Life Cycle Sustainability Assessment of Agriproducts in Latin America: Overview Based on Latent Dirichlet Allocation
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- Global Query: “Life Cycle sustainability Assessment + environmental + social + technoeconomical + Life Cycle Assessment + Agriculture + Agri-products + agricultural + Food”;
- (ii)
- Latin-America Query: “Life Cycle sustainability Assessment + environmental + social + technoeconomical + Life Cycle Assessment + Latin America + Agriculture + Argentina Bolivia + Brasil + Chile + Colombia + Costa Rica + Cuba + Ecuador + El Salvador + Guatemala Haití + Honduras + México + Nicaragua + Panamá + Paraguay + Perú + República Dominicana + Uruguay + Venezuela + Agri-products + agricultural + food”.
- (i)
- Selecting an appropriate number of topics (k): Various values of k were tested, and the model’s coherence score was used to determine the optimal number of topics.
- (ii)
- Cross-validation: The model was validated using a subset of the data to ensure its generalizability.
- (iii)
- Parameter tuning: Hyperparameters such as alpha and beta were fine-tuned to improve model performance.
3. Results
3.1. LCA and LCSA Approaches in Latin America
3.2. Latent Dirichlet Allocation (LDA) Results
- Topic 1 centers on environmental impacts and production processes, particularly resource extraction and industrial manufacturing (PPS = 0.1373).
- Topic 2 focuses on the environmental impacts of agricultural and animal production, including land use, soil health, and the consumption of organic and conventional feed (PPS = 0.0313).
- Topic 3 addresses the environmental footprint of products, especially food and primary agricultural goods like milk and rice, along the supply chain (PPS = 0.0798).
- Topic 4 is concerned with energy systems, focusing on electricity generation, gas, renewable technologies, and their greenhouse gas (GHG) emissions and climate impact related to agrisystems (PPS = 0.0424).
- Topic 5 provides a review and overview of life cycle assessment (LCA) studies, including literature reviews, data analysis, and methodological challenges (PPS = 0.0323).
- Topic 6 discusses various LCA approaches, including model-based and tool-assisted analyses, as well as the development of new methods (PPS = 0.0775).
- Topic 7 examines the impact of technology systems on GHG emissions and global warming scenarios within agrisystems (PPS = 0.0805).
- Topic 8 focuses on the life cycle performance and economic analysis of building materials and infrastructure, such as concrete construction and design for agriculture and food production (PPS = 0.0719).
- Topic 9 explores the potential environmental impact of global scenarios, including climate change and human-induced eutrophication (PPS = 0.0240).
- Topic 10 covers waste management, emphasizing recycling and the life cycle of packaging materials, particularly plastics (PPS = 0.0518).
- Topic 11 discusses sustainability indicators and frameworks, with an emphasis on the Social Life Cycle Assessment (SLCA) and the economic value of sustainable development (PSS = 0.0194).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards Life Cycle Sustainability Assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]
- Fok, L.Y.; Morgan, Y.-C.; Zee, S.M.L. A Multi-Industry Study of Sustainability, Total Quality Management, Organizational Culture, and Performance. Int. J. Oper. Quant. Manag. 2021, 27, 45. [Google Scholar] [CrossRef]
- Luthin, A.; Traverso, M.; Crawford, R.H. Circular Life Cycle Sustainability Assessment: An Integrated Framework. J. Ind. Ecol. 2024, 28, 41–58. [Google Scholar] [CrossRef]
- Klöpffer, W. The Hitch Hiker’s Guide to LCA—An Orientation in LCA Methodology and Application. Int. J. Life Cycle Assess. 2006, 11, 142. [Google Scholar] [CrossRef]
- Jørgensen, A.; Le Bocq, A.; Nazarkina, L.; Hauschild, M. Methodologies for Social Life Cycle Assessment. Int. J. Life Cycle Assess. 2008, 13, 96–103. [Google Scholar] [CrossRef]
