The Effectiveness of Redistribution in Carbon Inequality: What About the Top 1%?
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Background
2.2. Environmental Kuznets Curve (EKC)
2.3. The Relationship Between Income Inequality and Carbon Emissions
2.4. The Relationship Between Redistribution and Carbon Emissions
- Housing: encouraging electrification for heating and other household needs, reducing dependence on liquefied petroleum gas, and implementing insulation policies to improve energy efficiency.
- Transportation: expanding investments in electric-powered public transportation and railway freight systems, introducing tax incentives for electric and zero-emission vehicles, and developing charging infrastructure.
3. Data, Sample, Methodology, and Models
3.1. Research Data and Sample
3.2. Methodology and Models
- is the natural logarithm of the dependent variable (either per capita carbon emissions or top 1% emissions per capita);
- captures the dynamic (lag) effect of emissions;
- denotes the logarithm of income redistribution, which is measured using two alternative definitions [49].
- (1)
- Absolute redistribution: the difference between market Gini and net Gini,
- (2)
- Relative redistribution: the share of inequality reduced, calculated as absolute redistribution divided by market Gini;
- and are used to test for the EKC hypothesis;
- is a vector of control variables (e.g., population, inequality);
- is the idiosyncratic error term.
4. Findings
5. Discussion
6. Study Limitations and Directions for Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. List of Countries Included in the Empirical Analysis
References
- Roser, M.; Rohenkohl, B.; Arriagada, P.; Hasell, J.; Ritchie, H.; Ortiz-Ospina, E. Economic Growth. Available online: https://ourworldindata.org/economic-growth (accessed on 15 July 2023).
- Ritchie, H.; Rosado, P.; Roser, M. CO2 and Greenhouse Gas Emissions. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 10 June 2024).
- Burke, M.; Hsiang, S.M.; Miguel, E. Global Non-Linear Effect of Temperature on Economic Production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef]
- Callahan, C.W.; Mankin, J.S. Globally Unequal Effect of Extreme Heat on Economic Growth. Sci. Adv. 2022, 8, eadd3726. [Google Scholar] [CrossRef]
- Burke, M.; González, F.; Baylis, P.; Heft-Neal, S.; Baysan, C.; Basu, S.; Hsiang, S. Higher Temperatures Increase Suicide Rates in the United States and Mexico. Nat. Clim. Change 2018, 8, 723–729. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Ren, Z.; Li, M.; Wang, B.; Liu, D.L.; Ou, C.-Q.; Yin, P.; Sun, J.; Tong, S.; et al. Projecting Heat-Related Excess Mortality under Climate Change Scenarios in China. Nat. Commun. 2021, 12, 1039. [Google Scholar] [CrossRef]
- Erdogan, S. Linking Green Fiscal Policy, Energy, Economic Growth, Population Dynamics, and Environmental Degradation: Empirical Evidence from Germany. Energy Policy 2024, 189, 114110. [Google Scholar] [CrossRef]
- Kuznets, S. Economic Growth and Income Inequality. In The Economic Growth and Income Inequality; American Economic Association: Nashville, TN, USA, 1955; Volume 45, pp. 1–28. [Google Scholar]
- Hailemariam, A.; Dzhumashev, R.; Shahbaz, M. Carbon Emissions, Income Inequality and Economic Development. Empir. Econ. 2020, 59, 1139–1159. [Google Scholar] [CrossRef]
- Yandle, B.; Vijayaraghavan, M.; Bhattarai, M. The Environmental Kuznets Curve: A Prim. PERC Res. Study 2002, 2, 1–38. [Google Scholar]
- Danish; Ulucak, R.; Khan, S.U.-D. Determinants of the Ecological Footprint: Role of Renewable Energy, Natural Resources, and Urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement. Indiana Int. Comp. Law Rev. 1991, 3, 361–389. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Barbier, E.B. Introduction to the Environmental Kuznets Curve Special Issue. Environ. Dev. Econ. 1997, 2, 369–381. [Google Scholar] [CrossRef]
