The Impact of the Global Digital Economy on Carbon Emissions: A Review
Abstract
:1. Introduction
- Theoretical Integration and Framework Innovation: This paper systematically combs through the complex relationship between the digital economy and carbon emissions, constructing an analytical framework of “measurement methods–decoupling of relationships–mechanism analysis–research prospects”. It breaks through the limitations of traditional single-path explanations and provides a new theoretical perspective for understanding the relationship between the two.
- In-depth Analysis of Research Evolutionary Patterns: Using bibliometric methods, this paper conducts a thematic evolution analysis of 102 global publications. It identifies emerging research hotspots such as the “digital infrastructure carbon emission paradox” and the “mediating effect of green innovation”, revealing the dynamic evolutionary patterns of the knowledge structure in this field.
- Proposing Forward-looking Research Directions: This paper proposes emerging directions such as “the impact of the digital divide on carbon reduction effects” and “using remote sensing technology for precise measurement of carbon emissions”. These suggestions provide more targeted policy recommendations for policymakers to ensure the inclusiveness and fairness of the digital economy on a global scale.
2. Article Selection and Methodology
3. Measurement of Digital Economy and Carbon Emissions
3.1. Measurement of Carbon Emissions
3.2. Measurement of the Digital Economy
4. The Relationship Between the Digital Economy and Carbon Emissions
4.1. The Digital Economy Reduces Carbon Emissions
4.2. The Digital Economy Increases Carbon Emissions
4.3. Non-Linear Relationships
5. Mechanisms by Which the Digital Economy Affects Carbon Emissions
6. Prospect
6.1. Optimizing the Evaluation System and Index Measurement Methods of the Digital Economy
6.2. Enhancing the Accuracy of Carbon Emission Measurement Using Remote Sensing Technology
6.3. Enhancing Research at the Micro Level
6.4. Addressing the Digital Divide and Innovating Research Frameworks
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bufalo, M.; Ceci, C.; Orlando, G. Addressing the Financial Impact of Natural Disasters in the Era of Climate Change. N. Am. J. Econ. Financ. 2024, 73, 102152. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions in 2022—Analysis. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 4 April 2025).
- CO2 Emissions in 2023—Analysis. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 4 April 2025).
- IPCC. AR6 Synthesis Report: Climate Change 2023. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 4 April 2025).
- Clean Energy Market Monitor—March 2024—Analysis. Available online: https://www.iea.org/reports/clean-energy-market-monitor-march-2024 (accessed on 4 April 2025).
- Verhoef, E.T.; Nijkamp, P. Externalities in Urban Sustainability: Environmental versus Localization-Type Agglomeration Externalities in a General Spatial Equilibrium Model of a Single-Sector Monocentric Industrial City. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef]
- Ali, K.; Jianguo, D.; Kirikkaleli, D. Modeling the Natural Resources and Financial Inclusion on Ecological Footprint: The Role of Economic Governance Institutions. Evidence from ECOWAS Economies. Resour. Policy 2022, 79, 103115. [Google Scholar] [CrossRef]
- Ali, K.; Jianguo, D.; Kirikkaleli, D. How Do Energy Resources and Financial Development Cause Environmental Sustainability? Energy Rep. 2023, 9, 4036–4048. [Google Scholar] [CrossRef]
- Khan, K.; Zhang, J.; Gul, F.; Li, T. The “Carbon Curse”: Understanding the Relationship between Resource Abundance and Emissions. Extr. Ind. Soc. 2022, 11, 101119. [Google Scholar] [CrossRef]
- de Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When Titans Meet—Can Industry 4.0 Revolutionise the Environmentally-Sustainable Manufacturing Wave? The Role of Critical Success Factors. Technol. Forecast. Soc. Change 2018, 132, 18–25. [Google Scholar] [CrossRef]