- Ardente, F.; Cellura, M. Economic Allocation in Life Cycle Assessment. J. Ind. Ecol. 2012, 16, 387–398. [Google Scholar] [CrossRef]
- Dreyer, L.C.; Hauschild, M.Z.; Schierbeck, J. Characterisation of Social Impacts in LCA. Int. J. Life Cycle Assess. 2010, 15, 247–259. [Google Scholar] [CrossRef]
- UNEP/SETAC Life Cycle Initiative. Guidelines for Social Life Cycle Assessment of Products. Management 2009, 15, 104. [Google Scholar]
- Gasol, C.M. Environmental and Economic Integrated Assessment of Local Energy Crops Production in Southern Europe. Ph.D. Thesis, Universitat Autònoma de Barcelona, Bellaterra, Spain, 2009. [Google Scholar]
- Menichetti, E.; Otto, M. Energy Balance & Greenhouse Gas Emissions of Biofuels from a Life Cycle Perspective. In Biofuels: Environmental Consequences and Interactions with Changing Land Use; Cornell University: Ithaca, NY, USA, 2009; pp. 81–109. [Google Scholar]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil Cakes and Their Biotechnological Applications—A Review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef]
- Thomassen, M.A.; Dalgaard, R.; Heijungs, R.; de Boer, I. Attributional and Consequential LCA of Milk Production. Int. J. Life Cycle Assess. 2008, 13, 339–349. [Google Scholar] [CrossRef]
- Ekvall, T.; Azapagic, A.; Finnveden, G.; Rydberg, T.; Weidema, B.P.; Zamagni, A. Attributional and Consequential LCA in the ILCD Handbook. Int. J. Life Cycle Assess. 2016, 21, 293–296. [Google Scholar] [CrossRef]
- Brander, M.; Tipper, R.; Hutchison, C.; Davis, G. Consequential and Attributional Approaches to LCA: A Guide to Policy Makers with Specific Reference to Greenhouse Gas LCA of Biofuels; Econometrica Press: Baltimore, MD, USA, 2008; pp. 1–14. [Google Scholar]
- Wolf, M.; Chomkhamsri, K.; Brandao, M.; Pant, R.; Ardente, F.; Pennington, D.; Manfredi, S.; De Camillis, C.; Goralczyk, M. International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- D’Avino, L.; Dainelli, R.; Lazzeri, L.; Spugnoli, P. The Role of Co-Products in Biorefinery Sustainability: Energy Allocation versus Substitution Method in Rapeseed and Carinata Biodiesel Chains. J. Clean. Prod. 2015, 94, 108–115. [Google Scholar] [CrossRef]
- Ramìrez-Cando, L.; Spugnoli, P.; Matteo, R.; Bagatta, M.; Tavarini, S.; Foschi, L.; Lazzeri, L. Environmental Assessment of Flax Straw Production for Non-Wood Pulp Mills. Chem. Eng. Trans. 2017, 58, 787–792. [Google Scholar]
- Schmidt, J.H. System Delimitation in Agricultural Consequential LCA. Int. J. Life Cycle Assess. 2008, 13, 350–364. [Google Scholar] [CrossRef]
- Martin, J.; Henrichs, T.; Seemore, C.F. Environmental Indicator Report 2012: Ecosystem Resilience and Resource Efficiency in a Green Economy in Europe; Thomas, J., Francis, C., Hoogeveen, Y., Kazmierczyk, P., Pignatelli, R., Speck, S., Eds.; European Environment Agency: Copenhagen, Denmark, 2012. [Google Scholar]
- Cando, L.J.R.; Guerrini, L. Assessment of Grape Pressing Environmental Performance with Device Technical Sheets. Acta Hortic. 2024, 1387, 159–166. [Google Scholar] [CrossRef]
- Jørgensen, A. Social LCA—A Way Ahead? Int. J. Life Cycle Assess. 2013, 18, 296–299. [Google Scholar] [CrossRef]
- Weidema, B.P. ISO 14044 also Applies to Social LCA. Int. J. Life Cycle Assess. 2005, 10, 381. [Google Scholar] [CrossRef]
- Braungart, M.; McDonough, W.; Bollinger, A. Cradle-to-Cradle Design: Creating Healthy Emissions—A Strategy for Eco-Effective Product and System Design. J. Clean. Prod. 2007, 15, 1337–1348. [Google Scholar] [CrossRef]
- Colmenares, I.E.P.; Cando, L.J.R. Ecoeficiencia de los Modelos de Producción Agrícola de Maíz Duro y Su Influencia al Cambio Climático en Shushufindi Ecuador. Granja 2021, 33, 76–90. [Google Scholar] [CrossRef]
- Charles, R.; Jolliet, O.; Gaillard, G.; Pellet, D. Environmental Analysis of Intensity Level in Wheat Crop Production Using Life Cycle Assessment. Agric. Ecosyst. Env. 2006, 113, 216–225. [Google Scholar] [CrossRef]