- Shafik, N. Economic Development and Environmental Quality: An Econometric Analysis. Oxf. Econ. Pap. 1994, 46, 757–773. [Google Scholar] [CrossRef]
- Panayotou, T. Environmental Degradation at Different Stages of Economic Development. In Beyond Rio: The Environmental Crisis and Sustainable Livelihoods in the Third World; Ahmed, I., Doeleman, J.A., Eds.; Macmillan Press: London, UK, 1995. [Google Scholar]
- López, R. The Environment as a Factor of Production: The Effects of Economic Growth and Trade Liberalization. J. Environ. Econ. Manage. 1994, 27, 163–184. [Google Scholar] [CrossRef]
- Munasinghe, M. Is Environmental Degradation an Inevitable Consequence of Economic Growth: Tunneling through the Environmental Kuznets Curve. Ecol. Econ. 1999, 29, 89–109. [Google Scholar] [CrossRef]
- Cole, M.A.; Rayner, A.J.; Bates, J.M. The Environmental Kuznets Curve: An Empirical Analysis. Environ. Dev. Econ. 1997, 2, 401–416. [Google Scholar] [CrossRef]
- Richmond, A.K.; Kaufmann, R.K. Is There a Turning Point in the Relationship between Income and Energy Use and/or Carbon Emissions? Ecol. Econ. 2006, 56, 176–189. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Mamingi, N. Pollution and Capital Markets in Developing Countries. J. Environ. Econ. Manag. 2001, 42, 310–335. [Google Scholar] [CrossRef]
- Hashmi, S.M.; Bhowmik, R.; Inglesi-Lotz, R.; Syed, Q.R. Investigating the Environmental Kuznets Curve Hypothesis amidst Geopolitical Risk: Global Evidence Using Bootstrap ARDL Approach. Environ. Sci. Pollut. Res. 2022, 29, 24049–24062. [Google Scholar] [CrossRef]
- Ravallion, M. Carbon Emissions and Income Inequality. Oxf. Econ. Pap. 2000, 52, 651–669. [Google Scholar] [CrossRef]
- Guivarch, C.; Taconet, N.; M’ejean, A. Linking Climate and Inequality. In International Monetary Fund. Available online: https://www.imf.org/en/Publications/fandd/issues/2021/09/climate-change-and-inequality-guivarch-mejean-taconet (accessed on 12 April 2025).
- Baiocchi, G.; Minx, J.; Hubacek, K. The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom. J. Ind. Ecol. 2010, 14, 50–72. [Google Scholar] [CrossRef]
- Chancel, L.; Bothe, P.; Voituriez, T. Climate Inequality Report 2023, Fair Taxes for a Sustainable Future in the Global South; Embedding project: Vancouver, BC, Canada, 2023. [Google Scholar]
- Keynes, J.M. The General Theory of Employment, Interest and Money; Palgrave Macmillan: London, UK, 1936. [Google Scholar]
- Coşkun, E.A. Exploring the Trade-Offs between Carbon Emissions, Income Inequality, and Poverty: A Theoretical and Empirical Framework. Energy Econ. 2025, 143, 108223. [Google Scholar] [CrossRef]
- Grunewald, N.; Klasen, S.; Martínez-Zarzoso, I.; Muris, C. The Trade-off Between Income Inequality and Carbon Dioxide Emissions. Ecol. Econ. 2017, 142, 249–256. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Xie, R. Does Income Inequality Facilitate Carbon Emission Reduction in the US? J. Clean. Prod. 2019, 217, 380–387. [Google Scholar] [CrossRef]
- Chen, J.; Xian, Q.; Zhou, J.; Li, D. Impact of Income Inequality on CO2 Emissions in G20 Countries. J. Environ. Manag. 2020, 271, 110987. [Google Scholar] [CrossRef]
- Wang, F.; Qu, M. The Interaction of Income Inequality and Energy Poverty on Global Carbon Emissions: A Dynamic Panel Data Approach. Energy Econ. 2024, 140, 108027. [Google Scholar] [CrossRef]
- Golley, J.; Meng, X. Income Inequality and Carbon Dioxide Emissions: The Case of Chinese Urban Households. Energy Econ. 2012, 34, 1864–1872. [Google Scholar] [CrossRef]
- Zhu, H.; Xia, H.; Guo, Y.; Peng, C. The Heterogeneous Effects of Urbanization and Income Inequality on CO2 Emissions in BRICS Economies: Evidence from Panel Quantile Regression. Environ. Sci. Pollut. Res. 2018, 25, 17176–17193. [Google Scholar] [CrossRef]