- Rong, K. Research Agenda for the Digital Economy. J. Digit. Econ. 2022, 1, 20–31. [Google Scholar] [CrossRef]
- Ancillai, C.; Sabatini, A.; Gatti, M.; Perna, A. Digital Technology and Business Model Innovation: A Systematic Literature Review and Future Research Agenda. Technol. Forecast. Soc. Change 2023, 188, 122307. [Google Scholar] [CrossRef]
- Okpalaoka, C.I. Research on the Digital Economy: Developing Trends and Future Directions. Technol. Forecast. Soc. Change 2023, 193, 122635. [Google Scholar] [CrossRef]
- Kuang, Y.; Fan, Y.; Bin, J.; Fan, M. Impact of the Digital Economy on Carbon Dioxide Emissions in Resource-Based Cities. Sci. Rep. 2024, 14, 16514. [Google Scholar] [CrossRef]
- Ma, R.; Lin, B. Digitalization and Energy-Saving and Emission Reduction in Chinese Cities: Synergy between Industrialization and Digitalization. Appl. Energy 2023, 345, 121308. [Google Scholar] [CrossRef]
- Khan, K.; Luo, T.; Ullah, S.; Rasheed, H.M.W.; Li, P.-H. Does Digital Financial Inclusion Affect CO2 Emissions? Evidence from 76 Emerging Markets and Developing Economies (EMDE’s). J. Clean. Prod. 2023, 420, 138313. [Google Scholar] [CrossRef]
- Safi, A.; Kchouri, B.; Elgammal, W.; Nicolas, M.K.; Umar, M. Bridging the Green Gap: Do Green Finance and Digital Transformation Influence Sustainable Development? Energy Econ. 2024, 134, 107566. [Google Scholar] [CrossRef]
- Hittinger, E.; Jaramillo, P. Internet of Things: Energy Boon or Bane? Science 2019, 364, 326–328. [Google Scholar] [CrossRef]
- Che, S.; Wen, L.; Wang, J. Global Insights on the Impact of Digital Infrastructure on Carbon Emissions: A Multidimensional Analysis. J. Environ. Manag. 2024, 368, 122144. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Lu, Q.; Hong, Y.; Guan, D.; Xiong, Y.; Wang, S. Policy Assessments for the Carbon Emission Flows and Sustainability of Bitcoin Blockchain Operation in China. Nat. Commun. 2021, 12, 1938. [Google Scholar] [CrossRef]
- Winskel, M.; Kattirtzi, M. Transitions, Disruptions and Revolutions: Expert Views on Prospects for a Smart and Local Energy Revolution in the UK. Energy Policy 2020, 147, 111815. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Tangato, K.F. The Impact of Clean Technology Adoption on Carbon Emissions: A Global Perspective. Clean Technol. Environ. Policy 2024. [Google Scholar] [CrossRef]
- Du, L.; Wei, C.; Cai, S. Economic Development and Carbon Dioxide Emissions in China: Provincial Panel Data Analysis. China Econ. Rev. 2012, 23, 371–384. [Google Scholar] [CrossRef]
- Xia, W.; Ruan, Z.; Ma, S.; Zhao, J.; Yan, J. Can the Digital Economy Enhance Carbon Emission Efficiency? Evidence from 269 Cities in China. Int. Rev. Econ. Financ. 2025, 97, 103815. [Google Scholar] [CrossRef]
- Hou, J.; Li, W.; Zhang, X. Research on the Impacts of Digital Economy on Carbon Emission Efficiency at China’s City Level. PLoS ONE 2024, 19, e0308001. [Google Scholar] [CrossRef] [PubMed]
- Budescu, D.V.; Por, H.-H.; Broomell, S.B.; Smithson, M. The Interpretation of IPCC Probabilistic Statements around the World | Nature Climate Change. Nat. Clim. Change 2014, 4, 508–512. [Google Scholar] [CrossRef]
- Čuček, L.; Klemeš, J.J.; Kravanja, Z. A Review of Footprint Analysis Tools for Monitoring Impacts on Sustainability. J. Clean. Prod. 2012, 34, 9–20. [Google Scholar] [CrossRef]
- Ling, C.; Tang, J.; Zhao, P.; Xu, L.; Lu, Q.; Yang, L.; Huang, F.; Lyu, W.; Yang, J. Unraveling the Relation between Carbon Emission and Carbon Footprint: A Literature Review and Framework for Sustainable Transportation. npj Sustain. Mobil. Transp. 2024, 1, 13. [Google Scholar] [CrossRef]
- Mathe, S. Integrating Participatory Approaches into Social Life Cycle Assessment: The SLCA Participatory Approach. Int. J. Life Cycle Assess. 2014, 19, 1506–1514. [Google Scholar] [CrossRef]
