A Research on the Sustainable Impact of FTA Strategy on the Global Value Chain Embedding of Listed Enterprises in China
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Literature Review
2.1.1. FTAs and GVC Embeddedness
2.1.2. The Measurement of GVCs
2.2. Hypotheses
3. Research Design
3.1. Data and Sample
3.2. Measures
3.2.1. The Dependent Variable
3.2.2. The Independent Variables
3.2.3. Mediating Variables
3.2.4. Moderating Variables
3.2.5. Control Variables
3.3. Model Specification
4. Empirical Results
4.1. Benchmark Results
4.2. Robustness Test
- Exclude external shocks. The global financial crisis of 2008–2009 had a significant impact on the global trade network; therefore, this study excludes the regression samples of 2008 and 2009 to ensure that the episodic crisis events do not influence the identification of the effects of the FTAs strategy. The regression findings are displayed in columns (1) and (2) of Table 3, and the size of the regression coefficients and the significance levels of the independent variables are mostly consistent with those of the benchmark regression results;
- Exclude extreme values. Special trade patterns, data gathering failures, or unexpected cross-border mergers and acquisitions might cause enterprises’ GVC embeddedness to reach extreme levels. This study deflates the 5% quartile of firms’ GVC embeddedness to reduce the impact of extreme values on estimation results, removing values below the 5% quartile and above the 95% quartile. The regression results are displayed in columns (3) and (4) of Table 3;
- Sample selection bias. Firms with minimal export experience may be more unsure about GVC participation. To avoid estimation bias due to the short-term sample, this article eliminates enterprises that exported for less than ten years between 2000 and 2016. The results in Columns (5) and (6) of Table 3 are consistent with the benchmark regression.
5. Heterogeneity Analysis
5.1. Ownership Structure
5.2. Regional Differences
5.3. Industrial Differences
5.4. Industry Technology Differences
6. Mechanism Analysis
6.1. Mediating Effects Test
6.2. Moderating Effects Test
6.2.1. Internal Control Costs
6.2.2. Operational Efficiency of Assets
7. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Group, W.B. World Development Report 2020: Trading for Development in the Age of Global Value Chains. 2019, Volume 1. Available online: https://documents.worldbank.org/curated/en/310211570690546749 (accessed on 1 January 2025).
- Fortes, P.; Stettiner, C.; Okano, M. Governance and Upgrading in GVCs: Why does Embeddedness Matter. Rev. Bus. Manag. 2019, 21, 740–759. [Google Scholar] [CrossRef]
- Cui, R.; Song, H.; Li, D. Global value chain embeddedness, technology spillover and enterprise innovation. Int. Rev. Econ. Financ. 2024, 93, 758–771. [Google Scholar] [CrossRef]
- Wu, Z.; Hou, G.; Xin, B. Evaluation of the effect of GVC participation on green technology innovation capacity: A microlevel analysis in China based on PSM-DID. Chin. Manag. Stud. 2025. [Google Scholar] [CrossRef]
- Kawai, M.; Wignaraja, G. Patterns of Free Trade Areas in Asia; East-West Center: Honolulu, HI, USA, 2013. [Google Scholar]
- Kowalski, P.; Gonzalez, J.L.; Ragoussis, A.; Ugarte, C. Participation of Developing Countries in Global Value Chains: Implications for Trade and Trade-Related Policies; OECD Trade Policy Papers No.179; OECD Publishing: Paris, France, 2015. [Google Scholar] [CrossRef]
- Flentø, D.; Ponte, S. Least-Developed Countries in a World of Global Value Chains: Are WTO Trade Negotiations Helping? World Dev. 2017, 94, 366–374. [Google Scholar] [CrossRef]