- Baloch, M.A.; Danish; Khan, S.U.-D.; Ulucak, Z.Ş.; Ahmad, A. Analyzing the Relationship between Poverty, Income Inequality, and CO2 Emission in Sub-Saharan African Countries. Sci. Total Environ. 2020, 740, 139867. [Google Scholar] [CrossRef]
- Khan, S.; Brown, L.; Das, A. On Income Inequality and CO2 Emissions in Bangladesh. World Dev. Sustain. 2025, 6, 100211. [Google Scholar] [CrossRef]
- Waglé, U.R.; Haase, D. Income Redistribution. In Encyclopedia of Quality of Life and Well-Being Research; Springer International Publishing: Cham, Switzerland, 2023; pp. 3409–3413. [Google Scholar]
- Yilmaz, E.; Sefil-Tansever, S. Income Distribution and Redistribution. J. Econ. Issues 2019, 53, 1103–1125. [Google Scholar] [CrossRef]
- Andersson, F.N.G. Economic Inequality and the Ecological Footprint: Time-Varying Estimates for Four Developed Economies, 1962–2021. Ecol. Econ. 2024, 220, 108185. [Google Scholar] [CrossRef]
- Andersson, F.N.G. Income Inequality and Carbon Emissions in the United States 1929–2019. Ecol. Econ. 2023, 204, 107633. [Google Scholar] [CrossRef]
- Jorgenson, A.; Goh, T.; Thombs, R.; Koop-Monteiro, Y.; Shakespear, M.; Gletsu, G.; Viens, N. Inequality Is Driving the Climate Crisis: A Longitudinal Analysis of Province-Level Carbon Emissions in Canada, 1997–2020. Energy Res. Soc. Sci. 2025, 119, 103845. [Google Scholar] [CrossRef]
- Sahu, A.K.; Mahalik, M.K. The Linkage between Income Inequality, Opportunity and Renewable Energy Demand: Panel Evidence from OECD Economies. Renew. Energy 2025, 243, 122588. [Google Scholar] [CrossRef]
- Pranita, D.; Sarjana, S. Carbon Tax Implementation in Transportation Sector to Encourage Low Carbon Emission. Preprints 2025. [Google Scholar] [CrossRef]
- Ridzuan, S. Income Redistribution and Carbon Emissions in Portugal. Port. Econ. J. 2024, 23, 421–437. [Google Scholar] [CrossRef]
- WID. Available online: https://wid.world/ (accessed on 3 March 2025).
- OWID Our World in Database. Available online: https://globalcarbonbudget.org/ (accessed on 4 December 2024).
- Population Based on Various Sources (2024). Available online: https://ourworldindata.org/population-sources (accessed on 4 December 2024).
- gdp in Bolt and van Zanden-Maddison Project Database 2023. Available online: https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2023 (accessed on 4 December 2024).
- Solt, F. Measuring Income Inequality Across Countries and Over Time: The Standardized World Income Inequality Database. Available online: https://fsolt.org/swiid/ (accessed on 11 January 2025).
- Campano, F.; Salvatore, D. Income Distribution; Oxford University Press: New York, NY, USA, 2006; ISBN 0-19-530091-2. [Google Scholar]
- Atkinson, A.B.; Bourguignon, F. Introduction: Income Distribution Today. In Handbook of Income Distribution (Volume 2A); Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-0-444-59428-0. [Google Scholar]
- Anderson, T.W.; Hsiao, C. Estimation of Dynamic Models with Error Components. J. Am. Stat. Assoc. 1981, 76, 598. [Google Scholar] [CrossRef]
- Anderson, T.W.; Hsiao, C. Formulation and Estimation of Dynamic Models Using Panel Data. J. Econom. 1982, 18, 47–82. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial Conditions and Moment Restrictions in Dynamic Panel Data Models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Bun, M.J.G.; Windmeijer, F. The Weak Instrument Problem of the System GMM Estimator in Dynamic Panel Data Models. Econom. J. 2010, 13, 95–126. [Google Scholar] [CrossRef]
- Roodman, D. How to Do Xtabond2. In Proceedings of the North American Stata Users Group Meetings, Nashville, TN, USA, 24–25 July 2006; pp. 1–30. [Google Scholar]
- World Bank Group. World Bank Group Country Classification by Income Level. Available online: https://flo.uri.sh/visualisation/18529506/embed?auto=1 (accessed on 9 May 2025).