- Abeydeera, L.H.U.W.; Mesthrige, J.W.; Samarasinghalage, T.I. Global Research on Carbon Emissions: A Scientometric Review. Sustainability 2019, 11, 3972. [Google Scholar] [CrossRef]
- Brathwaite, J.; Horst, S.; Iacobucci, J. Maximizing Efficiency in the Transition to a Coal-Based Economy. Energy Policy 2010, 38, 6084–6091. [Google Scholar] [CrossRef]
- Athanassiadis, A.; Christis, M.; Bouillard, P.; Vercalsteren, A.; Crawford, R.H.; Khan, A.Z. Comparing a Territorial-Based and a Consumption-Based Approach to Assess the Local and Global Environmental Performance of Cities. J. Clean. Prod. 2018, 173, 112–123. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, C.; Li, X.; Zhou, D. The Total Factor Carbon Emission Productivity in China’s Industrial Sectors: An Analysis Based on the Global Malmquist-Luenberger Index. Sustain. Energy Technol. Assess. 2023, 56, 103094. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, F. How Does Digital Inclusive Finance Affect Carbon Intensity? Econ. Anal. Policy 2022, 75, 174–190. [Google Scholar] [CrossRef]
- Lin, C.-K.; Chen, T.; Li, X.; De Marcellis-Warin, N.; Zigler, C.; Christiani, D.C. Are per Capita Carbon Emissions Predictable across Countries? J. Environ. Manag. 2019, 237, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital Economy and Carbon Emission Performance: Evidence at China’s City Level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Campaign to Define Digital Economy Indicators. Available online: https://www.itu.int/md/T17-SG12-C-0159/es (accessed on 4 April 2025).
- Horoshko, O.-I.; Horoshko, A.; Bilyuga, S.; Horoshko, V. Theoretical and Methodological Bases of the Study of the Impact of Digital Economy on World Policy in 21 Century. Technol. Forecast. Soc. Change 2021, 166, 120640. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, Y.; Luan, Z.; Deng, Y. Influences of Top Management Team Social Networks on Enterprise Digital Innovation. J. Knowl. Econ. 2024, 15, 16541–16574. [Google Scholar] [CrossRef]
- UNCTAD. Digital Economy Report 2024: Shaping an Environmentally Sustainable and Inclusive Digital Future; UNCTAD: Geneva, Switzerland, 2024; ISBN 978-92-1-003136-3. [Google Scholar]
- Li, X.; Hu, Y.; Ding, L.; Huang, Q.; Jiang, Y. Impact of the Digital Trade on Lowering Carbon Emissions in 46 Countries. Sci. Rep. 2024, 14, 25957. [Google Scholar] [CrossRef]
- Marshall, A.; Dezuanni, M.; Burgess, J.; Thomas, J.; Wilson, C.K. Australian Farmers Left behind in the Digital Economy—Insights from the Australian Digital Inclusion Index. J. Rural Stud. 2020, 80, 195–210. [Google Scholar] [CrossRef]
- Bruno, G.; Diglio, A.; Piccolo, C.; Pipicelli, E. A Reduced Composite Indicator for Digital Divide Measurement at the Regional Level: An Application to the Digital Economy and Society Index (DESI). Technol. Forecast. Soc. Change 2023, 190, 122461. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S.; Ding, Y.; Duan, D.; Wang, Y.; Wang, P.; Yang, L.; Fan, H.; Cheng, Y. Probability Prediction of Short-Term User-Level Load Based on Random Forest and Kernel Density Estimation. Energy Rep. 2022, 8, 1130–1138. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, Y.; Wu, G.; Wang, W.; Zhang, J. Digitalization and Energy: How Could Digital Economy Eliminate Energy Poverty in China? Environ. Impact Assess. Rev. 2023, 103, 107243. [Google Scholar] [CrossRef]
- Dian, J.; Song, T.; Li, S. Facilitating or Inhibiting? Spatial Effects of the Digital Economy Affecting Urban Green Technology Innovation. Energy Econ. 2024, 129, 107223. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How Does Digital Economy Affect Carbon Emissions? Evidence from Global 60 Countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cui, W.; Yi, P. Digital Economy Evaluation, Regional Differences and Spatio-Temporal Evolution: Case Study of Yangtze River Economic Belt in China. Sustain. Cities Soc. 2024, 113, 105685. [Google Scholar] [CrossRef]
