Crop Harvesting Performance Analysis via Telemetry: Fuel and Environmental Insights
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- (I)
- Indirect operation and direct operation. Indirect work refers to activities that do not directly contribute to the main function of the CH, such as idling, non-harvesting movements, or maintenance-related operations. Direct labor includes the harvesting process itself, as well as the unloading of the grain during threshing and the headland turns.
- (II)
- Efforts leading to fuel/time savings. Focusing on reducing indirect labor time provides a clear path to more efficient use of resources—fuel and time. This is categorized as “Effort”, indicating the need for targeted strategies and action planning to reduce the use of less productive work stages.
- (III)
- The results are savings in money, air pollution, and GHG reductions. Reduced fuel consumption is directly linked to lower operating costs. Spending less time on fuel-intensive indirect operations reduces emissions of pollutants and GHG.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, J.F.; Pu, C.; Liu, S.L.; Zhao, X.; Zhang, R.; Chen, F.; Xiao, X.P.; Zhang, H.L. Carbon and Nitrogen Footprint of Double Rice Production in Southern China. Ecol. Indic. 2016, 64, 249–257. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The Threat to Climate Change Mitigation Posed by the Abundance of Fossil Fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef]
- Londoño-Pulgarin, D.; Cardona-Montoya, G.; Restrepo, J.C.; Muñoz-Leiva, F. Fossil or Bioenergy? Global Fuel Market Trends. Renew. Sustain. Energy Rev. 2021, 143, 110905. [Google Scholar] [CrossRef]
- Filipovic, D.; Kosutic, S.; Gospodaric, Z.; Zimmer, R.; Banaj, D. The Possibilities of Fuel Savings and the Reduction of CO2 Emissions in the Soil Tillage in Croatia. Agric. Ecosyst. Environ. 2006, 115, 290–294. [Google Scholar] [CrossRef]
- Yamaka, W.; Phadkantha, R.; Rakpho, P. Economic and Energy Impacts on Greenhouse Gas Emissions: A Case Study of China and the USA. Energy Rep. 2021, 7, 240–247. [Google Scholar] [CrossRef]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, Agriculture, Renewable Energy, and CO2 Emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Li, K.; Xiong, P.; Wu, Y.; Dong, Y. Forecasting Greenhouse Gas Emissions with the New Information Priority Generalized Accumulative Grey Model. Sci. Total Environ. 2022, 807, 150859. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing Anthropogenic Methane Emissions Arise Equally from Agricultural and Fossil Fuel Sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 73005. [Google Scholar] [CrossRef]
- Hoffman, E.; Cavigelli, M.A.; Camargo, G.; Ryan, M.; Ackroyd, V.J.; Richard, T.L.; Mirsky, S. Energy Use and Greenhouse Gas Emissions in Organic and Conventional Grain Crop Production: Accounting for Nutrient Inflows. Agric. Syst. 2018, 162, 89–96. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, B.; Ambus, P.; Zhang, Y.; Hansen, V.; Lin, Z.; Shen, D.; Liu, G.; Bei, Q.; Zhu, J.; et al. Carbon Footprint of Rice Production under Biochar Amendment—A Case Study in a Chinese Rice Cropping System. GCB Bioenergy 2016, 8, 148–159. [Google Scholar] [CrossRef]
- Ntinas, G.K.; Neumair, M.; Tsadilas, C.D.; Meyer, J. Carbon Footprint and Cumulative Energy Demand of Greenhouse and Open-Field Tomato Cultivation Systems under Southern and Central European Climatic Conditions. J. Clean. Prod. 2017, 142, 3617–3626. [Google Scholar] [CrossRef]
- Garnett, T. Where Are the Best Opportunities for Reducing Greenhouse Gas Emissions in the Food System (Including the Food Chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
- Plath, E.; Rischen, T.; Mohr, T.; Fischer, K. Agriculture, Ecosystems and Environment Biodiversity in Agricultural Landscapes: Grassy Field Margins and Semi-Natural Fragments Both Foster Spider Diversity and Body Size. Agric. Ecosyst. Environ. 2021, 316, 107457. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT Database of Greenhouse Gas Emissions from Agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Flessa, H.; Ruser, R.; Dörsch, P.; Kamp, T.; Jimenez, M.A.; Munch, J.C.; Beese, F. Integrated Evaluation of Greenhouse Gas Emissions (CO2, CH4, N2O) from Two Farming Systems in Southern Germany. Agric. Ecosyst. Environ. 2002, 91, 175–189. [Google Scholar] [CrossRef]
- Babatunde, D.E.; Anozie, A.N.; Omoleye, J.A.; Oyebode, O.; Babatunde, O.M.; Agboola, O. Prediction of Global Warming Potential and Carbon Tax of a Natural Gas-Fired Plant. Energy Rep. 2020, 6, 1061–1070. [Google Scholar] [CrossRef]
- Understanding Global Warming Potentials | US EPA. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 23 November 2022).