- Kazemzadeh, E.; Fuinhas, J.A.; Koengkan, M. The Impact of Income Inequality and Economic Complexity on Ecological Footprint: An Analysis Covering a Long-Time Span. J. Environ. Econ. Policy 2022, 11, 133–153. [Google Scholar] [CrossRef]
- Cronin, J.A.; Fullerton, D.; Sexton, S. Vertical and Horizontal Redistributions from a Carbon Tax and Rebate. J. Assoc. Environ. Resour. Econ. 2019, 6, S169–S208. [Google Scholar] [CrossRef]
- Fremstad, A.; Paul, M. The Impact of a Carbon Tax on Inequality. Ecol. Econ. 2019, 163, 88–97. [Google Scholar] [CrossRef]
- Bruckner, B.; Hubacek, K.; Shan, Y.; Zhong, H.; Feng, K. Impacts of Poverty Alleviation on National and Global Carbon Emissions. Nat. Sustain. 2022, 5, 311–320. [Google Scholar] [CrossRef]
Indicator | Definition | Source | n | Mean | SD | Median | Min | Max |
---|---|---|---|---|---|---|---|---|
(1) | Per capita carbon emissions of the top 1% income group (in natural logarithm) | WID | 4048 | 3.602 | 1.137 | 3.685 | −1.529 | 6.433 |
(2) | Carbon emissions per capita (in natural logarithm) | OWID | 5411 | 0.607 | 1.572 | 0.867 | −3.816 | 4.338 |
Ratio of top 1% to average carbon emissions | Calculated | 4075 | 32.929 | 62.036 | 16.783 | −27.699 | 1201.194 | |
GDP per capita (in natural logarithm) | OWID | 4480 | 8.994 | 1.228 | 9.121 | 5.889 | 12.004 | |
pop | Total population (in billions) | OWID | 5452 | 3.66 | 1.36 × 10⁸ | 7,483,800 | 9299 | 1.44 × 10⁹ |
gini | Gini coefficient | SWIID | 4281 | 38.678 | 8.088 | 38.4 | 22 | 65.2 |
lnredist (1) | Absolute income redistribution (in natural logarithm) | SWIID | 4072 | 1.556 | 1.000 | 1.280 | −2.302 | 3.250 |
lnredist (2) | Relative income redistribution (in natural logarithm) | SWIID | 4072 | 2.345 | 0.964 | 2.013 | −1.469 | 3.969 |
= Absolute Redistribution | = Relative Redistribution | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Variables | ||||||
0.964 *** (0.024) | 0.966 *** (0.024) | 0.963 *** (0.025) | 0.970 *** (0.022) | 0.972 *** (0.022) | 0.970 *** (0.023) | |
−0.005 ** (0.002) | −0.005 ** (0.002) | −0.008 *** (0.002) | −0.005 ** (0.002) | −0.005 ** (0.002) | −0.009 *** (0.002) | |
0.206 * (0.107) | 0.190 * (0.102) | 0.216 * (0.116) | 0.181 * (0.099) | 0.169 * (0.096) | 0.189 * (0.105) | |
−0.009 ** (0.004) | −0.008 ** (0.004) | −0.010 ** (0.004) | −0.008 ** (0.004) | −0.007 ** (0.003) | −0.009 ** (0.004) | |
2.90 × 10−11 *** (9.77 × 10−12) | 3.14 × 10−11 *** (1.07 × 10−11) | 2.69 × 10−11 *** (9.32 × 10−12) | 2.90 × 10−11 *** (9.84 × 10−12) | |||
−0.001 * (0.000) | −0.001 ** (0.000) | |||||
Constant Term | −1.037 * (0.588) | −0.958 * (0.568) | −1.039 * (0.612) | −0.888 (0.549) | 0.826 (0.533) | −0.873 (0.555) |
Hansen test | 17.84 (0.214) | 17.89 (0.212) | 17.87 (0.213) | 6.10 (0.807) | 6.24 (0.795) | 6.48 (0.774) |
AR (1) | −6.97 (0.000) | −6.97 (0.000) | −6.95 (0.000) | −6.97 (0.000) | −6.98 (0.000) | −6.96 (0.000) |
AR (2) | 0.30 (0.766) | 0.30 (0.766) | 0.30 (0.765) | 0.30 (0.768) | 0.30 (0.768) | 0.30 (0.767) |