- Zhang, D.; Bai, D.; Wang, C.; He, Y. Distribution Dynamics and Quantile Dynamic Convergence of the Digital Economy: Prefecture-Level Evidence in China. Int. Rev. Financ. Anal. 2024, 95, 103345. [Google Scholar] [CrossRef]
- Skvarciany, V.; Lapinskaite, I.; Stasytyte, V. Efficiency of Digital Economy in the Context of Sustainable Development: DEA-Tobit Approach. Prague Econ. Pap. 2023, 32, 129–158. [Google Scholar] [CrossRef]
- Bai, C.; Shiang, L.E.; Chua, S.Y. A Literature Review of Digital Economy Measurement Methods and Indexes. Int. J. Acad. Res. Bus. Soc. Sci. 2024, 14, 1430–1440. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, P. Myth of the Digital Economy: Can It Continually Contribute to a Low-Carbon Status and Sustainable Development? Environ. Impact Assess. Rev. 2025, 110, 107688. [Google Scholar] [CrossRef]
- Dogan, A.; Pata, U.K. The Role of ICT, R&D Spending and Renewable Energy Consumption on Environmental Quality: Testing the LCC Hypothesis for G7 Countries. J. Clean. Prod. 2022, 380, 135038. [Google Scholar] [CrossRef]
- Mei, B.; Khan, A.A.; Khan, S.U.; Ali, M.A.S.; Luo, J. Variation of Digital Economy’s Effect on Carbon Emissions: Improving Energy Efficiency and Structure for Energy Conservation and Emission Reduction. Environ. Sci. Pollut. Res. 2023, 30, 87300–87313. [Google Scholar] [CrossRef]
- Chen, L. How CO2 Emissions Respond to Changes in Government Size and Level of Digitalization? Evidence from the BRICS Countries. Environ. Sci. Pollut. Res. 2022, 29, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fang, J.; Ge, S.; Sun, G. Research on the Impact of Enterprise Digital Transformation on Carbon Emissions in the Manufacturing Industry. Int. Rev. Econ. Financ. 2024, 92, 211–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Fu, B. Can Digital Technology Application Promote Energy Saving and Emission Reduction Practices in Enterprise? An Empirical Study Based on the Awareness-Motivation-Capability Perspective. Energy 2024, 286, 129636. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, X.; Yu, Q.; Leng, M. How Does the Digital Economy Affect Carbon Emissions? Evidence from Panel Smooth Transition Regression Model. J. Knowl. Econ. 2024. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of Digital Economy on Carbon Emission Reduction: New Evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, M. Can Digital Economy Reduce Carbon Emission Intensity? Empirical Evidence from China’s Smart City Pilot Policies. Environ. Sci. Pollut. Res. 2023, 30, 51749–51769. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, D.; Dai, Y. Carbon Emission Effect of Digital Economy Development: Impact of Digital Economy Development on China’s Carbon Dioxide Emissions. Clean Technol. Environ. Policy 2024, 26, 2707–2720. [Google Scholar] [CrossRef]
- Zuo, S.; Zhao, Y.; Zheng, L.; Zhao, Z.; Fan, S.; Wang, J. Assessing the Influence of the Digital Economy on Carbon Emissions: Evidence at the Global Level. Sci. Total Environ. 2024, 946, 174242. [Google Scholar] [CrossRef]
- Takase, K.; Murota, Y. The Impact of IT Investment on Energy: Japan and US Comparison in 2010. Energy Policy 2004, 32, 1291–1301. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H. Impact of Digitization on Carbon Productivity: An Empirical Analysis of 136 Countries. Sci. Rep. 2024, 14, 5094. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Pata, U.K.; Li, R.; Kartal, M.T. Digital Economy and Carbon Dioxide Emissions: Examining the Role of Threshold Variables. Geosci. Front. 2024, 15, 101644. [Google Scholar] [CrossRef]
- Mi, R.; Bai, X.; Xu, X.; Ren, F. Energy Performance Evaluation in a Data Center with Water-Side Free Cooling. Energy Build. 2023, 295, 113278. [Google Scholar] [CrossRef]
