Nutrient Status and Antioxidant Activity of the Invasive Amaranthus retroflexus L.
Abstract
:1. Introduction
2. Materials and Methods
- Collection and sample preparation;
- Mineral content analysis;
- Antioxidant capacity evaluation;
- Total Polyphenol Content (TPC) determination;
- Statistical data analysis;
- Investigation of harvesting and cultivation techniques.
2.1. Collection and Sample Preparation
2.2. Mineral Content Analysis
2.3. Total Antioxidant Capacity Analysis
2.4. Total Polyphenol Content (TPC) Determination
2.5. Statistical Analysis
2.6. Investigation of Harvesting and Cultivation Techniques
3. Results and Discussions
3.1. Amaranth spp. as a Food of the Future
3.2. Harvesting and Cultivation of Amaranth spp.
3.3. Harvesting Medicinal Amaranth for Therapeutic Use
4. Conclusions, Observations, and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardenista. Weeds You Can Eat: Wild Amaranth. Available online: https://www.gardenista.com/posts/weeds-you-can-eat-wild-amaranth/ (accessed on 27 February 2025).
- Anjali, K.; Joshi, A.; Maloo, S.R.; Sharma, R. Assessment of the morphological and molecular diversity in Amaranthus spp. Afr. J. Agric. Res. 2013, 8, 2307–2311. [Google Scholar] [CrossRef]
- Myers, R.L. Amaranth: New Crop Opportunity. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19980706159 (accessed on 27 February 2025).
- Kolářová, M.; Piskáčková, T.A.R.; Tyšer, L.; Hoová, T.T. Characterisation of Czech arable weed communities according to management and production area considering the prevalence of herbicide-resistant species. Weed Res. 2023, 63, 57–67. [Google Scholar] [CrossRef]
- Caselato-Sousa, V.M.; Amaya-Farfán, J. State of knowledge on amaranth grain: A comprehensive review. J. Food Sci. 2012, 77, R93–R104. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Sindhu, R.; Dhull, S.B.; Bou-Mitri, C.; Singh, Y.; Panwar, S.; Khatkar, B.S. Nutritional composition, functionality, and processing technologies for amaranth. J. Food Process. Preserv. 2023, 2023, 1753029. [Google Scholar] [CrossRef]
- Anderson, J.E. Conjure in African American Society; LSU Press: Baton Rouge, LA, USA, 2005; Available online: https://archive.org/details/conjureinafrican0000ande (accessed on 9 March 2025).
- Kwapata, M.B.; Maliro, M.F. Indigenous Vegetables in Malawi: Germplasm Collecting and Improvement of Production Practices. In Traditional African Vegetables, Proceedings of the IPGRI International Workshop on Genetic Resources of Traditional Vegetables in Africa: Conservation and Use, Held at ICRAF, Nairobi, Kenya, 29–31 August 1995; IPGRI: Rome, Italy, 1997; Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19981608294 (accessed on 19 February 2025).
