Modern Pig Production: Aspects of Animal Welfare, Sustainability and Circular Bioeconomy
Abstract
:1. Introduction
2. Welfare During Pig Production
3. Sustainability of Pig Production
4. Circular Bioeconomy Aspects in Pig Production
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Broom, D.M. Adaptation. Berliner. Und Münchener Tierärztliche Wochenschrift. 2005, 119, 1–6. [Google Scholar]
- Held, S.; Mendl, M.; Laughlin, K.; Byrne, R. Cognition Studies with Pigs: Livestock Cognition and Its Implication for Production. J. Anim. Sci. 2002, 80, E10–E17. [Google Scholar]
- Broom, D.M.; Sena, H.; Moynihan, K.L. Pigs Learn What a Mirror Image Represents and Use It to Obtain Information. Anim. Behav. 2009, 78, 1037–1041. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.M.; Wood, S.; Msangi, S.; Freeman, H.A.; Bossio, D.; Dixon, J.; Peters, M.; van de Steeg, J.; et al. Smart Investments in Sustainable Food Production: Revisiting Mixed Crop-Livestock Systems. Science 2010, 327, 822–825. [Google Scholar] [CrossRef]
- Broom, D.M. Animal Welfare in the European Union; European Parliament, Policy Department Citizen’s Rights and Constitutional Affairs, Study for the PETI Committee: Brussels, Belgium, 2017; 75p, ISBN 978-92-846-0543-9. Available online: http://www.europarl.europa.eu/RegData/etudes/STUD/2017/583114/IPOL_STU(2017)583114_EN.pdf (accessed on 2 February 2025).
- Broom, D.M. Components of Sustainable Animal Production and the Use of Silvopastoral Systems. Rev. Bras. de Zootec. 2017, 46, 683–688. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, Efficient Livestock Production with High Biodiversity and Good Welfare for Animals. Proc. Roy. Soc. B 2013, 280, 20132025. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.M. Sentience and Animal Welfare; CABI: Wallingford, UK, 2014; p. 200. ISBN 978-1-78064-404-2. [Google Scholar]
- Bañon Gomis, A.; Guillén Parra, M.; Hoffman, W.M.; McNulty, R.E. Rethinking the Concept of Sustainability. Bus. Soc. Rev. 2011, 116, 171–191. [Google Scholar] [CrossRef]
- Szücs, E.; Geers, R.; Sossidou, E.N. Stewardship, Stockmanship and Sustainability in Animal Agriculture. Asian-Australasian J. Anim. Sci. 2009, 22, 1334–1340. [Google Scholar] [CrossRef]
- Broom, D.M. A Method for Assessing Sustainability, with Beef Production as an Example. Biol. Rev. 2021, 96, 1836–1853. [Google Scholar] [CrossRef]
- Animal Task Force; Plants for the Future: European Technology Platform. Research and Innovation Towards a More Sustainable and Circular European Agriculture Exploring Synergies Between the Livestock and Crop Sectors; Joint Position Paper; ATF: Paris, France; Plant ETP: Brussels, Belgium, 2019; Available online: https://www.plantetp.eu/wp-content/uploads/2021/11/atf-plant-etp-joint-position-paper-research-and-innovation-towards-a-more-sustainable-and-circular-eur-sept-2019.pdf (accessed on 6 February 2025).
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef]
- de Boer, I.J.M.; van Ittersum, M.K. Circularity in Agricultural Production; Wageningen University & Research: Wageningen, The Netherlands, 2018; Available online: https://edepot.wur.nl/470625 (accessed on 6 February 2025).
- Bianchi, M.; Cascavilla, A.; Diaz, J.C.; Ladu, L.; Blazquez, B.P.; Pierre, M.; Staffieri, E.; Yilan, G. Circular Bioeconomy: A Review of Empirical Practices across Implementation Scales. J. Clean. Prod. 2024, 477, 143816. [Google Scholar] [CrossRef]
- Migliaccio, K.W.; Jones, J.W.; Verma, B.P. Perspectives on Transforming the Bioeconomy toward Circular Systems. J. ASABE 2023, 66, 765–770. [Google Scholar] [CrossRef]
- Gaffey, J.; O’Donovan, C.; Murphy, D.; O’Connor, T.; Walsh, D.; Vergara, L.A.; Donkor, K.; Gottumukkala, L.; Koopmans, S.; Buckley, E. Synergetic Benefits for a Pig Farm and Local Bioeconomy Development from Extended Green Biorefinery Value Chains. Sustainability 2023, 15, 8692. [Google Scholar] [CrossRef]
- zu Ermgassen, E.K.H.J.; Phalan, B.; Green, R.E.; Balmford, A. Reducing the Land Use of EU Pork Production: Where There’s Swill, There’s a Way. Food Policy 2016, 58, 35–48. [Google Scholar] [CrossRef]
- Broom, D.M.B. Broom and Fraser’s Domestic Animal Behaviour and Welfare, 6th ed.; CABI: Wallingford, UK, 2015; p. 545. [Google Scholar] [CrossRef]
- Buller, H.; Blokhuis, H.; Jensen, P.; Keeling, L. Towards Farm Animal Welfare and Sustainability. Animals 2018, 8, 81. [Google Scholar] [CrossRef]
- Broom, D.M. One Biology, Sustainable and Regenerative Farming: A Role for Pig and Poultry Production. In Regenerative Farming and Sustainable Diets; D’Silva, J., McKenna, C., Eds.; Routledge: London, UK, 2024; pp. 107–115. [Google Scholar]
- Burnier, P.C.; Spers, E.E.; de Barcellos, M.D. Role of Sustainability Attributes and Occasion Matters in Determining Consumers’ Beef Choice. Food Qual. Prefer. 2021, 88, 104075. [Google Scholar] [CrossRef]
- Fraser, D. Science, Values and Animal Welfare: Exploring the “Inextricable Connection”. Anim. Welfare 1995, 4, 103–117. [Google Scholar] [CrossRef]
- Broom, D.M. Indicators of Poor Welfare. Br. Vet. J. 1986, 142, 524–526. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Mellor, D.J.; Cronin, G.M.; Tilbrook, A.J. Scientific Assessment of Animal Welfare. New Zealand Vet. J. 2015, 63, 24–30. [Google Scholar] [CrossRef]
- Hemsworth, P.H. Key Determinants of Pig Welfare: Implications of Animal Management and Housing Design on Livestock Welfare. Anim. Prod. Sci. 2018, 58, 1375–1386. [Google Scholar] [CrossRef]
- Mellor, D.J. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J.; Beausoleil, N.J. Extending the ‘Five Domains’ Model for Animal Welfare Assessment to Incorporate Positive Welfare States. Anim. Welf. 2015, 24, 241. [Google Scholar] [CrossRef]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Including Human-Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Simitzis, P.; Arvanitis, K.; Panagakis, P. An Overview of the Current Trends in Precision Pig Farming Technologies. Livest. Sci. 2021, 249, 104530. [Google Scholar] [CrossRef]
- Berckmans, D. General Introduction to Precision Livestock Farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Vranken, E.; Berckmans, D. Precision Livestock Farming for Pigs. Anim. Front. 2017, 7, 32–37. [Google Scholar] [CrossRef]
- Neethirajan, S. AI in Sustainable Pig Farming: IoT Insights into Stress and Gait. Agriculture 2023, 13, 1706. [Google Scholar] [CrossRef]
- Council of the European communities. Laying Down Minimum Standards for the Protection of Pigs; EC Directive 91/630/EEC of 19 November 1991; European Union: Brussels, Belgium, 1991. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0630 (accessed on 14 May 2025).