- Han, J.; Wang, C. Free Trade Agreement and Global Value Chain Participation: A Study on the Effect of FTA Depth. J. Int. Trade 2019, 2, 54–67. [Google Scholar] [CrossRef]
- Orefice, G.; Rocha, N. Deep Integration and Production Networks: An Empirical Analysis. World Econ. 2014, 37, 106–136. [Google Scholar] [CrossRef]
- Wood, A. World Trade Report 2014–Trade and Development: Recent Trends and the Role of the WTOWorld Trade Organization, 2014. World Trade Rev. 2015, 14, 546–548. [Google Scholar] [CrossRef]
- Mattoo, A.; Mulabdic, A.; Ruta, M. Trade creation and trade diversion in deep agreements. Can. J. Econ./Rev. Can. D’économique 2022, 55, 1598–1637. [Google Scholar] [CrossRef]
- Chase, K.A. Economic Interests and Regional Trading Arrangements: The Case of NAFTA. Int. Organ. 2003, 57, 137–174. [Google Scholar] [CrossRef]
- Antràs, P.; Staiger, R.W. Offshoring and the Role of Trade Agreements. Am. Econ. Rev. 2012, 102, 3140–3183. [Google Scholar] [CrossRef]
- Osgood, I. Globalizing the Supply Chain: Firm and Industrial Support for US Trade Agreements. Int. Organ. 2018, 72, 455–484. [Google Scholar] [CrossRef]
- Zhang, H. Commerce, Coalitions, and Global Value Chains: Coordinated and Collective Lobbying on Trade; MIT Political Science Department Research Paper; MIT Press: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Bondi, A.; Baccini, L.; Fiorini, M.; Hoekman, B.; Altomonte, C.; Colantone, I. Global value chains and the design of trade agreements. Rev. Int. Organ. 2025, 20, 1–33. [Google Scholar] [CrossRef]
- Farea, M.M.; Aljofi, A.A. The Influence of External Market Drivers on Global Value Chain Participation in Saudi Arabia: The Mediating Role of Technological Advancements. Sustainability 2025, 17, 3946. [Google Scholar] [CrossRef]
- Peng, F.; Kang, L.; Liu, T.; Cheng, J.; Ren, L. Trade Agreements and Global Value Chains: New Evidence from China’s Belt and Road Initiative. Sustainability 2020, 12, 1353. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, J.; Zhao, J. Effects of free trade agreements on global value chain trade—A research perspective of GVC backward linkage. Appl. Econ. 2021, 53, 5122–5134. [Google Scholar] [CrossRef]
- Mohanty, S.K. Exploring Trade, GVCs, and Technology Goods in India’s FTAs. Econ. Political Wkly. 2024, 59, 33–41. [Google Scholar]
- Laget, E.; Osnago, A.; Rocha, N.; Ruta, M. Deep Trade Agreements and Global Value Chains. Rev. Ind. Organ. 2020, 57, 379–410. [Google Scholar] [CrossRef]
- Horn, H.; Mavroidis, P.C.; Sapir, A. Beyond the WTO? An Anatomy of EU and US Preferential Trade Agreements. World Econ. 2010, 33, 1565–1588. [Google Scholar] [CrossRef]
- Díaz-Mora, C.; García-López, E.; González-Díaz, B. Bilateral servicification in global value chains and deep trade agreements. World Econ. 2022, 45, 2510–2531. [Google Scholar] [CrossRef]
- Fan, Z.; Anwar, S.; Zhou, Y. Deep trade agreements, production position distance and bilateral global value chain participation. World Econ. 2023, 46, 3596–3615. [Google Scholar] [CrossRef]
- Aly, F.; Zaki, C. On deep trade agreements, institutions, and global value chains: Evidence from Egypt. Rev. World Econ. 2025, 161, 49–87. [Google Scholar] [CrossRef]
- Sun, Y.H.; Zhao, L.Y.; Zhou, S.Y. Research on the Impact of the FTA’s Depth on China’s Export in Service Trade. Int. Bus. 2021, 2, 59–76. [Google Scholar] [CrossRef]
- Hou, J.J.; Wang, Y.D.; Wang, Z.G. Digital Trade Rules and Chinese Enterprises’ GVCs Position. China Ind. Econ. 2023, 4, 60–78. [Google Scholar] [CrossRef]
- Hummels, D.; Ishii, J.; Yi, K.-M. The nature and growth of vertical specialization in world trade. J. Int. Econ. 2001, 54, 75–96. [Google Scholar] [CrossRef]