- Srivastava, A.; Snehi, S.K.; Raj, S.K. Molecular Detection and Characterization of Begomoviruses Infecting Amaranthus, a Protein-Rich Crop. In Geminivirus: Detection, Diagnosis and Management; Academic Press: Cambridge, MA, USA, 2022; pp. 25–32. [Google Scholar] [CrossRef]
- Kachiguma, N.A.; Mwase, W.; Maliro, M.; Damaliphetsa, A. Chemical and mineral composition of amaranth (Amaranthus L.) species collected from central Malawi. J. Food Res. 2015, 4, 92. [Google Scholar] [CrossRef]
- Nascimento, A.C.; Motta, C.; Rego, A.; Delgado, I.; Santiago, S.; Assunção, R.; Matos, A.S.; Santos, M.; Castanheira, I. Measuring Minerals in Pseudocereals Using Inductively Coupled Plasma Optical Emission Spectrometry: What Is the Optimal Digestion Method? Foods 2025, 14, 565. [Google Scholar] [CrossRef]
- Charrondiere, U.; Vignat, J.; Møller, A.; Ireland, J.; Becker, W.; Church, S.; Farran, A.; Holden, J.; Klemm, C.; Linardou, A.; et al. The European nutrient database (ENDB) for nutritional epidemiology. J. Food Compos. Anal. 2022, 15, 435–451. [Google Scholar] [CrossRef]
- Savescu, P. A New Approach to Study the Sweetener’S Effect on Hibiscus Tea Oxidative Status. Int. Multidiscip. Sci. GeoConference SGEM 2017, 17, 455–460. [Google Scholar] [CrossRef]
- Savescu, P. Improving the concentrations of bioactive compounds (with antioxidant properties) in alfalfa and corn for their use in food supplements and functional food. Int. Multidiscip. Sci. GeoConference SGEM 2016, 1, 583–590. [Google Scholar]
- National Academy of Sciences. Amaranth: Modern Prospects for an Ancient Crop; National Academies Press: Washington, DC, USA, 1984; Available online: https://nap.nationalacademies.org/catalog/19381/amaranth-modern-prospects-for-an-ancient-crop (accessed on 19 February 2025). [CrossRef]
- Esri; HERE; Garmin; Intermap; Increment P Corp.; GEBCO; USGS; FAO; NPS; NRCAN; GeoBase; IGN; Kadaster NL; Ordnance Survey; Esri Japan; METI; Esri China (Hong Kong); OpenStreetMap Contributors; GIS User Community. World Topographic Map. Esri. Available online: https://www.esri.com/en-us/home (accessed on 10 May 2025).
- El Mellouki, M.; Boularbah, A.; Frimpong, K.A.; Kebede, F. Portable X-ray fluorescence (pXRF) application for plant nutrition analysis and environmental hazard evaluation in tropical environment. J. Plant Nutr. 2025, 1–21. [Google Scholar] [CrossRef]
- Montanha, G.S.; Rodrigues, E.S.; Marques, J.P.R.; de Almeida, E.; dos Reis, A.R.; de Carvalho, H.W.P. X-ray fluorescence spectroscopy (XRF) applied to plant science: Challenges towards in vivo analysis of plants. Metallomics 2020, 12, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Antonangelo, J.; Zhang, H. Assessment of portable X-ray fluorescence (pXRF) for plant-available nutrient prediction in biochar-amended soils. Sci. Rep. 2024, 14, 20377. Available online: https://www.nature.com/articles/s41598-024-71381-8 (accessed on 11 March 2025). [CrossRef] [PubMed]
- Tavares, T.R.; de Almeida, E.; Junior, C.R.P.; Guerrero, A.; Fiorio, P.R.; de Carvalho, H.W.P. Analysis of total soil nutrient content with X-ray Fluorescence spectroscopy (XRF): Assessing different predictive modeling strategies and auxiliary variables. AgriEngineering 2023, 5, 680–697. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Wang, W.; Liao, S. Evaluation of portable X-ray fluorescence analysis and its applicability as a tool in geochemical exploration. Minerals 2023, 13, 166. [Google Scholar] [CrossRef]
- Bordean, D.M. Analiza Produselor Agroalimentare—Partea I; ArtPress: Timișoara, Romania, 2016; ISBN 978-973-108-721-4. [Google Scholar]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Bordean, D.-M.; Catargiu, A.; Alda, L.; Poiana, M.-A.; Pirvulescu, L. Romanian Walnuts, Source of Important Nutrients. Ann. Univ. Oradea Fascicle Ecotoxicol. Anim. Husb. Food Sci. Technol. 2019, 18, 105–110. Available online: https://protmed.uoradea.ro/facultate/publicatii/ecotox_zooteh_ind_alim/2019B/Food/02%20Bordean.pdf (accessed on 5 March 2025).
- Plumlee, K.H. Chapter 25—Plants, Clinical Veterinary Toxicology; Mosby: Maryland Heights, MO, USA, 2004; pp. 337–442. ISBN 9780323011259. [Google Scholar] [CrossRef]
- Pirvulescu, L. Comparative evaluation of antioxidant capacity of herbal plants by different methods. J. Hortic. For. Biotechnol. 2015, 19, 9–12. [Google Scholar]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- ChatGPT. OpenAI. Available online: https://chat.openai.com/ (accessed on 17 May 2025).