- Council of the European Union. Amending Directive 91/630/EEC Laying Down Minimum Standards for the Protection of Pigs; EC Directive 2001/88/EC of 23 October 2001; European Union: Brussels, Belgium, 2001. Available online: https://eur-lex.europa.eu/eli/dir/2001/88/oj/eng (accessed on 14 May 2025).
- Commision of the European communities. Amending Directive 91/630/EEC Laying Down Minimum Standards for the Protection of Pigs; EC Directive 2001/93/EC of 9 November 2001; European Union: Brussels, Belgium, 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001L0093&qid=1649230280893 (accessed on 14 May 2025).
- Council of the European Union. Laying down Minimum Standards for the Protection of Pigs; EC Directive 2008/120/EC of 18 December 2008; European Union: Brussels, Belgium, 2008. Available online: https://eur-lex.europa.eu/eli/dir/2008/120/oj/eng (accessed on 14 May 2025).
- European Commission. Application of Council Directive 2008/120/EC Laying down Minimum Standards for the Protection of Pigs as Regards Measures to Reduce the Need for Tail-Docking; 2016/336 of 8 March 2016; European Union: Brussels, Belgium, 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016H0336 (accessed on 14 May 2025).
- World Animal Protection. Country Report USA, 2014. Available online: https://api.worldanimalprotection.org/country/usa (accessed on 14 May 2025).
- Whitfort, A. China’s Lack of Animal Welfare Legislation Increases the Risk of Further Pandemics. Anim. Sentience 2020, 5, 11. [Google Scholar] [CrossRef]
- Grethe, H. High Animal Welfare Standards in the EU and International Trade–How to Prevent Potential ‘low Animal Welfare Havens’? Food Policy 2007, 32, 315–333. [Google Scholar] [CrossRef]
- Committee on World Food Security (CFS). Sustainable Agricultural Development for Food Security and Nutrition: What Roles for Livestock? 43rd Session, 2016. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/43279f13-ccbb-414b-8ecf-671744404b4d/content (accessed on 14 May 2025).
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef]
- García Pinillos, R.; Appleby, M.C.; Manteca, X.; Scott-Park, F.; Smith, C.; Velarde, A. One Welfare—A Platform for Improving Human and Animal Welfare. Vet. Rec 2016, 179, 412–413. [Google Scholar] [CrossRef] [PubMed]
- Thorslund, C.A.; Aaslyng, M.D.; Lassen, J. Perceived Importance and Responsibility for Market-Driven Pig Welfare: Literature Review. Meat Sci. 2017, 125, 37–45. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 34700:2016; Animal Welfare Management—General Requirements and Guidance for Organizations in the Food Supply Chain. ISO: Geneva, Switzerland, 2016.
- European Commission. Eurobarometer Attitudes of EU Citizens Towards Animal Welfare; Report; Special Eurobarometer 442; European Commission: Brussels, Belgium, 2016. Available online: https://europa.eu/eurobarometer/surveys/detail/2996 (accessed on 14 May 2025).
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ Concerns and Perceptions of Farm Animal Welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Vanhonacker, F.; Verbeke, W. Public and Consumer Policies for Higher Welfare Food Products: Challenges and Opportunities. J. Agric. Environ. Ethics 2014, 27, 153–171. [Google Scholar] [CrossRef]
- European Commission. Commission Decision of 24 January 2017 Establishing the Commission Expert Group ‘Platform on Animal Welfare’, 2017; EC Decision 2017/C 31/12. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017D0131(01) (accessed on 14 May 2025).
- Phillips, C.; Izmirli, S.; Aldavood, S.; Alonso, M.; Choe, B.; Hanlon, A.; Handziska, A.; Illmann, G.; Keeling, L.; Kennedy, M.; et al. Students’ Attitudes to Animal Welfare and Rights in Europe and Asia. Anim. Welf. 2012, 21, 87–100. [Google Scholar] [CrossRef]
- Pedersen, L.J. Overview of Commercial Pig Production Systems and Their Main Welfare Challenges. In Advances in Pig Welfare; Spinka, M., Ed.; Woodhead Publishing: Duxford, UK, 2018; pp. 3–25. [Google Scholar]
- Otten, D. The Application of Animal Welfare Standards in Intensive Production Systems Using the Assessment Protocols of Welfare Quality: Fattening Pig Husbandry in Northwest Germany. Int. J. Livest. Prod. 2013, 4, 49–59. [Google Scholar] [CrossRef]
- Ferrari, D. Education, Belief Structures, Support for Welfare Policies, and Vote. Educ. Soc. 2021, 42, e242109. [Google Scholar] [CrossRef]
- Ludwiczak, A.; Skrzypczak, E.; Składanowska-Baryza, J.; Stanisz, M.; Ślósarz, P.; Racewicz, P. How Housing Conditions Determine the Welfare of Pigs. Animals 2021, 11, 3484. [Google Scholar] [CrossRef]
- Hötzel, M.J. Improving Farm Animal Welfare: Is Evolution or Revolution Needed in Production Systems? In Dilemmas in Animal Welfare; Appleby, M.C., Weary, D.M., Sandoe, P., Eds.; CAB International: Wallingford, UK, 2014; pp. 67–84. [Google Scholar]
- Meyer-Hamme, S.E.K.; Lambertz, C.; Gauly, M. Assessing the Welfare Level of Intensive Fattening Pig Farms in Germany with the Welfare Quality® Protocol: Does Farm Size Matter? Anim. Welf. 2018, 27, 275–286. [Google Scholar] [CrossRef]
- Renggaman, A.; Choi, H.S.; Sudiarto, S.I.; Alasaarela, L.; Nam, O.S. Development of Pig Welfare Assessment Protocol Integrating Animal, Environment and Management-Based Measures. JAST 2015, 57, 1. [Google Scholar] [CrossRef]
- Lam, Y.; Fry, J.P.; Nachman, K.E. Applying an Environmental Public Health Lens to the Industrialization of Food Animal Production in Ten Low- and Middle-Income Countries. Global Health 2019, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Guevara, R.D.; Pastor, J.J.; Manteca, X.; Tedó, G.; Llonch, P. Systematic Review of Animal-Based Indicators to Measure Thermal, Social, and Immune-Related Stress in Pigs. PLoS ONE 2022, 17, e0266524. [Google Scholar] [CrossRef] [PubMed]
- Muns, R.; Malmkvist, J.; Larsen, M.L.V.; Sörensen, D.; Pedersen, L.J. High Environmental Temperature around Farrowing Induced Heat Stress in Crated Sows. J. Anim. Sci. 2016, 94, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Wegner, K.; Lambertz, C.; Daş, G.; Reiner, G.; Gauly, M. Effects of Temperature and Temperature-Humidity Index on the Reproductive Performance of Sows during Summer Months under a Temperate Climate. Anim. Sci. J. 2016, 87, 1334–1339. [Google Scholar] [CrossRef]
- Peterson, E.G.; Remmenga, M.D.; Hagerman, A.D.; Akkina, J. Use of Temperature, Humidity, and Slaughter Condemnation Data to Predict Increases in Transport Losses in Three Classes of Swine and Resulting Foregone Revenue. Front. Vet. Sci. 2017, 4, 67. [Google Scholar] [CrossRef]
- Voslářová, E.; Večerek, V.; Passantino, A.; Chloupek, P.; Bedáňová, I. Transport Losses in Finisher Pigs: Impact of Transport Distance and Season of the Year. Asian-Australas. J. Anim. Sci. 2016, 30, 119–124. [Google Scholar] [CrossRef]
- la Lama, G.C.; Bermejo-Poza, R.; García-Rebollar, P.; Mitchell, M.; Barreiro, P.; Villarroel, M. Long-Distance Transport of Finisher Pigs in the Iberian Peninsula: Effects of Season on Thermal and Enthalpy Conditions, Welfare Indicators and Meat pH. Animals 2021, 11, 2410. [Google Scholar] [CrossRef]
- Schuck-Paim, C.; Alonso, W.J. Productivity of Mother Pigs Is Lower, and Mortality Greater, in Countries That Still Confine Them in Gestation Crates. F1000Research 2022, 11, 564. [Google Scholar] [CrossRef]
- Spoolder, H.A.M.; Geudeke, M.J.; der Peet-Schwering, C.M.C.; Soede, N.M. Group Housing of Sows in Early Pregnancy: A Review of Success and Risk Factors. Livest. Sci. 2019, 125, 1–14. [Google Scholar] [CrossRef]
- Meunier-Salaün, M.C.; Edwards, S.A.; Robert, S. Effect of Dietary Fibre on the Behaviour and Health of the Restricted Fed Sow. Anim. Feed Sci. Technol. 2001, 90, 53–69. [Google Scholar] [CrossRef]
- European Commission. ECI ‘End the Cage Age’. Available online: https://food.ec.europa.eu/animals/animal-welfare/eci/eci-end-cage-age_en (accessed on 14 May 2025).
