23.14 | 24.29 |
Female | 59.65 | 225.36 | 7.54 | 24.86 | ||||||
Standard deviation | Male | 22.74 | 19.35 | 73.37 | 69.36 | 8.09 | 6.49 | 26.65 | 19.11 | |
Female | 17.53 | 67.36 | 5.86 | 15.26 | ||||||
Variance | Male | 517.05 | 374.27 | 5382.48 | 4810.46 | 65.43 | 42.15 | 710.14 | 365.01 | |
Female | 307.20 | 4537.32 | 34.30 | 232.75 | ||||||
TN | Mean | Male | 9.58 | 18.85 | 42.00 | 71.70 | 5.70 | 11.17 | 21.25 | 40.70 |
Female | 25.03 | 91.50 | 14.81 | 53.67 | ||||||
Standard deviation | Male | 3.42 | 13.63 | 13.22 | 49.304 | 4.78 | 7.49 | 16.68 | 26.54 | |
Female | 14.58 | 55.63 | 6.90 | 24.43 | ||||||
Variance | Male | 11.69 | 185.76 | 174.67 | 2430.90 | 22.84 | 56.15 | 278.25 | 704.46 | |
Female | 212.59 | 3094.70 | 47.54 | 596.67 | ||||||
Total | Mean | Male | 31.00 | 38.31 | 121.947 | 144.396 | 8.40 | 10.28 | 31.32 | 36.50 |
Female | 43.10 | 159.103 | 11.51 | 39.90 | ||||||
Standard deviation | Male | 26.17 | 26.28 | 98.018 | 99.591 | 6.27 | 9.44 | 22.50 | 32.48 | |
Female | 25.67 | 99.531 | 10.97 | 37.63 | ||||||
Variance | Male | 684.83 | 690.70 | 9607.50 | 9918.372 | 39.31 | 89.05 | 506.12 | 1055.19 | |
Female | 659.04 | 9906.45 | 120.26 | 1415.67 | ||||||
p | 0.000 | 0.000 | 0.116 | 0.054 |
Degrees of Freedom | Mean Square | F | p | ||
---|---|---|---|---|---|
Fixation Count (n) | Between-group | 2 | 14,408.51 | 14.724 | 0 |
Within-group | 46 | 978.603 | |||
Total | 48 | ||||
Dwell Time (s) | Between-group | 2 | 2918.9 | 24.209 | 0 |
Within-group | 46 | 120.57 | |||
Total | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Huang, K. Fewer Clicks, Lower Emissions: Eye-Tracking Analysis of Eco-Friendly Navigation in Tourism Websites. Sustainability 2025, 17, 5462. https://doi.org/10.3390/su17125462
Chen C, Huang K. Fewer Clicks, Lower Emissions: Eye-Tracking Analysis of Eco-Friendly Navigation in Tourism Websites. Sustainability. 2025; 17(12):5462. https://doi.org/10.3390/su17125462
Chicago/Turabian StyleChen, Chen, and Kexin Huang. 2025. "Fewer Clicks, Lower Emissions: Eye-Tracking Analysis of Eco-Friendly Navigation in Tourism Websites" Sustainability 17, no. 12: 5462. https://doi.org/10.3390/su17125462
APA StyleChen, C., & Huang, K. (2025). Fewer Clicks, Lower Emissions: Eye-Tracking Analysis of Eco-Friendly Navigation in Tourism Websites. Sustainability, 17(12), 5462. https://doi.org/10.3390/su17125462