- Hou, X.; Tian, J.; Song, C.; Wang, J.; Zhao, J.; Zhang, X. Emission Inventory Research of Typical Agricultural Machinery in Beijing, China. Atmos. Environ. 2019, 216, 116903. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J. Exhaust Gases Emissions from Agricultural Tractors: State of the Art and Future Perspectives for Machinery Operators. Biosyst. Eng. 2019, 186, 204–213. [Google Scholar] [CrossRef]
- Miu, P. The Potential of Controlled Traffic Farming to Mitigate Greenhouse Gas Emissions and Enhance Carbon Sequestration in Arable Land: A Critical Review; Transactions of the ASABE: St. Joseph, MI, USA, 2015; Volume 58. [Google Scholar]
- Mehlig, D.; Woodward, H.; Oxley, T.; Holland, M. Electrification of Road Transport and the Impacts on Air Quality and Health in the UK. Atmosphere 2021, 12, 1491. [Google Scholar] [CrossRef]
- Gualtieri, G.; Crisci, A.; Tartaglia, M.; Toscano, P.; Gioli, B. A Statistical Model to Assess Air Quality Levels at Urban Sites. Water Air Soil. Pollut. 2015, 226, 394. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Fang, E.; DeVoil, P.; Cao, G. Reducing Agricultural Fuel Consumption by Minimizing Inefficiencies. J. Clean. Prod. 2019, 236, 117619. [Google Scholar] [CrossRef]
- Van Linden, V.; Herman, L. A Fuel Consumption Model for Off-Road Use of Mobile Machinery in Agriculture. Energy 2014, 77, 880–889. [Google Scholar] [CrossRef]
- Fontaras, G.; Zacharof, N.G.; Ciuffo, B. Fuel Consumption and CO2 Emissions from Passenger Cars in Europe—Laboratory versus Real-World Emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
- Helmers, E.; Leitão, J.; Tietge, U.; Butler, T. CO2-Equivalent Emissions from European Passenger Vehicles in the Years 1995–2015 Based on Real-World Use: Assessing the Climate Benefit of the European “Diesel Boom”. Atmos. Environ. 2019, 198, 122–132. [Google Scholar] [CrossRef]
- Lal, R. Carbon Emission from Farm Operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Mokhtor, S.A.; el Pebrian, D.; Johari, N.A.A. Actual Field Speed of Rice Combine Harvester and Its Influence on Grain Loss in Malaysian Paddy Field. J. Saudi Soc. Agric. Sci. 2020, 19, 422–425. [Google Scholar] [CrossRef]
- Yamasaki, H.; Horio, M.; Fujita, K. Research on Fuel Consumption in Harvesting Paddy Rice Plant with Head-Feeding Combine Harvesters. Biosyst. Eng. 2021, 202, 96–105. [Google Scholar] [CrossRef]
- Shojaei, K. Intelligent Coordinated Control of an Autonomous Tractor-Trailer and a Combine Harvester. Eur. J. Control 2021, 59, 82–98. [Google Scholar] [CrossRef]
- Savickas, D.; Steponavičius, D.; Kemzūraitė, A. A Novel Approach for Analysing Environmental Sustainability Aspects of Combine Harvesters through Telematics Data. Part II: An IT Tool for Comparative Analysis. Precis. Agric. 2024, 25, 221–234. [Google Scholar] [CrossRef]
- Gundoshmian, T.M.; Ghassemzadeh, H.R.; Abdollahpour, S.; Navid, H. Application of Artificial Neural Network in Prediction of the Combine Harvester Performance. J. Food Agric. Environ. 2010, 8, 721–724. [Google Scholar]