- Singh, C.; Verdon, M.; Cronin, G.M.; Hemsworth, P.H. The Behaviour and Welfare of Sows and Piglets in Farrowing Crates or Lactation Pens. Animal 2017, 11, 1210–1221. [Google Scholar] [CrossRef]
- Baxter, E.M.; Lawrence, A.B.; Edwards, S.A. Alternative Farrowing Systems: Design Criteria for Farrowing Systems Based on the Biological Needs of Sows and Piglets. Animal 2011, 5, 580–600. [Google Scholar] [CrossRef]
- Herskin, M.S.; Di Giminiani, P. Pain in Pigs: Characterisation, Mechanisms and Indicators. In Advances in Pig Welfare, 2nd ed.; Camerlink, I., Baxter, E.M., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier Ltd.: Amsterdam, The Netherlands, 2024; pp. 23–48. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation (EU) of 2016/336 of 8 March 2016 on the application of Council Directive 2008/120/EC Laying Down Minimum Standards for the Protection of Pigs as Regards Measures to Reduce the Need for Tail-Docking; 2016, EU Recommendation 2016/336. Available online: https://eur-lex.europa.eu/eli/reco/2016/336/oj/eng (accessed on 14 May 2025).
- D’Eath, R.B.; Niemi, J.K.; Vosough Ahmadi, B.; Rutherford, K.M.D.; Ison, S.H.; Turner, S.P.; Anker, H.T.; Jensen, T.; Busch, M.E.; Jensen, K.K.; et al. Why Are Most EU Pigs Tail Docked? Economic and Ethical Analysis of Four Pig Housing and Management Scenarios in the Light of EU Legislation and Animal Welfare Outcomes. Animal 2016, 10, 687–699. [Google Scholar] [CrossRef]
- European Commission. EC Declaration of 16 December 2010 on Alternatives to Surgical Castration of Pigs; European Commission: Brussels, Belgium, 2016. Available online: https://food.ec.europa.eu/system/files/2016-10/aw_prac_farm_pigs_cast-alt_declaration_en.pdf (accessed on 14 May 2025).
- Sutherland, M.A. Welfare Implications of Invasive Piglet Husbandry Procedures, Methods of Alleviation and Alternatives: A Review. New Zealand Veter.-J. 2015, 63, 52–57. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The Biological Stress of Early Weaned Piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Pexas, G.; Kyriazakis, I. Hotspots and Bottlenecks for the Enhancement of the Environmental Sustainability of Pig Systems, with Emphasis on European Pig Systems. Porc. Health Manag. 2023, 9, 1–23. [Google Scholar] [CrossRef]
- Rudolph, G.; Hörtenhuber, S.; Bochicchio, D.; Butler, G.; Brandhofer, R.; Dippel, S.; Dourmad, J.Y.; Edwards, S.; Früh, B.; Meier, M.; et al. Effect of Three Husbandry Systems on Environmental Impact of Organic Pigs. Sustainability 2018, 10, 3796. [Google Scholar] [CrossRef]
- Gunnarsson, S.; Segerkvist, K.A.; Wallgren, T.; Hansson, H.; Sonesson, U. A Systematic Mapping of Research on Sustainability Dimensions at Farm-Level in Pig Production. Sustainability 2020, 12, 4352. [Google Scholar] [CrossRef]
- Brundtland, G.H. Our Common Future—Call for Action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- Dolman, M.A.; Vrolijk, H.C.; De Boer, I.J. Exploring Variation in Economic, Environmental and Societal Performance among Dutch Fattening Pig Farms. Livest. Sci. 2012, 149, 143–154. [Google Scholar] [CrossRef]
- Schodl, K.; Klein, F.; Winckler, C. Mapping Sustainability in Pig Farming Research Using Keyword Network Analysis. Livest. Sci. 2017, 196, 28–35. [Google Scholar] [CrossRef]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and Environmental Issues in Organic and Conventional Agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- FAO. SAFA Guidelines; FAO: Rome, Italy, 2014. [Google Scholar]
- Hitchens, P.L.; Hultgren, J.; Frössling, J.; Emanuelson, U.; Keeling, L.J. A Linkage between Non-Compliance with Animal Welfare Legislation and Environmental Emissions. In Proceedings of the XVIII International Congress of the International Society for Animal Hygiene, Mazatlán, Mexico, 19–23 March 2017. [Google Scholar]
- Pirlo, G.; Carè, S.; Casa, G.D.; Marchetti, R.; Ponzoni, G.; Faeti, V.; Fantin, V.; Masoni, P.; Buttol, P.; Zerbinatti, L.; et al. Environmental Impact of Heavy Pig Production in a Sample of Italian Farms. A Cradle to Farm-Gate Analysis. Sci. Total Environ. 2016, 565, 576–585. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A Thematic Review of Life Cycle Assessment (LCA) Applied to Pig Production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Noya, I.; Villanueva-Rey, P.; González-García, S.; Fernandez, M.D.; Rodriguez, M.R.; Moreira, M.T. Life Cycle Assessment of Pig Production: A Case Study in Galicia. J. Clean. Prod. 2017, 142, 4327–4338. [Google Scholar] [CrossRef]
- Pexas, G.; Mackenzie, S.G.; Wallace, M.; Kyriazakis, I. Cost-Effectiveness of Environmental Impact Abatement Measures in a European Pig Production System. Agric. Syst. 2020, 182, 102843. [Google Scholar] [CrossRef]
- Lamnatou, C.; Ezcurra-Ciaurriz, X.; Chemisana, D.; Plà-Aragonés, L.M. Environmental Assessment of a Pork-Production System in North-East of Spain Focusing on Life-Cycle Swine Nutrition. J Clean Prod 2016, 137, 105–115. [Google Scholar] [CrossRef]
- García-Gudiño, J.; Ntr Monteiro, A.; Espagnol, S.; Blanco-Penedo, I.; Garcia-Launay, F. Life Cycle Assessment of Iberian Traditional Pig Production System in Spain. Sustainability 2020, 12, 627. [Google Scholar] [CrossRef]
- Reckmann, K.; Traulsen, I.; Krieter, J. Life Cycle Assessment of Pork Production: A Data Inventory for the Case of Germany. Livest. Sci. 2013, 157, 586–596. [Google Scholar] [CrossRef]
- Zira, S.; Röös, E.; Ivarsson, E.; Hoffmann, R.; Rydhmer, L. Social Life Cycle Assessment of Swedish Organic and Conventional Pork Production. Int. J. Life Cycle Assess. 2020, 25, 1957–1975. [Google Scholar] [CrossRef]