- Raihan, A. A Review of the Potential Opportunities and Challenges of the Digital Economy for Sustainability. Innov. Green Dev. 2024, 3, 100174. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Internet Usage, Electricity Consumption and Economic Growth in Australia: A Time Series Evidence. Telemat. Inform. 2015, 32, 862–878. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I. The Effects of Internet Usage and Economic Growth on CO2 Emissions in OECD Countries: A Panel Investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Ramsey, T.S.; Hewings, G.J.D. Will Researching Digital Technology Really Empower Green Development? Technol. Soc. 2021, 66, 101638. [Google Scholar] [CrossRef]
- Usman, A.; Ozturk, I.; Ullah, S.; Hassan, A. Does ICT Have Symmetric or Asymmetric Effects on CO2 Emissions? Evidence from Selected Asian Economies. Technol. Soc. 2021, 67, 101692. [Google Scholar] [CrossRef]
- Arshad, Z.; Robaina, M.; Botelho, A. The Role of ICT in Energy Consumption and Environment: An Empirical Investigation of Asian Economies with Cluster Analysis. Environ. Sci. Pollut. Res. 2020, 27, 32913–32932. [Google Scholar] [CrossRef]
- Kunkel, S.; Tyfield, D. Digitalisation, Sustainable Industrialisation and Digital Rebound—Asking the Right Questions for a Strategic Research Agenda. Energy Res. Soc. Sci. 2021, 82, 102295. [Google Scholar] [CrossRef]
- Bai, L.; Guo, T.; Xu, W.; Liu, Y.; Kuang, M.; Jiang, L. Effects of Digital Economy on Carbon Emission Intensity in Chinese Cities: A Life-Cycle Theory and the Application of Non-Linear Spatial Panel Smooth Transition Threshold Model. Energy Policy 2023, 183, 113792. [Google Scholar] [CrossRef]
- Zheng, R.; Wu, G.; Cheng, Y.; Liu, H.; Wang, Y.; Wang, X. How Does Digitalization Drive Carbon Emissions? The Inverted U-Shaped Effect in China. Environ. Impact Assess. Rev. 2023, 102, 107203. [Google Scholar] [CrossRef]
- Kuznets, S. Economic Growth and Income Inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Zhang, Z.; Chen, L.; Li, J.; Ding, S. Digital Economy Development and Carbon Emission Intensity—Mechanisms and Evidence from 72 Countries. Sci. Rep. 2024, 14, 28459. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, C.; Li, R. Could the Digital Economy Increase Renewable Energy and Reduce Carbon Emissions? Empirical Research on EKC in 67 Countries. Environ. Sci. Pollut. Res. 2023, 30, 77150–77164. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Ma, Z.; Xiao, H.; Li, J.; Chen, H.; Chen, W. Study on How the Digital Economy Affects Urban Carbon Emissions. Renew. Sustain. Energy Rev. 2025, 207, 114910. [Google Scholar] [CrossRef]
- Higón, D.A.; Gholami, R.; Shirazi, F. ICT and Environmental Sustainability: A Global Perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-Level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Leal, P.H.; Marques, A.C. The Evolution of the Environmental Kuznets Curve Hypothesis Assessment: A Literature Review under a Critical Analysis Perspective. Heliyon 2022, 8, e11521. [Google Scholar] [CrossRef]
- Wu, H.; Xue, Y.; Hao, Y.; Ren, S. How Does Internet Development Affect Energy-Saving and Emission Reduction? Evidence from China. Energy Econ. 2021, 103, 105577. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, M. Impact of Digital Economy Development on Carbon Emissions in China. Singap. Econ. Rev. 2024, 69, 1171–1194. [Google Scholar] [CrossRef]
- Huang, C.; Lin, B. Digital Economy Solutions towards Carbon Neutrality: The Critical Role of Energy Efficiency and Energy Structure Transformation. Energy 2024, 306, 132524. [Google Scholar] [CrossRef]
- Schulte, P.; Welsch, H.; Rexhäuser, S. ICT and the Demand for Energy: Evidence from OECD Countries. Environ. Resour. Econ. 2016, 63, 119–146. [Google Scholar] [CrossRef]
- Ma, Y.; Li, R. The Impact of Digital Economy on Carbon Emissions: Insights from the G-20 Energy Transition and Environmental Governance. Energy Strategy Rev. 2025, 57, 101612. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R. The Carbon Emission Reduction Effect of Digital Economy: An Empirical Study Based on Chinese National Big Data Comprehensive Experimental Zone. Environ. Dev. Sustain. 2024, 26, 1–27. [Google Scholar] [CrossRef]