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in plants: Structure, biosynthesis, abiotic stress regulation, and practical applications. Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef]
- Masante, T.; Cafà, S.; Di Iorio, A. Total Polyphenol Content and Antioxidant Activity of Leaves and Fine Roots as Indicators of Drought Resistance in the Native Quercus robur and Alien Quercus rubra. Forests 2024, 15, 19994907. Available online: https://www.proquest.com/docview/3110526147/fulltextPDF/F21AA3C8D204AA1PQ/1?accountid=196267&sourcetype=Scholarly%20Journals (accessed on 8 April 2025). [CrossRef]
- Zhang, F.P.; Yang, Q.Y.; Zhang, S.B. Dual effect of phenolic nectar on three floral visitors of Elsholtzia rugulosa (Lamiaceae) in SW China. PLoS ONE 2016, 11, e0154381. Available online: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0154381&type=printable (accessed on 8 April 2025). [CrossRef] [PubMed]
- Wnuk, A.; Górny, A.G.; Bocianowski, J.; Kozak, M. Visualizing harvest index in crops. Commun. Biometry Crop Sci. 2013, 8. Available online: https://www.researchgate.net/profile/Marcin-Kozak-2/publication/262673777_Visualizing_harvest_index_in_crops/links/0c96053922fe86a4d6000000/Visualizing-harvest-index-in-crops.pdf (accessed on 10 March 2025).
- Stankevich, G.M.; Kats, A.; Shpak, V. Research and optimisation of the quantitative and qualitative characteristics of grain shipload lots in grain terminals. Food Sci. Technol. 2021, 14, 130–139. [Google Scholar] [CrossRef]
- Aslan, M.F.; Sabanci, K.; Aslan, B. Artificial intelligence techniques in crop yield estimation based on Sentinel-2 data: A comprehensive survey. Sustainability 2024, 16, 8277. [Google Scholar] [CrossRef]
- Maciel, I.C., Jr.; Dallacort, R.; Boechat, C.L.; Teodoro, P.E.; Teodoro, L.P.R.; Rossi, F.S.; de Oliveira-Júnior, J.F.; Della-Silva, J.L.; Baio, F.H.R.; Lima, M.; et al. Maize Crop Detection through Geo-Object-Oriented Analysis Using Orbital Multi-Sensors on the Google Earth Engine Platform. AgriEngineering 2024, 6, 491–508. [Google Scholar] [CrossRef]
Analyzed Parameters | M.U. | Root | Stem | Leaves | Flower with Seeds |
---|---|---|---|---|---|
K | g/kg | 84.19 ± 2.24 | 83.45 ± 3.76 | 74.92 ± 5.26 | 63.33 ± 2.63 |
Ca | g/kg | 42.46 ± 1.02 | 47.82 ± 0.49 | 71.80 ± 3.30 | 35.53 ± 2.14 |
Fe | g/kg | 1.49 ± 0.11 | 1.01 ± 0.03 | 2.44 ± 0.07 | 3.85 ± 0.17 |
Cu | ppm | 20.91 ± 1.28 | 13.80 ± 0.53 | 12.23 ± 0.83 | 25.20 ± 0.54 |
Mn | ppm | ND | 114.21 ± 1.97 | 296.46 ± 8.82 | 170.94 ± 4.75 |
Mo | ppm | 7.74 ± 0.13 | 5.83 ± 0.16 | 6.96 ± 0.32 | 7.74 ± 0.13 |
Zn | ppm | 72.93 ± 2.78 | 70.70 ± 4.34 | 76.54 ± 3.50 | 111.90 ± 2.84 |