- Christie, N.; O’Toole, S.; Holcombe, A.; Bull, N.; Helman, S. Managing the Road Safety Risks of Last Mile Deliveries: Do Telematics Have a Role to Play? Traffic Inj. Prev. 2024, 26, 300–306. [Google Scholar] [CrossRef]
- Lunner-Kolstrup, C.; Hörndahl, T.; Karttunen, J.P. Farm Operators’ Experiences of Advanced Technology and Automation in Swedish Agriculture: A Pilot Study. J. Agromed. 2018, 23, 215–226. [Google Scholar] [CrossRef]
- Oksanen, T.; Linkolehto, R.; Seilonen, I. Adapting an Industrial Automation Protocol to Remote Monitoring of Mobile Agricultural Machinery: A Combine Harvester with IoT. IFAC-Pap. 2016, 49, 127–131. [Google Scholar] [CrossRef]
- Olt, J.; Ilves, R.; Kuut, A. Overview of Developments of Cereal Harvester Fleet in Estonia. Eng. Rural. Dev. 2019, 18, 179–184. [Google Scholar] [CrossRef]
- Savickas, D.; Steponavičius, D.; Kemzūraitė, A. A Novel Approach for Analysing Environmental Sustainability Aspects of Combine Harvester through Telematics Data. Part I: Evaluation and Analysis of Field Tests. Precis. Agric. 2024, 25, 100–118. [Google Scholar] [CrossRef]
- Bernhardt, H.; Mederle, M.; Treiber, M.; Woerz, S. Aspects of Digitization in Agricultural Logistics in Germany. Actual. Tasks Agric. Eng. 2018, 46, 245–251. [Google Scholar]
- Bernhardt, H.; Bozkurt, M.; Brunsch, R.; Colangelo, E.; Herrmann, A.; Horstmann, J.; Kraft, M.; Marquering, J.; Steckel, T.; Tapken, H.; et al. Challenges for Agriculture through Industry 4.0. Agronomy 2021, 11, 1935. [Google Scholar] [CrossRef]
- Goltyapin, V.; Golubev, I. Global Trends in the Development of Monitoring Systems for Mobile Agricultural Equipment. E3S Web Conf. 2020, 157, 1013. [Google Scholar] [CrossRef]
- Chinnasamy, C.; Tamilselvam, P.; Ranjith, R. Influence of Aluminum Oxide Nanoparticle with Different Particle Sizes on the Working Attributes of Diesel Engine Fueled with Blends of Diesel and Waste Plastic Oil. Environ. Sci. Pollut. Res. 2019, 26, 29962–29977. [Google Scholar] [CrossRef]
- Savickas, D.; Steponavičius, D.; Špokas, L.; Saldukaitė, L.; Semenišin, M. Impact of Combine Harvester Technological Operations on Global Warming Potential. Appl. Sci. 2021, 11, 8662. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Prashumn, C.K. Di-Ethyl Ether-Diesel Blends Fuelled off-Road Tractor Engine: Part-I: Technical Feasibility. Fuel 2021, 308, 121972. [Google Scholar] [CrossRef]
- Venkatesan, V.; Nallusamy, N.; Nagapandiselvi, P. Performance and Emission Analysis on the Effect of Exhaust Gas Recirculation in a Tractor Diesel Engine Using Pine Oil and Soapnut Oil Methyl Ester. Fuel 2021, 290, 120077. [Google Scholar] [CrossRef]
- European Environmrnt Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar] [CrossRef]
- Pirjola, L.; Rönkkö, T.; Saukko, E.; Parviainen, H.; Malinen, A.; Alanen, J.; Saveljeff, H. Exhaust Emissions of Non-Road Mobile Machine: Real-World and Laboratory Studies with Diesel and HVO Fuels. Fuel 2017, 202, 154–164. [Google Scholar] [CrossRef]