Observations | 3628 | 3628 | 3628 | 3628 | 3628 | 3628 |
Developed Countries | = Absolute Redistribution | = Relative Redistribution | ||||
---|---|---|---|---|---|---|
(n = 93) | (1) | (2) | (3) | (4) | (5) | (6) |
Variables | ||||||
0.978 *** (0.018) | 0.980 *** (0.018) | 0.976 *** (0.020) | 0.976 *** (0.019) | 0.978 *** (0.019) | 0.977 *** (0.018) | |
−0.007 ** (0.003) | −0.007 ** (0.003) | −0.009 * (0.005) | −0.006 * (0.004) | −0.006 * (0.004) | −0.010 ** (0.005) | |
0.229 *** (0.075) | 0.242 *** (0.070) | 0.225 *** (0.068) | 0.232 *** (0.082) | 0.245 *** (0.077) | 0.277 *** (0.068) | |
−0.011 *** (0.003) | −0.011 *** (0.003) | −0.010 *** (0.003) | −0.011 *** (0.003) | −0.012 *** (0.003) | −0.013 *** (0.003) | |
3.20 × 10−11 *** ((1.05 × 10−11)) | 3.35 × 10−11 *** (1.25 × 10−11) | 3.25 × 10−11 *** (1.10 × 10−11) | 3.43 × 10−11 *** (1.06 × 10−11) | |||
−0.000 (0.000) | −0.000 (0.000) | |||||
Constant Term | −1.115 *** (0.391) | −1.178 *** (0.367) | −1.091 *** (0.339) | −1.123 *** (0.422) | −1.191 *** (0.398) | −1.332 *** (0.336) |
Hansen Test | 16.51 (0.283) | 17.20 (0.246) | 14.31 (0.159) | 16.46 (0.286) | 17.13 (0.249) | 9.31 (0.317) |
AR (1) | −4.83 (0.000) | −4.83 (0.000) | −4.86 (0.000) | −4.84 (0.000) | −4.84 (0.000) | −4.84 (0.000) |
AR (2) | 0.25 (0.801) | 0.25 (0.802) | 0.25 (0.800) | 0.25 (0.801) | 0.25 (0.802) | 0.25 (0.802) |
Observations | 2273 | 2273 | 2273 | 2273 | 2273 | 2273 |
Developing Countries | = Absolute Redistribution | = Relative Redistribution | ||||
(n = 60) | (1) | (2) | (3) | (4) | (5) | (6) |
Variables | ||||||
0.935 *** (0.257) | 0.938 *** (0.251) | 0.989 *** (0.201) | 0.948 *** (0.245) | 0.951 *** (0.240) | 0.990 *** (0.197) | |
0.006 (0.045) | 0.006 (0.044) | 0.001 (0.043) | 0.009 (0.052) | 0.009 (0.051) | 0.001 (0.043) | |
0.372 (1.37) | 0.348 (1.330) | 0.128 (1.153) | 0.328 (1.330) | 0.306 (1.293) | 0.124 (1.131) | |
−0.017 (0.062) | −0.016 (0.060) | −0.007 (0.054) | −0.016 (0.061) | −0.015 (0.059) | −0.007 (0.053) | |
2.84 × 10−11 (2.91 × 10−11) | 2.24 × 10−11 (2.44 × 10−11) | 2.64 × 10−11 (2.86 × 10−11) | 2.20 × 10−11 (2.39 × 10−11) | |||
−0.001 (0.003) | −0.001 (0.002) | |||||
Constant Term | −1.867 (7.130) | −1.742 (6.934) | −0.461 (5.757) | −1.608 (6.934) | −1.498 (6.752) | −0.436 (5.726) |
Hansen Test | 17.58 (0.227) | 17.55 (0.228) | 17.42 (0.234) | 17.66 (0.223) | 17.64 (0.224) | 17.45 (0.233) |
AR (1) | −2.95 (0.003) | −3.00 (0.003) | −3.53 (0.000) | −3.07 (0.002) | −3.12 (0.002) | −3.56 (0.000) |
AR (2) | 0.14 (0.889) | 0.14 (0.889) | 0.14 (0.892) | 0.14 (0.889) | 0.14 (0.889) | 0.14 (0.892) |
Observations | 1328 | 1328 | 1328 | 1328 | 1328 | 1328 |
= Absolute Redistribution | = Relative Redistribution | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Variables | ||||||
1.030 *** (0.033) | 1.031 *** (0.033) | 1.029 *** (0.030) | 1.029 *** (0.032) | 1.030 *** (0.032) | 1.029 *** (0.030) | |
0.010 * (0.005) | 0.010 * (0.005) | 0.007 (0.005) | 0.012 ** (0.006) | 0.012 ** (0.006) | 0.009 (0.006) | |