- Winkler, T.; Schopf, K.; Aschemann, R.; Winiwarter, W. From Farm to Fork–A Life Cycle Assessment of Fresh Austrian Pork. J. Clean. Prod. 2016, 116, 80–89. [Google Scholar] [CrossRef]
- Noya, I.; Aldea, X.; González-García, S.; Gasol, C.M.; Moreira, M.T.; Amores, M.J.; Marín, D.; Boschmonart-Rives, J. Environmental Assessment of the Entire Pork Value Chain in Catalonia-A Strategy to Work towards Circular Economy. Sci. Total Environ. 2017, 589, 122–129. [Google Scholar] [CrossRef]
- Gutiérrez, A.S.; Eras, J.J.C.; Billen, P.; Vandecasteele, C. Environmental Assessment of Pig Production in Cienfuegos, Cuba: Alternatives for Manure Management. J. Clean. Prod. 2016, 112, 2518–2528. [Google Scholar] [CrossRef]
- Villavicencio Gutierrez, M.; da Silva, A.; Flores, M.; Martínez-Castaneda, F.; Martinez Campos, A.; Matus Gardea, J.; Tenorio, G.G. Life cycle assessment of pig production—A case studyin Mexican farm. In Economic and Social Development: Book of Proceedings; 2018; pp. 734–741. Available online: https://www.researchgate.net/publication/330970375_LIFE_CYCLE_ASSESSMENT_OF_PIG_PRODUCTION_-_A_CASE_STUDY_IN_MEXICAN_FARM (accessed on 2 February 2025).
- Monteiro, A.N.T.R.; Garcia-Launay, F.; Brossard, L.; Wilfart, A.; Dourmad, J.Y. Effect of Feeding Strategy on Environmental Impacts of Pig Fattening in Different Contexts of Production: Evaluation through Life Cycle Assessment. J. Anim. Sci. 2016, 94, 4832–4847. [Google Scholar] [CrossRef]
- Reyes, Y.A.; Barrera, E.L.; Valle, A.S.; Gil, M.P.; García, O.H.; Dewulf, J. Life Cycle Assessment for the Cuban Pig Production: Case Study in Sancti Spiritus. J. Clean. Prod. 2019, 219, 99–109. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z.; Lelek, Ł.; Kulczycka, J. Comparative Analyses of Pig Farming Management Systems Using the Life Cycle Assessment Method. J. Clean. Prod. 2019, 241, 118305. [Google Scholar] [CrossRef]
- Bandekar, P.A.; Leh, M.; Bautista, R.; Matlock, M.D.; Thoma, G.; Ulrich, R. Life Cycle Assessment of Alternative Swine Management Practices. J. Anim. Sci. 2019, 97, 472–484. [Google Scholar] [CrossRef]
- Bava, L.; Zucali, M.; Sandrucci, A.; Tamburini, A. Environmental Impact of the Typical Heavy Pig Production in Italy. J. Clean. Prod. 2017, 140, 685–691. [Google Scholar] [CrossRef]
- Villavicencio-Gutiérrez, M.D.R.; Rogers-Montoya, N.A.; Martínez-Campos, R.; Gómez-Tenorio, G.E.R.M.A.N.; Martínez-Castañeda, F.E. The Environmental Performance of Different Pork Production Scenarios: A Life Cycle Assessment Study. Trop. Anim. Health Prod. 2022, 54, 44. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Dai, C.; Ye, Y.; Zhu, H.; Fang, W. Life-Cycle Comparisons of Economic and Environmental Consequences for Pig Production with Four Different Models in China. Environ. Sci. Pollut. Res. 2024, 31, 21668–21686. [Google Scholar] [CrossRef]
- Liu, X.; Cai, Z.; Yuan, Z. Environmental Burdens of Small-Scale Intensive Pig Production in China. Sci. Total Environ. 2021, 770, 144720. [Google Scholar] [CrossRef]
- Giraldi-Díaz, M.R.; Castillo-González, E.; De Medina-Salas, L.; la Cruz, R.; Huerta-Silva, H.D. Environmental Impacts Associated with Intensive Production in Pig Farms in Mexico through Life Cycle Assessment. Sustainability 2021, 13, 11248. [Google Scholar] [CrossRef]
- Savian, M.; da Penha Simon, C.; Holden, N.M. Evaluating Environmental, Economic, and Social Aspects of an Intensive Pig Production Farm in the South of Brazil: A Case Study. Int. J. Life Cycle Assess. 2023, 28, 1544–1560. [Google Scholar] [CrossRef]
- Pazmiño, M.L.; Ramirez, A.D. Life Cycle Assessment as a Methodological Framework for the Evaluation of the Environmental Sustainability of Pig and Pork Production in Ecuador. Sustainability 2021, 13, 11693. [Google Scholar] [CrossRef]
- Zira, S.; Rydhmer, L.; Ivarsson, E.; Hoffmann, R.; Röös, E. A Life Cycle Sustainability Assessment of Organic and Conventional Pork Supply Chains in Sweden. Sustain. Prod. Consum. 2021, 28, 21–38. [Google Scholar] [CrossRef]
- Treml, N.; Rudi, A.; Schultmann, F. Evaluating Environmental Impacts of Pork Production: A Life Cycle Assessment of Seven Case Studies in Germany. J. Clean. Prod. 2025, 503, 145408. [Google Scholar] [CrossRef]
- Santos, L.; Ferreira, M.; Domingos, I.; Oliveira, V.; Rodrigues, C.; Ferreira, A.; Ferreira, J. Life Cycle Assessment of Pig Production in Central Portugal: Environmental Impacts and Sustainability Challenges. Sustainability 2025, 17, 426. [Google Scholar] [CrossRef]
- Hietala, S.; Usva, K.; Vieraankivi, M.L.; Vorne, V.; Nousiainen, J.; Leinonen, I. Environmental Sustainability of Finnish Pork Production: Life Cycle Assessment of Climate Change and Water Scarcity Impacts. Int. J. Life Cycle Assess. 2024, 29, 483–500. [Google Scholar] [CrossRef]
- Thoma, G.J.; Baker, B.; Knap, P.W. A Life Cycle Assessment Study of the Impacts of Pig Breeding on the Environmental Sustainability of Pig Production. Animals 2024, 14, 2435. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, J. Exploring a Comprehensive Environmental Efficiency Evaluation of Pig Production Sector in China: Combination of LCA and Undesirable Output SBM Model. Environ. Impact Assess. Rev. 2025, 112, 107779. [Google Scholar] [CrossRef]
- Dourmad, J.Y.; Ryschawy, J.; Trousson, T.; Gonzalez, J.; Houwers, H.W.J.; Hviid, M.; Nguyen, T.L.T.; Mogensen, L. Evaluation of the Environmental Sustainability of Different European Pig Production Systems Using Life Cycle Assessment.8. International Conference on LCA in the Agri-Food Sector, Oct 2012, SaintMalo, France. INRA, 2012, Proceedings 8th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2012). ffhal-01210841f. Available online: https://hal.science/hal-01210841/document (accessed on 2 February 2025).