- Savickas, D.; Steponavičius, D.; Kliopova, I.; Saldukaitė, L. Combine Harvester Fuel Consumption and Air Pollution Reduction. Water Air Soil. Pollut. 2020, 231, 95. [Google Scholar] [CrossRef]
- Huang, R.; Liu, J.; He, X.; Xie, D.; Ni, J.; Xu, C.; Zhang, Y.; Ci, E.; Wang, Z.; Gao, M. Reduced Mineral Fertilization Coupled with Straw Return in Field Mesocosm Vegetable Cultivation Helps to Coordinate Greenhouse Gas Emissions and Vegetable Production. J. Soils Sediments 2020, 20, 1834–1845. [Google Scholar] [CrossRef]
- Kaur-Sidhu, M.; Ravindra, K.; Mor, S.; John, S. Emission Factors and Global Warming Potential of Various Solid Biomass Fuel-Cook Stove Combinations. Atmos. Pollut. Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Jia, Q.; Zhang, H.; Wang, J.; Xiao, X.; Chang, S.; Zhang, C.; Liu, Y.; Hou, F. Planting Practices and Mulching Materials Improve Maize Net Ecosystem C Budget, Global Warming Potential and Production in Semi-Arid Regions. Soil. Tillage Res. 2021, 207, 104850. [Google Scholar] [CrossRef]
- Liao, P.; Sun, Y.; Zhu, X.; Wang, H.; Wang, Y.; Chen, J.; Zhang, J.; Zeng, Y.; Zeng, Y.; Huang, S. Identifying Agronomic Practices with Higher Yield and Lower Global Warming Potential in Rice Paddies: A Global Meta-Analysis. Agric. Ecosyst. Environ. 2021, 322, 107663. [Google Scholar] [CrossRef]
- Molari, G.; Mattetti, M.; Lenzini, N.; Fiorati, S. An Updated Methodology to Analyse the Idling of Agricultural Tractors. Biosyst. Eng. 2019, 187, 160–170. [Google Scholar] [CrossRef]
- Wargula, L.; Kukla, M.; Krawiec, P.; Wieczorek, B. Impact of Number of Operators and Distance to Branch Piles on Woodchipper Operation. Forests 2020, 11, 598. [Google Scholar] [CrossRef]
- Perozzi, D.; Mattetti, M.; Molari, G.; Sereni, E. Methodology to Analyse Farm Tractor Idling Time. Biosyst. Eng. 2016, 148, 81–89. [Google Scholar] [CrossRef]
- Rodias, E.; Berruto, R.; Busato, P.; Bochtis, D.; Sørensen, C.G.; Zhou, K. Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery. Sustainability 2017, 9, 1956. [Google Scholar] [CrossRef]
- Kaiser, N.; Barstow, C.K. Rural Transportation Infrastructure in Low-and Middle-Income Countries: A Review of Impacts, Implications, and Interventions. Sustainability 2022, 14, 2149. [Google Scholar] [CrossRef]
- Janulevičius, A.; Juostas, A.; Pupinis, G. Engine Performance during Tractor Operational Period. Energy Convers. Manag. 2013, 68, 11–19. [Google Scholar] [CrossRef]
- Janulevičius, A.; Juostas, A.; Pupinis, G. Tractor Engine Load and Fuel Consumption in Road Construction Works. Transport 2010, 25, 403–410. [Google Scholar] [CrossRef]
- Ujlacká, K.; Konečný, V. Streamlining the Operational Costs of Transport Companies through the Implementation of Telematics Systems. Transp. Res. Procedia 2025, 87, 248–259. [Google Scholar] [CrossRef]
- Boylan, J.; Meyer, D.; Chen, W.S. A Systematic Review of the Use of In-Vehicle Telematics in Monitoring Driving Behaviours. Accid. Anal. Prev. 2024, 199, 107519. [Google Scholar] [CrossRef]