0.082 * (0.046) | 0.077 * (0.046) | 0.091 ** (0.041) | 0.085 * (0.046) | 0.079 * (0.046) | 0.090 ** (0.041) | |
−0.006 *** (0.002) | −0.006 ** (0.002) | −0.006 *** (0.002) | −0.006 *** (0.002) | −0.006 *** (0.002) | −0.006 *** (0.002) | |
2.61 × 10−11 *** (8.93 × 10−12) | 2.76 × 10−11 *** (8.04 × 10−12) | 2.65 × 10−11 *** (8.83 × 10−12) | 2.75 × 10−11 *** (8.13 × 10−12) | |||
−0.000 (0.000) | −0.000 (0.000) | |||||
Constant Term | −0.343 * (0.203) | −0.321 (0.203) | −0.335 * (0.186) | −0.362 * (0.201) | −0.340 * (0.202) | −0.346 * (0.188) |
Hansen test | 0.25 (0.620) | 0.22 (0.641) | 0.23 (0.632) | 0.24 (0.622) | 0.21 (0.644) | 0.23 (0.634) |
AR (1) | −2.20 (0.028) | −2.20 (0.028) | −2.20 (0.028) | −2.20 (0.028) | −2.20 (0.028) | −2.20 (0.028) |
AR (2) | 0.80 (0.422) | 0.80 (0.423) | 0.80 (0.422) | 0.80 (0.423) | 0.80 (0.423) | 0.80 (0.422) |
Observations | 3227 | 3227 | 3227 | 3227 | 3227 | 3227 |
= Absolute Redistribution | = Relative Redistribution | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Variables | ||||||
0.921 *** (0.009) | 0.919 *** (0.009) | 0.918 *** (0.009) | 0.947 *** (0.008) | 0.945 *** (0.008) | 0.945 *** (0.008) | |
0.122 (0.142) | 0.372 * (0.217) | 0.371 * (0.218) | 0.107 (0.109) | 0.354 ** (0.175) | 0.354 ** (0.175) | |
−11.671 *** (4.084) | −13.166 *** (4.418) | −13.147 *** (4.406) | −6.538 ** (2.662) | −7.612 *** (2.876) | −7.635 *** (2.863) | |
0.602 *** (0.215) | 0.692 *** (0.236) | 0.691 *** (0.235) | 0.340 ** (0.139) | 0.403 *** (0.153) | 0.404 *** (0.152) | |
−4.68 × 10−10 (5.76 × 10−10) | −1.52 × 10−10 (3.42 × 10−10) | |||||
0.078 ** (0.039) | 0.079 ** (0.039) | 0.057 * (0.031) | 0.058 * (0.031) | |||
Constant Term | 56.986 *** (19.327) | 59.731 *** (19.931) | 59.650 *** (19.887) | 31.599 ** (12.748) | 33.335 *** (12.752) | 33.447 *** (12.702) |
Hansen test | 18.11 (0.202) | 18.05 (0.205) | 18.04 (0.205) | 18.21 (0.150) | 18.20 (0.150) | 18.20 (0.150) |
AR (1) | −1.16 (0.245) | −1.16 (0.245) | −1.16 (0.245) | −1.16 (0.246) | −1.16 (0.246) | −1.16 (0.246) |
AR (2) | −1.02 (0.308) | −1.02 (0.307) | −1.02 (0.308) | −1.02 (0.308) | −1.02 (0.308) | −1.02 (0.308) |
Observations | 3256 | 3256 | 3256 | 3256 | 3256 | 3256 |
Per Capita Carbon Emission | = Absolute Redistribution | = Relative Redistribution | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Variables | ||||||
27.111 (19.431) | 29.129 (21.866) | 26.588 (19.694) | 32.893 (25.921) | 34.974 (28.730) | 32.598 (26.064) | |
−0.159 (0.157) | −0.170 (0.173) | −0.232 (0.173) | −0.178 (0.206) | −0.188 (0.225) | −0.321 (0.269) | |
5.812 *** (1.209) | 5.753 *** (1.274) | 5.981 *** (1.232) | 6.163 *** (1.499) | 6.086 *** (1.555) | 6.377 *** (1.580) | |
−0.267 *** (0.071) | −0.264 *** (0.076) | −0.279 *** (0.073) | −0.290 *** (0.091) | −0.287 *** (0.095) | −0.304 *** (0.097) | |
8.73 × 10−10 *** (2.94 × 10−10) | 8.66 × 10−10 *** (2.95 × 10−10) | 9.67 × 10−10 *** (3.35 × 10−10) | 9.73 × 10−10 *** (3.31 × 10−10) | |||
−0.024 *** (0.008) | −0.033 ** (0.016) | |||||