- Wang, X.; Dadouma, A.; Chen, Y.; Sui, P.; Gao, W.; Jia, L. Sustainability Evaluation of the Large-Scale Pig Farming System in North China: An Emergy Analysis Based on Life Cycle Assessment. J. Clean. Prod. 2015, 102, 144–164. [Google Scholar] [CrossRef]
- Mackenzie, S.G.; Leinonen, I.; Ferguson, N.; Kyriazakis, I. Can the Environmental Impact of Pig Systems Be Reduced by Utilising Co-Products as Feed? J. Clean. Prod. 2016, 115, 172–181. [Google Scholar] [CrossRef]
- Kaufmann, T. Sustainable Livestock Production: Low Emission Farm-The Innovative Combination of Nutrient, Emission and Waste Management with Special Emphasis on Chinese Pig Production. Anim. Nutr. 2015, 1, 104–112. [Google Scholar] [CrossRef]
- Herrero, M.; Mason-D’Croz, D.; Thornton, P.K.; Fanzo, J.; Rushton, J.; Godde, C.; Bellows, A.; de Groot, A.; Palmer, J.; Chang, J.; et al. Livestock and Sustainable Food Systems: Status, Trends, and Priority Actions. In Science and Innovations for Food Systems Transformation; Springer: Berlin, Germany, 2023; pp. 375–399. [Google Scholar] [CrossRef]
- Gislason, S.; Birkved, M.; Maresca, A. A Systematic Literature Review of Life Cycle Assessments on Primary Pig Production: Impacts, Comparisons, and Mitigation Areas. Sustain. Prod. Consum. 2023, 42, 44–62. [Google Scholar] [CrossRef]
- ISO. ISO14040, Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization, ISO: Geneva, Switzerland, 2006. [Google Scholar]
- European Commission. Commission Recommendation of 16.12.2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations 2021; European Commission: Brussels, Belgium, 2021.
- FAO. Environmental Performance of Pig Supply Chains: Guidelines for Assessment (Version 1). Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2018. [Google Scholar]
- Bonneau, M.; Klauke, T.N.; Gonzàlez, J.; Rydhmer, L.; Ilari-Antoine, E.; Dourmad, J.Y.; De Greef, K.; Houwers, H.W.J.; Cinar, M.U.; Fàbrega, E.; et al. Evaluation of the Sustainability of Contrasted Pig Farming Systems: Integrated Evaluation. Animal 2014, 8, 2058–2068. [Google Scholar] [CrossRef]
- Zira, S.; Röös, E.; Ivarsson, E.; Friman, J.; Møller, H.; Samsonstuen, S.; Olsen, H.F.; Rydhmer, L. An Assessment of Scenarios for Future Pig Production Using a One Health Approach. Livest. Sci. 2022, 260, 104929. [Google Scholar] [CrossRef]
- Boogaard, B.K.; Boekhorst, L.J.S.; Oosting, S.J.; Sørensen, J.T. Socio-Cultural Sustainability of Pig Production: Citizen Perceptions in the Netherlands and Denmark. Livest. Sci. 2011, 140, 189–200. [Google Scholar] [CrossRef]
- Wei, S.; Bai, Z.H.; Qin, W.; Xia, L.J.; Oenema, O.; Jiang, R.F.; Ma, L. Environmental, Economic and Social Analysis of Peri-Urban Pig Production. J. Clean. Prod. 2016, 129, 596–607. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Deb, N.C.; Tamrakar, N.; Kang, D.Y.; Kang, M.Y.; Kook, J.; Basak, J.K.; Kim, H.T. From Reality to Virtuality: Revolutionizing Livestock Farming Through Digital Twins. Agriculture 2024, 14, 2231. [Google Scholar] [CrossRef]
- Akinyemi, B.E.; Siegford, J.M.; Jessiman, L.; Turner, S.P.; Johnson, A.K.; Akaichi, F. Precision Livestock Farming Usage among a Subset of U.S. Swine Producers: Insights through a Structural Equation Modeling Approach. Smart Agric. Technol. 2025, 10, 100839. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Hendricks, J.; Ventura, B.; Weary, D.M. Swine Industry Perspectives on the Future of Pig Farming. Anim. Welf. 2024, 33, e7. [Google Scholar] [CrossRef] [PubMed]
- Krampe, C.; Ingenbleek, P.T.M.; Niemi, J.K.; Serratosa, J. Designing Precision Livestock Farming System Innovations: A Farmer Perspective. J. Rural. Stud. 2024, 111, 103397. [Google Scholar] [CrossRef]
- Møller, H.; Rydhmer, L.; Christensen, T.; Poulsen, L.K.; Olsen, H.F. Social Life Cycle Assessment in Current and Future Norwegian Livestock Production. Int. J. Life Cycle Assess. 2024, 1–18. [Google Scholar] [CrossRef]
- Marković, M.; Krstić, B.; Rađenović, T. Circular Economy and Sustainable Development. Econom. Sust. Dev. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Riddicka, B.; Li, R.; Able, J.A.; Boakye-Boaten, N.A.; Shahbazi, A. Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US. Sustainability 2016, 8, 477. [Google Scholar] [CrossRef]
- Ait-Sidhoum, A.; Guesmi, B.; Cabas-Monje, J.; Roig, J.M.G. The Impact of Alternative Feeding Strategies on Total Factor Productivity Growth of Pig Farming: Empirical Evidence from Eu Countries. Span. J. Agric. Res. 2021, 19, e0106. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Rajendran, K.; Vigneswaran, V.S.; Kumar, V.; Dregulo, A.M.; Singh, V.; Kumar, D.; Sindhu, R.; Zhang, Z. Exploration of Upgrading of Biomass and Its Paradigmatic Synthesis: Future Scope for Biogas Exertion. Sustain. Chem. Pharm. 2024, 38, 101450. [Google Scholar] [CrossRef]
- Fachal-Suárez, M.; Krishnan, S.; Chaiprapat, S.; González, D.; Gabriel, D. An Overview of Biomethanation and the Use of Membrane Technologies as a Candidate to Overcome H2 Mass Transfer Limitations. Biotechnol. Adv. 2024, 77, 108465. [Google Scholar] [CrossRef]
- López, F.; Rodríguez, L.; Abdolmaleki, F.; Martínez, G.; Bugallo, B.; Fernández Morales, J.; Francisco López, A.; Lago Rodríguez, T.; Faraji Abdolmaleki, S.; Galera Martínez, M.; et al. From Biogas to Biomethane: An In-Depth Review of Upgrading Technologies That Enhance Sustainability and Reduce Greenhouse Gas Emissions. Appl. Sci. 2024, 14, 2342. [Google Scholar] [CrossRef]
- Guo, G.; Guan, J.; Sun, S.; Liu, J.; Zhao, Y. Nutrient and Heavy Metal Removal from Piggery Wastewater and CH4 Enrichment in Biogas Based on Microalgae Cultivation Technology under Different Initial Inoculum Concentration. Water Environ. Res. 2020, 92, 922–933. [Google Scholar] [CrossRef]
- European Biomethane Association European Biomethane Map—Infrastructure for Biomethane Production 2024. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2024/07/GIE_EBA_Biomethane-Map-2024.pdf (accessed on 28 May 2025).