- Zhu, H.; Bao, W.; Qin, M. Impact Analysis of Digital Trade on Carbon Emissions from the Perspectives of Supply and Demand. Sci. Rep. 2024, 14, 14540. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, G.; Wu, X.; Shen, C. Digital Economy, Technological Progress, and Carbon Emissions in Chinese Provinces. Sci. Rep. 2024, 14, 23001. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Yue, Z. Breaking through Ingrained Beliefs: Revisiting the Impact of the Digital Economy on Carbon Emissions. Humanit. Soc. Sci. Commun. 2023, 10, 1–13. [Google Scholar] [CrossRef]
- Lee, C.-C.; He, Z.-W.; Xiao, F. How Does Information and Communication Technology Affect Renewable Energy Technology Innovation? International Evidence. Renew. Energy 2022, 200, 546–557. [Google Scholar] [CrossRef]
- Huang, C.; Lin, B. How Digital Economy Index Selection and Model Uncertainty Will Affect Energy Green Transition. Energy Econ. 2024, 136, 107774. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the Digital Economy and Its Carbon-Mitigation Effects: The Case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Dong, Z.; Shi, J.; Pan, S. The Interactions of Carbon Emission Driving Forces: Analysis Based on Interpretable Machine Learning. Urban Clim. 2025, 59, 102323. [Google Scholar] [CrossRef]
- Zhong, H.; Chen, K.; Liu, C.; Zhu, M.; Ke, R. Models for Predicting Vehicle Emissions: A Comprehensive Review. Sci. Total Environ. 2024, 923, 171324. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Zhang, G.; Zhou, J.; Zhang, L.; Wu, L.; Zhang, J.; Shang, X. Can Big Data Policy Drive Urban Carbon Unlocking Efficiency? A New Approach Based on Double Machine Learning. J. Environ. Manag. 2024, 372, 123296. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Teng, F.; Ji, Y. The Spatiotemporal Evolution and Impact Mechanism of Energy Consumption Carbon Emissions in China from 2010 to 2020 by Integrating Multisource Remote Sensing Data. J. Environ. Manag. 2023, 346, 119054. [Google Scholar] [CrossRef]
- Wang, B.; Hua, L.; Al-Mohaimeed, A.M.; Zhao, N. Ocean Carbon Emission Prediction and Management Measures Based on Artificial Intelligence Remote Sensing Estimation in the Context of Carbon Neutrality. Environ. Res. 2024, 251, 118591. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.; Yang, R.; Liu, Y.; Jafari, M. CO2 Capture and Storage Monitoring Based on Remote Sensing Techniques: A Review. J. Clean. Prod. 2021, 281, 124409. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.; Yang, Y.; Chen, J.; Yang, S. Has Enterprise Digital Transformation Facilitated the Carbon Performance in Industry 4.0 Era? Evidence from Chinese Industrial Enterprises. Comput. Ind. Eng. 2023, 184, 109576. [Google Scholar] [CrossRef]
- Tao, A.; Wang, C.; Zhang, S.; Kuai, P. Does Enterprise Digital Transformation Contribute to Green Innovation? Micro-Level Evidence from China. J. Environ. Manag. 2024, 370, 122609. [Google Scholar] [CrossRef]
- Shen, Y.; Tian, Z.; Chen, X.-L.; Wang, H.; Song, M. Unpacking the Green Potential: How Does Supply Chain Digitalization Affect Corporate Carbon Emissions?—Evidence from Supply Chain Innovation and Application Pilots in China. J. Environ. Manag. 2025, 374, 124147. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Venter, A. The Impact of the Digital Economy and Institutional Quality in Promoting Low-Carbon Energy Transition. Renew. Energy 2025, 238, 121884. [Google Scholar] [CrossRef]
- Pick, J.B.; Nishida, T. Digital Divides in the World and Its Regions: A Spatial and Multivariate Analysis of Technological Utilization. Technol. Forecast. Soc. Change 2015, 91, 1–17. [Google Scholar] [CrossRef]