Constant Term | −29.175 *** (4.645) | −28.885 *** (4.863) | −28.690 *** (4.462) | −30.130 *** (5.319) | −29.737 *** (5.456) | −29.338 *** (4.938) |
Per Capita Carbon Emissions of the Top 1% | = Absolute Redistribution | = Relative Redistribution | ||||
(1) | (2) | (3) | (4) | (5) | (6) | |
Variables | ||||||
−33.761 (35.658) | −32.505 (32.864) | −35.246 (36.272) | −34.668 (37.112) | −33.347 (34.151) | −35.146 (36.099) | |
−0.348 (0.364) | −0.345 (0.347) | −0.267 (0.350) | −0.414 (0.412) | −0.410 (0.392) | −0.312 (0.407) | |
−2.712 (3.896) | −2.441 (3.470) | −3.123 (3.925) | −2.865 (4.096) | −2.580 (3.641) | −3.076 (3.862) | |
0.208 (0.229) | 0.192 (0.205) | 0.234 (0.232) | 0.218 (0.242) | 0.202 (0.215) | 0.231 (0.229) | |
–8.22 × 10−10 *** (2.81 × 10−10) | –9.45 × 10−10 *** (2.75 × 10−10) | –8.58 × 10−10 *** (2.86 × 10−10) | –9.39 × 10−10 *** (2.78 × 10−10) | |||
0.030 * (0.016) | 0.024 * (0.014) | |||||
Constant Term | 11.239 (16.443) | 10.121 (14.671) | 11.502 (16.007) | 12.190 (17.562) | 11.012 (15.658) | 11.844 (16.357) |
1960–2023 | 1960–2023 (Long-Run Coefficients) | |||||||
---|---|---|---|---|---|---|---|---|
Per Capita Carbon Emissions | Per Capita Carbon Emissions of the Top 1% | Per Capita Carbon Emissions | Per Capita Carbon Emissions of the Top 1% | |||||
Variables | = Absolute Redistribution | = Relative Redistribution | = Absolute Redistribution | = Relative Redistribution | = Absolute Redistribution | = Relative Redistribution | = Absolute Redistribution | = Relative Redistribution |
0.961 *** (0.031) | 0.960 *** (0.031) | 1.023 *** (0.024) | 1.023 *** (0.024) | 25.032 (21.184) | 24.618 (20.646) | −42.753 (42.472) | −42.828 (42.682) | |
−0.009 *** (0.003) | −0.009 ** (0.004) | 0.005 (0.005) | 0.006 (0.005) | −0.247 (0.235) | −0.254 (0.251) | −0.220 (0.269) | −0.255 (0.311) | |
0.256 (0.160) | 0.261 (0.161) | 0.065 * (0.037) | 0.064 * (0.037) | 6.684 *** (1.402) | 6.687 *** (1.397) | −2.743 (3.638) | −2.715 (3.623) | |
−0.012 * (0.007) | −0.012 * (0.007) | −0.004 ** (0.002) | −0.004 ** (0.002) | −0.316 *** (0.082) | −0.316 *** (0.082) | 0.204 (0.207) | 0.203 (0.206) | |
3.94 × 10−11 ** (1.60 × 10−11) | 4.01 × 10−11 ** (1.61 × 10−11) | 3.74 × 10−11 *** (9.92 × 10−12) | 3.72 × 10−1 *** (1.00 × 10−11) | 1.03 × 10−9 ** (4.16 × 10−10) | 1.03 × 10−9 ** (4.12 × 10−10) | −1.56 × 10−9 *** (4.14 × 10−10) | −1.56 × 10−9 *** (4.19 × 10−10) | |
−0.001 (0.000) | −0.001 (0.000) | −0.000 (0.000) | −0.000 (0.000) | −0.029 *** (0.010) | −0.033 ** (0.013) | 0.035 (0.023) | 0.030 (0.021) | |
Constant Term | −1.215 (0.817) | −1.220 (0.824) | −0.250 (0.167) | −0.257 (0.167) | −31.654 *** (5.183) | −31.274 *** (4.843) | 10.443 (15.239) | 10.764 (15.553) |
Hansen test | 0.05 (0.817) | 0.07 (0.799) | 0.42 (0.517) | 0.42 (0.517) | ||||
AR (1) | −2.30 (0.021) | −2.30 (0.021) | −2.78 (0.005) | −2.78 (0.005) | ||||
AR (2) | 1.10 (0.272) | 1.10 (0.272) | 1.23 (0.219) | 1.23 (0.219) | ||||
Observations | 5458 | 5458 | 4356 | 4356 | 5458 | 5458 | 4356 | 4356 |