- Koopman, R.; Powers, W.; Wang, Z.; Wei, S.-J. Give Credit Where Credit Is Due: Tracing Value Added in Global Production Chains; NBER Working Paper Series; National Bureau of Economic Research: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, S.-J.; Yu, X.; Zhu, K. Characterizing Global Value Chains: Production Length and Upstreamness; National Bureau of Economic Research: New York, NY, USA, 2017. [Google Scholar]
- Upward, R.; Wang, Z.; Zheng, J. Weighing China’s export basket: The domestic content and technology intensity of Chinese exports. J. Comp. Econ. 2013, 41, 527–543. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.Y.; Liu, Y.C. Measuring the Domestic Value Added in China’s Exports and the Mechanism of Change. Econ. Res. 2013, 48, 124–137. [Google Scholar]
- Lu, Y.; Luo, W.; Lin, B. Heterogeneous Firms and Global Value Chain Embeddedness: An Efficiency and Financing-Based Perspective. J. World Econ. 2015, 38, 29–55. [Google Scholar] [CrossRef]
- Ricardo, D. On the Principles of Political Economy, and Taxation; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Edwards, S. Trade Policy, Exchange Rates and Growth; National Bureau of Economic Research Working Paper Series; National Bureau of Economic Research: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Williamson, Ó. Markets and Hierarchies: Analysis and Antitrust Implications: A Study in the Economics of Internal Organization; Free Press: London, UK, 1975. [Google Scholar]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Anderson, J.E.; Yotov, Y.V. Terms of trade and global efficiency effects of free trade agreements, 1990–2002. J. Int. Econ. 2016, 99, 279–298. [Google Scholar] [CrossRef]
- Krugman, P. Does the New Trade Theory Require a New Trade Policy? World Econ. 1992, 15, 423–442. [Google Scholar] [CrossRef]
- Antras, P.; Helpman, E. Contractual Frictions and Global Sourcing. In The Organization of Firms in a Global Economy; Harvard University Press: Cambridge, MA, USA; London, UK, 2008; Volume 1, pp. 9–54. [Google Scholar]
- Melitz, M.J.; Redding, S.J. New Trade Models, New Welfare Implications. Am. Econ. Rev. 2015, 105, 1105–1146. [Google Scholar] [CrossRef]
- Baldwin, R.; Cave, M.; Lodge, M. Understanding Regulation: Theory, Strategy, and Practice; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Feenstra, R.; Hanson, G. Foreign Investment, Outsourcing and Relative Wages; NBER Working Papers; National Bureau of Economic Research, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Crozet, M.; Milet, E.; Mirza, D. The impact of domestic regulations on international trade in services: Evidence from firm-level data. J. Comp. Econ. 2016, 44, 585–607. [Google Scholar] [CrossRef]
- Humphrey, J.; Schmitz, H. How does insertion in global value chains affect upgrading in industrial clusters? Reg. Stud. 2002, 36, 1017–1027. [Google Scholar] [CrossRef]
- Gereffi, G.; Humphrey, J.; Sturgeon, T. The Governance of Global Value Chains. Rev. Int. Political Econ. 2005, 12, 78–104. [Google Scholar] [CrossRef]
- Coe, D.T.; Helpman, E. International R&D spillovers. Eur. Econ. Rev. 1995, 39, 859–887. [Google Scholar] [CrossRef]
- Liu, H.; Qi, J.H. Corporate Innovation Effects of the Global FTA Network: From Passive Embedding to Active Exploitation. J. World Econ. 2021, 44, 3–31. [Google Scholar] [CrossRef]
- Melitz, M.J. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef]
- Quan, X.F.; Wu, S.N.; Wen, F. Management Power, Private Gains and Pay Manipulation. Econ. Res. J. 2010, 45, 73–87. [Google Scholar]