- Wang, L.; Ramsey, T.S. Digital Divide and Environmental Pressure: A Countermeasure on the Embodied Carbon Emissions in FDI. Technol. Forecast. Soc. Change 2024, 204, 123398. [Google Scholar] [CrossRef]
- Rosário, A.T.; Dias, J.C. The New Digital Economy and Sustainability: Challenges and Opportunities. Sustainability 2023, 15, 10902. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. MetaArXiv 2020. [Google Scholar] [CrossRef]
Emission Factor | LCA, SLCA, LCCA | |
---|---|---|
Source | Carbon sources caused by human activities | |
Theory | CE = activity intensity × carbon emission factor | |
Perspective | Producer Perspective | Consumer Perspective |
Feature | From top to bottom | From bottom to top |
Advantages | Convenient data acquisition | Accurate and scientific results |
Disadvantages | Overlook the CE transfer between regions due to economic trade | Strict data requirements and difficult to unify data standards |
Application | Large-scale spaces such as national or provincial level | Micro level domain, such as a product or activity |
Indicator System | Publish Source | Covering Regions |
---|---|---|
Digital Economy and Social Index (DESI) | European Statistical Office (Eurostat) | EU countries |
ICT and Digital Economy Statistics Indicator system | OECD | OECD members |
Digital Economy Index (DEI) | China Academy of Information and Communications Technology | China |
Network Readiness Index (NRI) | World Economic Forum (WEF) | 130 economies |
ICT Development Index (IDI) | International Telecommunication Union (ITU) | ITU members |
Finding | Scope | Method | Study |
---|---|---|---|
ICT improve environmental quality | G7 countries, 1986–2017 | Cross-sectional ARDL | Dogan & Pata (2022) [55] |
China’s DE has a noticeable CE reduction effect | 31 provinces in China, 2011–2029 | Spatial panel Durbin mode | Yi et al. (2022) [61] |
DE is conducive to reducing the CE | Urban cities in China, 2000–2019 | Staggered DID model | Wang & Zhong (2023) [62] |
National CE can be suppressed by DE development | 100 countries, 1990–2019 | Mediating effect model | Mei et al. (2023) [56] |
Digital trade can lower CE | 46 countries, 2007–2021 | Fixed effect model | Li et al. (2024) [43] |
DE is conducive to CE reduction globally | 80 countries from 2010–2020 | System-GMM model | Zuo et al. (2024) [64] |
Digital transformation decreases CE in the manufacturing companies | Listed companies in China, 2011–2019 | Mediating effect model | Zhang et al. (2024b) [58] |
Digital technology application promotes energy saving and emission reduction | Listed companies in China, 2011–2020 | Ordered logit model | Zhang et al. (2024c) [59] |
Digitalization significantly enhances carbon productivity and reduces CE | 136 countries, 2000–2020 | Quantile regression | Yu & Liu (2024) [66] |
DE growth has a significant curbing influence on CE | 30 provinces in China, 2011–2021 | Panel smooth transition regression | Jiang et al. (2024) [60] |
Finding | Scope | Method | Study |
---|---|---|---|
The digital economy as a whole boost carbon emissions | Australia, 1985–2012 | ARDL bounds test | Salahuddin & Alam (2015) [70] |
Statistically significant but practically negligible positive effect between Internet usage and CE | OECD countries, 1991–2012 | Pooled Mean Group (PMG) | Salahuddin et al. (2016) [71] |
Technological innovation in the digital industry increases CE | 50 OECD economies, 2005–2015 | KPWW method and multiple panel regression | Wang et al. (2021) [72] |
Digital economy promotes increases in the per capita carbon emissions | SSEA region, 1990–2014 | K-means cluster | Arshad Z et al. (2021) [74] |
Digital infrastructure, digital markets and technologies increase carbon emissions | The whole world | CPERI/CSPK | Kunkel & Tyfield (2021) [75] |
The increased use of ICT causes the CO2 emissions to rise | nine Asian economies, 1990–2018 | Non-linear ARDL | Usman et al. (2021) [73] |