- Handayani, T.; Djarot, I.N.; Widyastuti, N.; Arianti, F.D.; Rifai, A.; Sitomurni, A.I.; Nur, M.M.A.; Dewi, R.N.; Nuha, N.; Hariyanti, J.; et al. Biogas Quality and Nutrient Remediation in Palm Oil Mill Effluent through Chlorella vulgaris Cultivation Using a Photobioreactor. Glob. J. Environ. Sci. Manag. 2024, 10, 1519–1542. [Google Scholar] [CrossRef]
- Yan, M.; Huan, Q.; Zhang, Y.; Fang, W.; Chen, F.; Pariatamby, A.; Kanchanatip, E.; Wibowo, H. Effect of Operating Parameters on CO2 Capture from Biogas with Choline Chloride—Monoethanolamine Deep Eutectic Solvent and Its Aqueous Solution. Biomass Convers. Biorefin. 2024, 14, 283–297. [Google Scholar] [CrossRef]
- Imran-Masood, M.; García-Díez, E.; Usman, M.; Lodhi, B.K.; Waqas, M.; García, S. Development of a Novel Bio Char for CO2 Capture and Biogas Upgrade: Static and Dynamic Testing. J. CO2 Util. 2024, 89, 102958. [Google Scholar] [CrossRef]
- Prado, J.; Fangueiro, D.; Alvarenga, P.; Ribeiro, H. Assessment of the Agronomic Value of Manure-Based Fertilizers. Agronomy 2022, 13, 140. [Google Scholar] [CrossRef]
- Zhang, Y.; Bo, Q.; Du, Y.; Du, X.; Xu, L.; Yang, Y. Solid-liquid Separation and Its Environmental Impact on Manure Treatment in Scaled Pig Farms—Evidence Based on Life Cycle Assessment. Agriculture 2023, 13, 2284. [Google Scholar] [CrossRef]
- Vrieze, J.D.; Colica, G.; Pintucci, C.; Sarli, J.; Pedizzi, C.; Willeghems, G.; Vlaeminck, S.E. Resource Recovery from Pig Manure via an Integrated Approach: A Technical and Economic Assessment for Full-Scale Applications. Bioresour. Tech. 2019, 272, 582–593. [Google Scholar] [CrossRef]
- Herbstritt, S.M.; Fathel, S.L.; Reinford, B.; Richard, T.L. Waste to Worth: A Case Study of the Biogas Circular Economy in Pennsylvania. J. ASABE 2023, 66, 771–787. [Google Scholar] [CrossRef]
- Filho, J.d.S.O.; Daguerre-Martini, S.; Vanotti, M.B.; Sáez-Tovar, J.A.; Rosal, A.; Pérez-Murcia, M.; Moral, R. Recovery of Ammonia in Raw and Co-Digested Swine Manure Using Gas-Permeable Membrane Technology. Front. Sustain. Food Syst. 2018, 2, 30. [Google Scholar] [CrossRef]
- Dubé, P.; Vanotti, M.B.; Szögi, A.A.; García-González, M.C. Enhancing Recovery of Ammonia from Swine Manure Anaerobic Digester Effluent Using Gas-Permeable Membrane Technology. J. Waste Manag. 2016, 49, 372–377. [Google Scholar] [CrossRef]
- Akhil, U.S.; Alagumalai, A. A Short Review on Valorization of Slaughterhouse Wastes for Biodiesel Production. ChemistrySelect 2019, 4, 13356–13362. [Google Scholar] [CrossRef]
- Arshad, M.; Syed-Hassan, S.S.A.; Masood, R.; Ansari, A.R.; Mumtaz, A.; Rahman, A.; Saba, I. Utilization of Waste Animal Fat for Sustainable Biodiesel Production. In Climate Changes Mitigation and Sustainable Bioenergy Harvest Through Animal Waste: Sustainable Environmental Implications of Animal Waste; Springer Nature: Cham, Switzerland, 2023; pp. 49–169. [Google Scholar]
- YoungJung, K.; Lee, S.; Kim, J.; Kang, D.; Choi, H. Testing of Agricultural Tractor Engine Using Animal-Fats Biodiesel as Fuel. J. Biosyst. Eng. 2013, 38, 208–214. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, J. Waste Pig Carcasses as a Renewable Resource for Production of Biofuels. ACS Sustain. Chem. Eng. 2014, 3, 204–209. [Google Scholar] [CrossRef]
- Zulqarnain, A.M.; Yusoff, M.H.M.; Nazir, M.H.; Zahid, I.; Ameen, M.; Budi Nursanto, E. A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies. Sustainability 2021, 13, 788. [Google Scholar] [CrossRef]
- Sambasivam, K.M.; Kuppan, P.; Laila, L.S.; Shashirekha, V.; Tamilarasan, K.; Abinandan, S. Kernel-Based Biodiesel Production from Non-Edible Oil Seeds: Techniques, Optimization, and Environmental Implications. Energies 2023, 16, 7589. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Silva-Gálvez, A.L.; Aguilar-Juárez, Ó.; Senés-Guerrero, C.; Orozco-Nunnelly, D.A.; Carrillo-Nieves, D.; Gradilla-Hernández, M.S. Microalgae-Based Livestock Wastewater Treatment (MbWT) as a Circular Bioeconomy Approach: Enhancement of Biomass Productivity, Pollutant Removal and High-Value Compound Production. J. Environ. Manag. 2022, 308, 114612. [Google Scholar] [CrossRef]
- Mariyappan, V.; Yu, C.L.; Wu, W.; Chang, J.S. Circular Bioeconomy Approach for Pig Farming Systems Using Microalgae-Based Wastewater Treatment Processes. Bioresour. Tech. 2024, 393, 130134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, W.; Yen, H.W.; Ho, S.H.; Lo, Y.C.; Cheng, C.; Chang, J. Cultivation of Chlorella Vulgaris Jsc-6 with Swine Wastewater for Simultaneous Nutrient/Cod Removal and Carbohydrate Production. Bioresour. Tech. 2015, 198, 619–625. [Google Scholar] [CrossRef]
- Rajesh Banu, J.; Kavitha Preethi, S.; Gunasekaran, M.; Kumar, G. Microalgae Based Biorefinery Promoting Circular Bioeconomy-Techno Economic and Life-Cycle Analysis. Bioresour. Tech. 2020, 302, 122822. [Google Scholar] [CrossRef]
- Lv, J.; Wang, X.; Feng, J.; Liu, Q.; Nan, F.; Liu, X.; Xie, S. Biomass Production and Nutrients Removal from Non-Sterile Municipal Wastewater and Cattle Farm Wastewater Inoculated with Chlorococcum Sp. GD. J. Chem. Technol. Biotechnol. 2019, 94, 2580–2588. [Google Scholar] [CrossRef]
- Sánchez-Zurano, A.; Rodríguez-Miranda, E.; Guzmán, J.L.; Acién-Fernández, F.G.; Sevilla, J.M.F.; Grima, E.M. Abaco: A New Model of Microalgae-Bacteria Consortia for Biological Treatment of Wastewaters. Appl. Sci. 2021, 11, 998. [Google Scholar] [CrossRef]
- Meenakshi, P.; Arutchelvan, V. Efficiency of Nutrient Uptake by Microalgae from Livestock Wastewater. Int. J. Eng. Res. Technol. (IJERT) 2017, 6, IJERTV6IS050160. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Nutrient Removal and Biomass Production: Advances in Microalgal Biotechnology for Wastewater Treatment. Crit. Rev. Biotechnol. 2018, 38, 1244–1260. [Google Scholar] [CrossRef]