2000–2023 | 2010–2023 | |||||||
---|---|---|---|---|---|---|---|---|
Per Capita Carbon Emissions | Per Capita Carbon Emissions of the Top 1% | Per Capita Carbon Emissions | Per Capita Carbon Emissions of the Top 1% | |||||
Variables | = Absolute Redistribution | = Relative Redistribution | = Absolute Redistribution | = Relative Redistribution | = Absolute Redistribution | = Relative Redistribution | = Absolute Redistribution | = Relative Redistribution |
0.961 *** (0.028) | 0.951 *** (0.026) | 0.993 *** (0.031) | 0.985 *** (0.039) | 0.849 *** (0.031) | 0.872 *** (0.033) | 0.728 *** (0.065) | 0.728 *** (0.068) | |
−0.007 ** (0.003) | −0.009 * (0.006) | 0.002 (0.004) | 0.003 (0.004) | −0.015 * (0.008) | −0.020 * (0.012) | 0.008 (0.011) | 0.018 (0.011) | |
0.198 * (0.117) | 0.233 * (0.124) | 0.095 *** (0.031) | 0.105 *** (0.030) | 0.505 *** (0.131) | 0.425 *** (0.157) | −0.181 (0.144) | −0.116 (0.121) | |
−0.007 ** (0.003) | −0.010 * (0.005) | −0.005 ** (0.002) | −0.005 * (0.002) | −0.019 *** (0.005) | −0.016 ** (0.007) | 0.022 ** (0.009) | 0.018 ** (0.008) | |
3.32 × 10−1 ** (1.44 × 10−11) | 3.82 × 10−11 ** (1.63 × 10−11) | 3.85 × 10−11 *** (1.33 × 10−11) | 3.62 × 10−11 *** (1.21 × 10−11) | 7.72 × 10−11 *** (2.44 × 10−11) | 8.17 × 10−11 *** (2.79 × 10−11) | 1.17 × 10−10 *** (4.00 × 10−11) | 1.09 × 10−10 *** (4.07 × 10−11) | |
−0.000 (0.000) | −0.001 (0.000) | −0.000 (0.000) | 6.93e−06 (0.000) | −0.002 * (0.001) | −0.002 (0.001) | 0.007 *** (0.002) | 0.007 *** (0.002) | |
Constant Term | −0.963 (0.633) | −1.140 * (0.641) | −0.378 *** (0.130) | −0.444 *** (0.120) | −2.769 *** (0.684) | −2.290 *** (0.795) | 0.410 (0.592) | 0.117 (0.503) |
Hansen test | 4.19 (0.381) | 25.98 (0.166) | 17.91 (0.161) | 0.71 (0.399) | 3.17 (0.530) | 25.24 (0.192) | 22.76 (0.064) | 15.34 (0.082) |
AR (1) | −6.87 (0.000) | −6.93 (0.000) | −5.44 (0.000) | 5.32 (0.000) | −4.98 (0.000) | −5.01 (0.000) | −4.40 (0.000) | −4.43 (0.000) |
AR (2) | −0.48 (0.633) | −0.48 (0.634) | −0.08 (0.936) | −0.07 (0.942) | −1.07 (0.283) | −1.07 (0.283) | −1.75 (0.080) | −1.77 (0.077) |
Observations | 2996 | 2996 | 2622 | 2622 | 1585 | 1585 | 1277 | 1277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boz, A.; Ünalan, G.; Çaşkurlu, E. The Effectiveness of Redistribution in Carbon Inequality: What About the Top 1%? Sustainability 2025, 17, 4960. https://doi.org/10.3390/su17114960
Boz A, Ünalan G, Çaşkurlu E. The Effectiveness of Redistribution in Carbon Inequality: What About the Top 1%? Sustainability. 2025; 17(11):4960. https://doi.org/10.3390/su17114960
Chicago/Turabian StyleBoz, Arınç, Gökhan Ünalan, and Eren Çaşkurlu. 2025. "The Effectiveness of Redistribution in Carbon Inequality: What About the Top 1%?" Sustainability 17, no. 11: 4960. https://doi.org/10.3390/su17114960
APA StyleBoz, A., Ünalan, G., & Çaşkurlu, E. (2025). The Effectiveness of Redistribution in Carbon Inequality: What About the Top 1%? Sustainability, 17(11), 4960. https://doi.org/10.3390/su17114960