- Barney, J.B. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 120–199. [Google Scholar] [CrossRef]
- Porter, M.E. The Competitive Advantage: Creating and Sustaining Superior Performance; Free Press: New York, NY, USA, 1985. [Google Scholar]
- Henderson, J.; Dicken, P.; Hess, M.; Coe, N.; Yeung, H. Global Production Networks and the Analysis of Economic Development. Rev. Int. Political Econ. 2002, 9, 436–464. [Google Scholar] [CrossRef]
- Tirole, J. The Theory of Industrial Organization; MIT Press Books: Cambridge, MA, USA, 1988; Volume 1. [Google Scholar]
- Hofmann, C.; Osnago, A.; Ruta, M. Horizontal Depth: A New Database on the Content of Preferential Trade Agreements (English); World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Yuan, J.G.; Hou, Q.S.; Cheng, C. The Curse Effect of Corporate Political Resources: An Examination Based on Political Affiliation and Corporate Technological Innovation. Manag. World 2015, 139–155. [Google Scholar] [CrossRef]
- Huang, B.; Li, H.T.; Liu, J.Q. Digital Technology Innovation and The High-quality Development of Chinese Enterprises: Evidence from Enterprise’s Digital Patents. Econ. Res. J. 2023, 58, 97–115. [Google Scholar]
- Branstetter, L.G.; Fisman, R.; Foley, C.F. Do Stronger Intellectual Property Rights Increase International Technology Transfer? Empirical Evidence from U. S. Firm-Level Panel Data*. Q. J. Econ. 2006, 121, 321–349. [Google Scholar] [CrossRef]
- Bloom, N.; Draca, M.; Van Reenen, J. Trade Induced Technical Change? The Impact of Chinese Imports on Innovation, IT and Productivity. Rev. Econ. Stud. 2016, 83, 87–117. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.Q.; Zheng, H. Third-country Effects of Regional Deep Trade Agreements and Enterprise Export Survival: A Perspective of Information Costs. Econ. Res. J. 2024, 59, 166–184. [Google Scholar]
- Yao, K.; Wang, Y. Returned Executives and Internationalisation of Enterprises–Empirical Study on China’s Listed High-Tech Companies. Econ. Theory Econ. Manag. 2020, 11, 55–71. [Google Scholar]
- Jiang, T. Mediating Effects and Moderating Effects in Causal Inference. China Ind. Econ 2022, 5, 100–120. [Google Scholar] [CrossRef]
- Gereffi, G. Global Value Chains, Development and Emerging Economies. In Business and Development Studies; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- Hu, D.; Jiao, J.; Tang, Y.; Xu, Y.; Zha, J. How global value chain participation affects green technology innovation processes: A moderated mediation model. Technol. Soc. 2022, 68, 101916. [Google Scholar] [CrossRef]
- Kang, K.; Zhang, Z.Y.; Xing, J. Research on the Evolution Mechanism of Technology Innovation Diffusion System. Sci. Sci. Manag. ST 2001, 7, 56–59. [Google Scholar]
Variable Type | Symbol | Data Resource | Mean | Standard |
---|---|---|---|---|
Dependent variable | CSMAR database, the China Customs Import and Export database | 0.382 | 0.526 | |
Independent variable | DTA database UN Comtrade CSMAR database | 0.005 | 0.013 | |
0.005 | 0.012 | |||
Mediating Variables | China Enterprise Patent Library | 3.457 | 1.617 | |
2.867 | 1.642 | |||
1.663 | 1.776 | |||
0.838 | 1.469 | |||
Moderating Variables | CSMAR database | 0.119 | 1.536 | |
15.024 | 737.447 | |||
Control Variables | CSMAR database | 1.875 | 0.659 | |
12.411 | 0.934 | |||
−3.575 | 0.254 | |||
20.028 | 1.219 | |||
0.095 | 0.102 |
Variables | ||||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
5.8295 *** (0.6618) | 6.9256 *** (0.8287) | |||
8.0931 *** (1.0017) | 9.4255 *** (1.2739) | |||
−0.0359 * (0.0206) | −0.0342 * (0.0205) | |||
−0.0426 *** (0.0112) | −0.0429 *** (0.0111) | |||
0.2469 *** (0.0941) | 0.2404 ** (0.0939) | |||