ICT causes the CO2 emissions to rise | 60 countries, 2008–2018 | Intermediary effect model | Dong et al. (2022) [49] |
Data centers and networks will further accelerate global electricity consumption | 76 EMDE countries, 2014–2021 | Dynamic two-step system GMM | Khan et al. (2023) [16] |
Digital financial inclusion increases carbon emissions | 83 countries, 2005–2021 | Mediating effect model | Che et al. (2024) [19] |
Energy efficiency also stimulates a rebound in energy consumption | 97 countries, 2003 to 2019 | Panel threshold model | Wang et al. (2024a) [67] |
Finding | Scope | Method | Study |
---|---|---|---|
ICT and CO2 emissions is an inverted U-shaped relationship | 142 economies, 1995–2010 | OLS regression | Higón et al. (2017) [83] |
Non-linear relationship | 109 countries, 2005–2016 | Solow growth model | Li et al. (2021) [81] |
Internet development on emission reduction efficiency is nonlinear | 196 cities in China, 2011–2018 | SDM, Threshold model, mediating model, DID | Wu et al. (2021) [86] |
Inverted U-shaped relationship between DE and CE | 274 cities in China, 2011–2018 | PTM, SDM | Li & Wang (2022) [84] |
Inverted U-shaped relationship between DE and CE | 271 cities in China, 2011–2019 | Panel threshold model | Bai et al. (2023) [76] |
Digitization’s impact on carbon emissions presents an inverted U-shaped curve | 281 cities in China, 2016–2019 | Spatial panel model and Mediating effect model | Zheng et al. (2023) [77] |
Inverted U-shaped relationship between DE and CE | 67 countries, 2005–2019 | FMOLS regression | Wang et al. (2023) [80] |
Inverted U-shaped relationship between DE and CE | 72 countries, 2013–2020 | Intermediary effect model, Spatial panel model | Zhang et al. (2024) [79] |
Inverted U-shaped relationship between DE and CE | Cities in China, 2011–2019 | Threshold regressions | Ma et al. (2025) [82] |
Mechanisms | Scope | Method | Study |
---|---|---|---|
Energy efficiency | 10 OECD countries | Single-equation models | Schulte et al. (2016) [89] |
Energy structure and efficiency | 100 countries | Mediating effect model | Mei et al. (2023) [56] |
Renewable energy technology innovation | IEA and OECD member | Intermediary effect model | Lee et al. (2022) [95] |
Economic growth, financial development, Industrial structure upgrading | 60 countries | Intermediary effect model | Dong et al. (2022) [49] |
Technological advancement, Structural optimization, and educational enhancement | 80 countries | System-GMM model | Zuo et al. (2024) [64] |
Energy efficiency, Industrial upgrading | 72 countries | Intermediary effect model Spatial panel model | Zhang et al. (2024c) [79] |
Technological advancement, Foreign direct investment, Urbanization, Industrial structure optimization | 30 provinces in China | Panel smooth transition regression | Jiang et al. (2024) [60] |
Green transformation, Industrial structure optimization | 275 cities in China | DID model | Wang & Zhang (2024) [91] |
Green innovation, consumption behavior | 30 provinces in China | Fixed effect model | Zhu et al. (2024) [92] |
Energy efficiency, Industrial restructuring, foreign investment attraction | Cities in G20 | IV-GMM regression | Ma & Li (2025) [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, F. The Impact of the Global Digital Economy on Carbon Emissions: A Review. Sustainability 2025, 17, 5044. https://doi.org/10.3390/su17115044
Liu B, Wang F. The Impact of the Global Digital Economy on Carbon Emissions: A Review. Sustainability. 2025; 17(11):5044. https://doi.org/10.3390/su17115044
Chicago/Turabian StyleLiu, Bingjie, and Fengyi Wang. 2025. "The Impact of the Global Digital Economy on Carbon Emissions: A Review" Sustainability 17, no. 11: 5044. https://doi.org/10.3390/su17115044
APA StyleLiu, B., & Wang, F. (2025). The Impact of the Global Digital Economy on Carbon Emissions: A Review. Sustainability, 17(11), 5044. https://doi.org/10.3390/su17115044