Ni | ppm | ND | ND | ND | ND |
Ti | ppm | 125.97 ± 3.75 | 123.88 ± 2.14 | 238.93 ± 6.65 | 478.96 ± 29.41 |
Ba | ppm | 126.29 ± 3.35 | 110.53 ± 6.79 | 160.32 ± 9.85 | 160.32 ± 9.85 |
Zr | ppm | 5.04 ± 0.11 | 2.84 ± 0.08 | 5.83 ± 0.16 | 10.52 ± 0.28 |
Sr | ppm | 123.88 ± 2.14 | 93.09 ± 2.36 | 151.51 ± 4.21 | 26.84 ± 1.23 |
Rb | ppm | 6.96 ± 0.32 | 6.96 ± 0.32 | 7.74 ± 0.13 | 6.96 ± 0.32 |
Cr | ppm | ND | 8.46 ± 0.21 | 8.46 ± 0.21 | 10.52 ± 0.28 |
Ta | ppm | ND | 21.05 ± 0.56 | 21.05 ± 0.56 | ND |
Pb | ppm | 5.83 ± 0.16 | 5.83 ± 0.16 | ND | 2.04 ± 0.14 |
Sb | ppm | 21.05 ± 0.56 | 15.12 ± 0.32 | 15.12 ± 0.32 | 17.87 ± 0.45 |
Cd | ppm | ND | ND | 13.80 ± 0.53 | 13.80 ± 0.53 |
As | ppm | ND | ND | 2.84 ± 0.08 | 2.84 ± 0.08 |
Sc | ppm | 124.38 ± 8.49 | 229.21 ± 6.38 | 375.52 ± 6.48 | 84.19 ± 2.24 |
H2O | % | 51.73 ± 1.76 | 69.72 ± 3.30 | 50.40 ± 1.18 | 74.92 ± 5.26 |
TAC | µmol TE/g D.W. | 10.28 ± 0.46 | 22.96 ± 1.53 | 193.75 ± 1.35 | 70.40 ± 0.35 |
TPC | mg GAE/g D.W. | 54.3 ± 0.28 | 57.7 ± 0.91 | 202.35 ± 1.17 | 70.7 ± 0.46 |
Farm Size | Primary Crop | Harvesting Equipment |
---|---|---|
Small farm (<10 ha) | wheat, barley, maize | Hand-held vacuum harvesters, walk-behind brush strippers |
Medium farm (10–100 ha) | soybeans, sunflowers, legumes | Robotic weed pullers, high-clearance weed strippers |
Large farm (>100 ha) | corn, cereal grains | AI-driven robotic harvesters, optical sorting, drones |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacatus, M.; Tarkanyi, P.; Pirvulescu, L.; Iancu, T.; Caba, I.L.; Vlăduț, N.-V.; Borozan, A.B.; Alda, S.; Bordean, D.-M. Nutrient Status and Antioxidant Activity of the Invasive Amaranthus retroflexus L. Sustainability 2025, 17, 5141. https://doi.org/10.3390/su17115141
Lacatus M, Tarkanyi P, Pirvulescu L, Iancu T, Caba IL, Vlăduț N-V, Borozan AB, Alda S, Bordean D-M. Nutrient Status and Antioxidant Activity of the Invasive Amaranthus retroflexus L. Sustainability. 2025; 17(11):5141. https://doi.org/10.3390/su17115141
Chicago/Turabian StyleLacatus, Mihaela, Patricia Tarkanyi, Luminita Pirvulescu, Tiberiu Iancu, Ioan Ladislau Caba, Nicolae-Valentin Vlăduț, Aurica Breica Borozan, Simion Alda, and Despina-Maria Bordean. 2025. "Nutrient Status and Antioxidant Activity of the Invasive Amaranthus retroflexus L." Sustainability 17, no. 11: 5141. https://doi.org/10.3390/su17115141
APA StyleLacatus, M., Tarkanyi, P., Pirvulescu, L., Iancu, T., Caba, I. L., Vlăduț, N.-V., Borozan, A. B., Alda, S., & Bordean, D.-M. (2025). Nutrient Status and Antioxidant Activity of the Invasive Amaranthus retroflexus L. Sustainability, 17(11), 5141. https://doi.org/10.3390/su17115141