0.0238 * (0.0128) | 0.0247 * (0.0129) | |||
0.1582 ** (0.0723) | 0.1525 ** (0.0723) | |||
Constant | 0.3546 *** (0.0044) | 0.3466 *** (0.0054) | 1.3379 *** (0.3468) | 1.2883 *** (0.3468) |
Enterprise fixed | YES | YES | YES | YES |
Year fixed | YES | YES | YES | YES |
Observations | 12,879 | 12,879 | 10,276 | 10,276 |
R-squared | 0.644 | 0.645 | 0.646 | 0.647 |
Variables | ||||||
---|---|---|---|---|---|---|
Exclude External Shocks | Exclude Extreme Values | Sample Selection Bias | ||||
(1) | (2) | (3) | (4) | (5) | (6) | |
6.6258 *** (0.8371) | 6.9256 *** (0.8287) | 9.7481 *** (1.0885) | ||||
9.0797 *** (1.3145) | 9.4255 *** (1.2739) | 12.9467 *** (1.2953) | ||||
−0.0543 ** (0.0223) | −0.0529 ** (0.0223) | −0.0359 * (0.0206) | −0.0342 * (0.0205) | −0.0374 (0.0288) | −0.0357 (0.0287) | |
−0.0449 *** (0.0123) | −0.0452 *** (0.0122) | −0.0426 *** (0.0112) | −0.0429 *** (0.0111) | −0.0427 *** (0.0136) | −0.0435 *** (0.0136) | |
0.2371 ** (0.1002) | 0.2310 ** (0.1000) | 0.2469 *** (0.0941) | 0.2404 ** (0.0939) | 0.2333 * (0.1202) | 0.2339 * (0.1201) | |
0.0310 ** (0.0136) | 0.0319 ** (0.0136) | 0.0238 * (0.0128) | 0.0247 * (0.0129) | 0.0169 (0.0152) | 0.0185 (0.0152) | |
0.1459 * (0.0801) | 0.1409 * (0.0801) | 0.1582 ** (0.0723) | 0.1525 ** (0.0723) | 0.2082 ** (0.0909) | 0.2007 ** (0.0908) | |
Constant | 1.2245 *** (0.3705) | 1.1779 *** (0.3705) | 1.3379 *** (0.3468) | 1.2883 *** (0.3468) | 1.4287 *** (0.4462) | 1.3951 *** (0.4459) |
Enterprise fixed | YES | YES | YES | YES | YES | YES |
Year fixed | YES | YES | YES | YES | YES | YES |
Observations | 9198 | 9198 | 10,276 | 10,276 | 5830 | 5830 |
R-squared | 0.653 | 0.654 | 0.646 | 0.647 | 0.574 | 0.575 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
SOEs | Non-SOEs | SOEs | Non-SOEs | |
9.9380 *** (1.4667) | 4.0015 *** (0.8344) | |||
13.0127 *** (1.6812) | 5.4955 *** (1.3136) | |||
Constant | 0.0309 (0.0333) | −0.0439 (0.0343) | 0.0313 (0.0333) | −0.0428 (0.0343) |
Controls | YES | YES | YES | YES |
Observations | 4632 | 4480 | 4632 | 4480 |
R-squared | 0.656 | 0.716 | 0.657 | 0.717 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Eastern | Central | Western | Eastern | Central | Western | |
6.2541 *** (0.8920) | 10.2130 *** (2.4811) | 10.2256 *** (2.8364) | ||||
8.4795 *** (1.3690) | 14.3090 *** (3.0793) | 14.1798 *** (3.4408) | ||||
Constant | 0.6455 (0.4332) | 2.0886 ** (0.9573) | 2.8462 *** (0.7743) | 0.5903 (0.4334) | 2.0693 ** (0.9558) | 2.8237 *** (0.7754) |
Controls | YES | YES | YES | YES | YES | YES |
Observations | 7322 | 1669 | 1285 | 7322 | 1669 | 1285 |
R-squared | 0.664 | 0.625 | 0.602 | 0.665 | 0.626 | 0.603 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Manufacturing | Non-Manufacturing | Manufacturing | Non-Manufacturing | |
9.9380 *** (1.4667) | 4.0015 *** (0.8344) | |||
13.0127 *** (1.6812) | 5.4955 *** (1.3136) | |||
Constant | 1.6604 *** (0.3879) | 0.9702 (0.8138) | 1.5842 *** (0.3884) | 0.9574 (0.8140) |
Controls | YES | YES | YES | YES |
Observations | 8689 | 1565 | 8689 | 1565 |
R-squared | 0.629 | 0.728 | 0.630 | 0.728 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
High-Tech | Low-Tech | High-Tech | Low-Tech | |
7.0174 *** (1.1367) | 6.3231 *** (1.1100) | |||
9.7069 *** (1.3943) | 8.6710 *** (1.8079) | |||
Constant | 1.3860 *** (0.4795) | 1.0124 ** (0.5005) | 1.3056 *** (0.4782) | 0.9821 ** (0.5006) |
Controls | YES | YES | YES | YES |
Observations | 4074 | 6169 | 4074 | 6169 |
R-squared | 0.634 | 0.662 | 0.635 | 0.662 |
Variables | ||||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
6.0570 *** (1.7755) | 7.2029 *** (1.8551) | 7.1861 *** (2.1665) | 6.1121 *** (1.8745) | |||||