- Parrini, S.; Aquilani, C.; Pugliese, C.; Bozzi, R.; Sirtori, F. Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals 2023, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- Hanczakowska, E.; Swiatkiewicz, M. Legume Seeds and Rapeseed Press Cake as Replacers of Soybean Meal in Feed for Fattening Pigs. Ann. Anim. Sci. 2014, 14, 921–934. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Wang, J.; Yu, J.; Yu, B.; Mao, X.; Chen, S. Effects of Aspergillus Niger Fermented Rapeseed Meal on Nutrient Digestibility, Growth Performance and Serum Parameters in Growing Pigs. Anim. Sci. J. 2015, 87, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Gracia, M.I.; Cano, G.; Vázquez, P.; Hansen, L.H.B. Effect of a Bacillus-Based Probiotic on Performance and Nutrient Digestibility When Substituting Soybean Meal with Rapeseed Meal in Grower-Finisher Diets. Animals 2023, 13, 3067. [Google Scholar] [CrossRef]
- Zhan, X.; Hou, L.; He, Z.; Cao, S.; Wen, X.; Liu, S.; Li, Y.; Chen, S.; Zheng, H.; Deng, D. Effect of Miscellaneous Meals Replacing Soybean Meal in Feed on Growth Performance, Serum Biochemical Parameters, and Microbiota Composition of 25–50 kg Growing Pigs. Animals 2024, 14, 1354. [Google Scholar] [CrossRef]
- Šimkus, A.; Šimkienė, A.; Černauskienė, J.; Kvietkutė, N.; Černauskas, A.; Paleckaitis, M.; Kerzienė, S. The Effect Of Blue Algae Spirulina Platensis On Pig Growth Performance And Carcass And Meat Quality. Vet. Med. Zoot 2013, 61, 70–74. [Google Scholar]
- Kalbe, C.; Priepke, A.; Nürnberg, G.; Dannenberger, D. Effects of Long-Term Microalgae Supplementation on Muscle Microstructure, Meat Quality and Fatty Acid Composition in Growing Pigs. J. Anim. Physiol. Anim. Nutr. 2018, 103, 574–582. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Mörlein, D. Do Dietary Soy Alternatives Lead to Pork Quality Improvements or Drawbacks? A Look into Micro-Alga and Insect Protein in Swine Diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef]
- Kibria, S.S.; Kim, I.H. Impacts of Dietary Microalgae (Schizochytrium Jb5) on Growth Performance, Blood Profiles, Apparent Total Tract Digestibility, and Ileal Nutrient Digestibility in Weaning Pigs. J. Sci. Food Agric. 2019, 99, 6084–6088. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.F.; Pestana, J.M.; Alfaia, C.M.; Costa, M.; Ribeiro, D.M.; Coelho, D.; Lopes, P.A.; Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Effects of Chlorella vulgaris as a Feed Ingredient on the Quality and Nutritional Value of Weaned Piglets’ Meat. Foods 2021, 10, 1155. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.J.; Weber, T.; Shurson, G.C. Evaluation of Commercially Available Enzymes, Probiotics, or Yeast on Apparent Total-Tract Nutrient Digestion and Growth in Nursery and Finishing Pigs Fed Diets Containing Corn Dried Distillers Grains with Solubles. PAS 2013, 29, 508–517. [Google Scholar] [CrossRef]
- Goehring, D.; Wu, F.; DeRouchey, J.M.; Goodband, R.D.; Tokach, M.D.; Woodworth, J.C.; Dritz, S.S. The Effects of Soybean Hulls Level, Distillers Dried Grains with Solubles, and Net Energy Formulation on Nursery Pig Performance. Transl. Anim. Sci. 2019, 3, 1335–1348. [Google Scholar] [CrossRef]
- Schwarz, T.; Przybyło, M.; Zapletal, P.; Turek, A.; Pabiańczyk, M.; Bartlewski, P.M. Effects of Using Corn Dried Distillers’ Grains with Solubles (cDDGS) as a Partial Replacement for Soybean Meal on the Outcomes of Pig Fattening, Pork Slaughter Value and Quality. Animals 2021, 11, 2956. [Google Scholar] [CrossRef]
- Tretola, M.; Ottoboni, M.; Luciano, A.; Rossi, L.; Baldi, A.; Pinotti, L. Former Food Products Have No Detrimental Effects on Diet Digestibility, Growth Performance and Selected Plasma Variables in Post-Weaning Piglets. Ital. J. Anim. Sci. 2019, 18, 987–996. [Google Scholar] [CrossRef]
- Ramu, P. Performance and Nutrient Digestibility in Sheep Fed Diets Containing Varying Levels of Biscuit Waste; Narsimha Rao Telangana Veterinary University: Hyderabad, India, 2018. [Google Scholar]
- Tiwari, M.R.; Dhakal, H.R. Bakery Waste Is an Alternative of Maize to Reduce the Cost of Pork Production. Int. J. Res. Agric. For. 2020, 7, 1–9. [Google Scholar]
- Barman, K.; Tamuli, M.K.; Sarma, D.K.; Banik, S.; Mohan, N.H.; Thomas, R.; Gokuldas, P.P.; Pegu, S.R.; Kaushik, P. Effect of Replacing Maize with Bakery Waste on the Performance of Growing Crossbred Pigs. Anim. Nutr. Feed Technol. 2016, 16, 165–170. [Google Scholar] [CrossRef]
- Ojediran, T.K. Growth Response, Cost Benefit, Carcass Characteristics and Organoleptic Properties of Pigs Fed Biscuit Dough as a Replacement for Maize. Acta Fytotech. Zootech 2019, 22, 58–63. [Google Scholar] [CrossRef]
- Malamakis, A.; Patsios, S.I.; Melas, L.; Dedousi, A.; Kontogiannopoulos, K.N.; Vamvakas, K.; Tsotsolas, N.; Koutsouraki, E.; Sossidou, E.N.; Banias, G.F. Demonstration of an Integrated Methodology for the Sustainable Valorisation of Bakery Former Food Products as a Pig Feed Ingredient: A Circular Bioeconomy Paradigm. Sustainability 2023, 15, 14385. [Google Scholar] [CrossRef]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling Food Leftovers in Feed as Opportunity to Increase the Sustainability of Livestock Production. J. Clean. Prod. 2021, 294, 126290–126303. [Google Scholar] [CrossRef]
- Termatzidou, S.-A.; Dedousi, A.; Kritsa, M.-Z.; Banias, G.F.; Patsios, S.I.; Sossidou, E.N. Growth Performance, Welfare and Behavior Indicators in Post-Weaning Piglets Fed Diets Supplemented with Different Levels of Bakery Meal Derived from Food By-Products. Sustainability 2023, 15, 12827. [Google Scholar] [CrossRef]
- Melas, L.; Batsioula, M.; Malamakis, A.; Patsios, S.I.; Geroliolios, D.; Alexandropoulos, E.; Skoutida, S.; Karkanias, C.; Dedousi, A.; Kritsa, M.-Z. Circular Bioeconomy Practices in the Greek Pig Sector: The Environmental Performance of Bakery Meal as Pig Feed Ingredient. Sustainability 2023, 15, 11688. [Google Scholar] [CrossRef]