Data Type | Transmission Frequency | Notes |
---|---|---|
GPS position | every 5 s (typical) | Used for tracking movement and productivity |
Fuel consumption, engine status | every 5–10 s | Includes RPM, temperature, and hourly consumption |
Yield quantity, flow, moisture | every 5–10 s | Sensor calibration required |
Aggregated data (reports) | every 5 min or configurable | E.g., hectares covered, productivity, idle time |
Diagnostics and errors | in real time | Errors are transmitted immediately upon occurrence |
GHG Emission Factors | ||
---|---|---|
CO2, kg kg−1 | N2O, kg kg−1 | CH4, kg kg−1 |
3.160 | 0.000139 | 0.000013 |
Type of Cereal | Area Harvested, ha year−1 | Average Speed During Harvesting, km h−1 | Average Fuel Consumption, L ha−1 |
---|---|---|---|
Beans | 89.14 | 4.59 | 16.20 |
Maize | 204.95 | 7.22 | 19.53 |
Oats | 117.41 | 5.70 | 10.71 |
Oilseed | 169.22 | 4.46 | 19.16 |
Barley | 85.93 | 4.90 | 16.46 |
Wheat | 232.67 | 4.23 | 19.67 |
Engine Load, % | Engine Speed, min−1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1000–1100 | 1100–1200 | 1200–1300 | 1300–1400 | 1400–1500 | 1500–1600 | 1600–1700 | 1700–1800 | 1800–1900 | 1900–2000 | |
0–10 | 0.18 | 0.28 | 0.22 | 0.26 | 0.14 | 0.11 | 0.09 | 0.06 | 0.02 | 0.00 |
10–20 | 0.00 | 107.61 | 1.82 | 12.49 | 0.06 | 0.01 | 0.01 | 0.01 | 0.02 | 0.00 |
20–30 | 0.00 | 19.36 | 1.68 | 22.47 | 0.05 | 0.00 | 0.00 | 0.01 | 0.46 | 0.03 |
30–40 | 0.01 | 2.25 | 3.93 | 5.55 | 0.06 | 0.01 | 0.01 | 0.02 | 9.00 | 0.24 |
40–50 | 0.02 | 0.42 | 1.22 | 0.74 | 0.06 | 0.03 | 0.02 | 0.01 | 31.13 | 0.36 |
50–60 | 0.04 | 0.15 | 0.13 | 0.13 | 0.12 | 0.09 | 0.04 | 0.10 | 41.63 | 0.26 |
60–70 | 0.06 | 0.04 | 0.02 | 0.03 | 0.03 | 0.05 | 0.07 | 0.39 | 49.33 | 0.13 |
70–80 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.60 | 56.86 | 0.04 |
80–90 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.67 | 66.16 | 0.00 |
>90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.10 | 10.31 | 42.79 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savickas, D.; Juostas, A.; Jotautienė, E.; Grigas, A. Crop Harvesting Performance Analysis via Telemetry: Fuel and Environmental Insights. Sustainability 2025, 17, 5377. https://doi.org/10.3390/su17125377
Savickas D, Juostas A, Jotautienė E, Grigas A. Crop Harvesting Performance Analysis via Telemetry: Fuel and Environmental Insights. Sustainability. 2025; 17(12):5377. https://doi.org/10.3390/su17125377
Chicago/Turabian StyleSavickas, Dainius, Antanas Juostas, Eglė Jotautienė, and Andrius Grigas. 2025. "Crop Harvesting Performance Analysis via Telemetry: Fuel and Environmental Insights" Sustainability 17, no. 12: 5377. https://doi.org/10.3390/su17125377
APA StyleSavickas, D., Juostas, A., Jotautienė, E., & Grigas, A. (2025). Crop Harvesting Performance Analysis via Telemetry: Fuel and Environmental Insights. Sustainability, 17(12), 5377. https://doi.org/10.3390/su17125377