8.7056 *** (2.3455) | 9.6580 *** (2.4153) | 9.9724 *** (2.7852) | 8.4119 *** (2.2609) | |||||
0.1768 *** (0.0461) | 0.1782 *** (0.0461) | 0.0955 ** (0.0479) | 0.0978 ** (0.0479) | 0.0613 (0.0576) | 0.0634 (0.0576) | −0.0131 (0.0467) | −0.0113 (0.0467) | |
−0.1205 *** (0.0278) | −0.1213 *** (0.0277) | −0.1664 *** (0.0281) | −0.1669 *** (0.0281) | −0.1009 *** (0.0318) | −0.1017 *** (0.0318) | −0.1672 *** (0.0271) | −0.1678 *** (0.0271) | |
0.6167 *** (0.2274) | 0.6129 *** (0.2271) | 0.7557 *** (0.2346) | 0.7503 *** (0.2345) | 1.9175 *** (0.2641) | 1.9125 *** (0.2638) | 0.9572 *** (0.2548) | 0.9529 *** (0.2546) | |
0.1814 *** (0.0327) | 0.1829 *** (0.0326) | 0.2421 *** (0.0319) | 0.2431 *** (0.0318) | 0.2248 *** (0.0375) | 0.2261 *** (0.0375) | 0.1657 *** (0.0310) | 0.1668 *** (0.0309) | |
−0.4975 ** (0.1944) | −0.5031 *** (0.1943) | −0.1988 (0.1900) | −0.2039 (0.1899) | −0.3030 (0.2317) | −0.3088 (0.2317) | −0.4926 ** (0.1964) | −0.4974 ** (0.1964) | |
Constant | 3.2505 *** (0.8231) | 3.2040 *** (0.8222) | 2.6078 *** (0.8530) | 2.5635 *** (0.8527) | 5.3031 *** (0.9668) | 5.2536 *** (0.9662) | 3.1511 *** (0.8610) | 3.1101 *** (0.8612) |
N | 8182 | 8182 | 8182 | 8182 | 8182 | 8182 | 8182 | 8182 |
R-squared | 0.891 | 0.891 | 0.879 | 0.879 | 0.862 | 0.862 | 0.878 | 0.878 |
Variables | ||||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
−9.6891 ** (4.1294) | ||||
−12.1308 ** (5.2862) | ||||
−0.0296 *** (0.0067) | ||||
−0.0406 *** (0.0065) | ||||
8.1657 *** (0.8806) | 7.7328 *** (0.7428) | |||
11.0389 *** (1.0986) | 11.0116 *** (0.9434) | |||
−0.0011 (0.0018) | −0.0005 (0.0021) | |||
0.0003 *** (0.0001) | 0.0003 *** (0.0000) | |||
Constant | 1.3825 *** (0.3532) | 1.3408 *** (0.3539) | 1.1892 *** (0.3625) | 1.1409 *** (0.3628) |
Controls | YES | YES | YES | YES |
Observations | 10,276 | 10,276 | 10,265 | 10,265 |
R-squared | 0.646 | 0.647 | 0.646 | 0.647 |
Variables | Measurement Methods | Mechanisms | Specific Impact |
---|---|---|---|
Technical Innovation Level | The natural logarithm of the sum of patent applications plus one | Mediating effect | The FTA strategy could improve the embeddedness of Chinese listed enterprises in GVCs by promoting their technological innovation. |
Internal Control Costs | Management expense ratio of firms | Moderating effect | Their internal control costs negatively moderate the positive impact of the FTA strategy on firms’ GVC embeddedness. |
Operational Efficiency of Assets | Inventory turnover ratio of firms | Moderating effect | Higher asset turnover reduces firms’ reliance on FTA benefits, thereby diminishing the strategy’s positive effect on improving GVC embeddedness. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Pang, Y.; Gao, W. A Research on the Sustainable Impact of FTA Strategy on the Global Value Chain Embedding of Listed Enterprises in China. Sustainability 2025, 17, 5092. https://doi.org/10.3390/su17115092
Zhao J, Pang Y, Gao W. A Research on the Sustainable Impact of FTA Strategy on the Global Value Chain Embedding of Listed Enterprises in China. Sustainability. 2025; 17(11):5092. https://doi.org/10.3390/su17115092
Chicago/Turabian StyleZhao, Jinlong, Yaqi Pang, and Wenfan Gao. 2025. "A Research on the Sustainable Impact of FTA Strategy on the Global Value Chain Embedding of Listed Enterprises in China" Sustainability 17, no. 11: 5092. https://doi.org/10.3390/su17115092
APA StyleZhao, J., Pang, Y., & Gao, W. (2025). A Research on the Sustainable Impact of FTA Strategy on the Global Value Chain Embedding of Listed Enterprises in China. Sustainability, 17(11), 5092. https://doi.org/10.3390/su17115092