- Jadhav, S.E.; Jadhav, P.; Kim, J.; Ajay, A. Alternative Feeding Resources for Economic Feeding of Pigs. In Commercial Pig Farming; Elsevier: Amsterdam, The Netherlands, 2025; pp. 123–139. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Lübeck, M. Production of Leaf Protein Concentrates in Green Biorefineries as Alternative Feed for Monogastric Animals. Anim. Feed. Sci. Technol. 2020, 268, 114605. [Google Scholar] [CrossRef]
- Ncube, A.; Sadondo, P.; Makhanda, R.; Mabika, C.; Beinisch, N.; Cocker, J.; Gwenzi, W.; Ulgiati, S. Circular Bioeconomy Potential and Challenges within an African Context: From Theory to Practice. J. Clean. Prod. 2022, 367, 133068. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M.; González, E.D.S. Impact of Circular Bioeconomy on Industry’s Sustainable Performance: A Critical Literature Review and Future Research Directions Analysis. Sustainability 2023, 15, 10759. [Google Scholar] [CrossRef]
- Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A.; Hekkert, M.P. Barriers to the Circular Economy: Evidence from the European Union (Eu). Ecol. Econ. 2018, 150, 264–272. [Google Scholar] [CrossRef]
Number | Reference to | Reference |
---|---|---|
EC Directive 91/630/EEC | Minimum standards for the protection of pigs | [34] |
EC Directive 2001/88/EC | Additional welfare improvements for sows (group housing, stocking density, and floors) | [35] |
EC Directive 2001/93/EC | Environmental enrichment and specific regulations concerning tail docking, teeth resection, and castration | [36] |
EC Directive 2008/120/EC | Stocking density for sows and gilts, requirements for light and maximum noise levels, necessity for permanent access to fresh water and to materials for rooting and playing, introduction of higher level of training and competence on welfare issues for personnel | [37] |
EC Recommendation 2016/336 | Enrichment materials that can be used for the improvement of pig welfare | [38] |
Authors | McAuliffe et al. | I. Noya et al. | Pexas et al. | Lamnatou et al. | García-Gudiño et al. | Rudolph et al. | Reckmann et al. | Zira | Gunnarsson et al. | Winkler et al. | Dolman et al. | Noya et al. | Sagastume Gutierrez et al. | Gutierrez et al. | Monteiro et al. | Reyes et al. | Makara et al. | Bandekar et al. | Bav. | Pirlo et al. | Villavicencio-Gutiérrez et al. | Wu et al. | Liu et al. | Giraldi-Díaz et al. | Savian et al. | Pazmiño et al. | Zira et al. | Treml et al. | Santos et al. | Hietala et al. | Thoma et al. | Sun et al. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2016 | 2017 | 2020 | 2016 | 2020 | 2018 | 2013 | 2020 | 2020 | 2016 | 2012 | 2017 | 2016 | 2018 | 2016 | 2019 | 2019 | 2019 | 2017 | 2016 | 2022 | 2024 | 2021 | 2021 | 2023 | 2021 | 2021 | 2025 | 2025 | 2024 | 2024 | 2025 | ||
Geographical context | Galicia (Northwest Spain) | Denmark | Spain | Spain | 8 European countries | Germany | Sweden | Europe, North America, Australia, and New Zealand | Austria | Netherlands | Spain | Cuba | Mexico | Brazil, France | Cuba | Poland | United States | Italy | Italy | Mexico | China | China | Mexico | Brazil | Ecuador | Sweden | Germany | Portugal | Finland | America | China | |||
Pig production—Stages | Feed production | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
Energy and transport | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||
Animal growth | Gestation | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
Farrowing | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
Weaning | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
Fattening | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||
Finishing | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||
Slaughtering | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||
Pig housing | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||
Waste/Manure management | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
Whole-system pig production | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||
Environmental Sustainability Assessment | GWP | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||
AP | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||
EP | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||
EC | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||
LO | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||
Other * | - | FD, FE, ME, TA | NREU, NRRU | CED, - | CED | NREU | - | - | - | NREU | FD, FE, ME, TA, WD | ADF, HT, POF, TE | FE, ME, PMF, POF, TA, WD | CED, TE | FE, ME, TA, TE | FD, FE, FET, HT-CE, HT-NCE, IR-E, IR-HH, ME, OD, PMF, POF, TE, WD | CED, CWC | ADF, NREU, OD, TE | ADR, PO | ALO, CC, FD, FE, FET, HT, IR, MD, ME, MET, MD, NLT, OD, PMF, PO, TA, TE, ULO, WD | WU | FE, FET, HTP. GWP, TA, TE | CF, EF, WF | - | FDP, GWP, MEP, ODP, PMFP, POPF, TAP | BDP, FDP, FE, FET, GWP, HTP, ME, MET, SCL, TAP, TE | - | FE, FET, FRS, HT-CE, HT-NCE, IR, LU ME, MET, MRS, OD, OF-HH, OF-TE, PMF, TA, TE, WU | WD | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sossidou, E.N.; Banias, G.F.; Batsioula, M.; Termatzidou, S.-A.; Simitzis, P.; Patsios, S.I.; Broom, D.M. Modern Pig Production: Aspects of Animal Welfare, Sustainability and Circular Bioeconomy. Sustainability 2025, 17, 5184. https://doi.org/10.3390/su17115184
Sossidou EN, Banias GF, Batsioula M, Termatzidou S-A, Simitzis P, Patsios SI, Broom DM. Modern Pig Production: Aspects of Animal Welfare, Sustainability and Circular Bioeconomy. Sustainability. 2025; 17(11):5184. https://doi.org/10.3390/su17115184
Chicago/Turabian StyleSossidou, Evangelia N., Georgios F. Banias, Maria Batsioula, Sofia-Afroditi Termatzidou, Panagiotis Simitzis, Sotiris I. Patsios, and Donald M. Broom. 2025. "Modern Pig Production: Aspects of Animal Welfare, Sustainability and Circular Bioeconomy" Sustainability 17, no. 11: 5184. https://doi.org/10.3390/su17115184
APA StyleSossidou, E. N., Banias, G. F., Batsioula, M., Termatzidou, S.-A., Simitzis, P., Patsios, S. I., & Broom, D. M. (2025). Modern Pig Production: Aspects of Animal Welfare, Sustainability and Circular Bioeconomy. Sustainability, 17(11), 5184. https://doi.org/10.3390/su17115184