- Ramirez-Cando, L.; Angeloni, G.; Parenti, A.; Guerrini, L. Environmental impacts of communitary crops of sweet quinoa (Chenopodium quinoa Willd. var. Tukahuan) at Andean region in Ecuador. J. Sustain. Sci. Manag. 2022, 17, 181–194. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Dreyer, L.C.; Jørgensen, A. Assessing Social Impacts in a Life Cycle Perspective—Lessons Learned. CIRP Ann. 2008, 57, 21–24. [Google Scholar] [CrossRef]
- Lee, J.H.; Ostwald, M.J. Latent Dirichlet Allocation (LDA) Topic Models for Space Syntax Studies on Spatial Experience. City Territ. Archit. 2024, 11, 3. [Google Scholar] [CrossRef]
- Cheng, X.; Cao, Q.; Liao, S.S. An Overview of Literature on COVID-19, MERS and SARS: Using Text Mining and Latent Dirichlet Allocation. J. Inf. Sci. 2022, 48, 304–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Daim, T.; Zhang, Y. Integrating Patent Analysis into Technology Roadmapping: A Latent Dirichlet Allocation Based Technology Assessment and Roadmapping in the Field of Blockchain. Technol. Forecast. Soc. Chang. 2021, 167, 120729. [Google Scholar] [CrossRef]
- Gasol, C.M.; Gabarrell, X.; Rigola, M.; González-García, S.; Rieradevall, J. Environmental Assessment: (LCA) and Spatial Modelling (GIS) of Energy Crop Implementation on Local Scale. Biomass Bioenergy 2011, 35, 2975–2985. [Google Scholar] [CrossRef]
- Hansen, J.W. Is Agricultural Sustainability a Useful Concept? Agric. Syst. 1996, 50, 117–143. [Google Scholar] [CrossRef]
- Iriarte, A.; Rieradevall, J.; Gabarrell, X. Transition towards a More Environmentally Sustainable Biodiesel in South America: The Case of Chile. Appl. Energy 2012, 91, 263–273. [Google Scholar] [CrossRef]
- Morales, M.; Quintero, J.; Conejeros, R.; Aroca, G. Life Cycle Assessment of Lignocellulosic Bioethanol: Environmental Impacts and Energy Balance. Renew. Sustain. Energy Rev. 2015, 42, 1349–1361. [Google Scholar] [CrossRef]
- Bottausci, S.; Midence, R.; Serrano-Bernardo, F.; Bonoli, A. Organic Waste Management and Circular Bioeconomy: A Literature Review Comparison between Latin America and the European Union. Sustainability 2022, 14, 1661. [Google Scholar] [CrossRef]
- Craparo, G.; Montero, E.I.C.; Peñalver, J.F.S. Trends in the Circular Economy Applied to the Agricultural Sector in the Framework of the SDGs. Env. Dev. Sustain. 2023, 26, 26699–26729. [Google Scholar] [CrossRef]
- Salmoral, G.; Zegarra, E.; Vázquez-Rowe, I.; González, F.; del Castillo, L.; Saravia, G.R.; Graves, A.; Rey, D.; Knox, J.W. Water-Related Challenges in Nexus Governance for Sustainable Development: Insights from the City of Arequipa, Peru. Sci. Total Environ. 2020, 747, 141114. [Google Scholar] [CrossRef] [PubMed]
- Canabarro, N.I.; Silva-Ortiz, P.; Nogueira, L.A.H.; Cantarella, H.; Maciel-Filho, R.; Souza, G.M. Sustainability Assessment of Ethanol and Biodiesel Production in Argentina, Brazil, Colombia, and Guatemala. Renew. Sustain. Energy Rev. 2023, 171, 113019. [Google Scholar] [CrossRef]
- Hwang, Y.K. The Energy-Growth Nexus in 3 Latin American Countries on the Basis of the EKC Framework: In the Case of Argentina, Brazil, and Chile. Environ. Sci. Pollut. Res. 2022, 30, 31583–31604. [Google Scholar] [CrossRef]
- Iriarte, A.; Villalobos, P. Greenhouse Gas Emissions and Energy Balance of Sunflower Biodiesel: Identification of Its Key Factors in the Supply Chain. Resour. Conserv. Recycl. 2013, 73, 46–52. [Google Scholar] [CrossRef]
- Koengkan, M.; Losekann, L.D.; Fuinhas, J.A.; Marques, A.C. The Effect of Hydroelectricity Consumption on Environmental Degradation—The Case of South America Region. Acad. Soc. J. 2018, 2, 46–67. [Google Scholar] [CrossRef]
- Terlouw, T.; Treyer, K.; Bauer, C.; Mazzotti, M. Life Cycle Assessment of Direct Air Carbon Capture and Storage with Low-Carbon Energy Sources. Env. Sci. Technol. 2021, 55, 11397–11411. [Google Scholar] [CrossRef]
- Chiriboga, G.; Rosa, A.D.L.; Molina, C.; Velarde, S.; Carvajal, C.G. Energy Return on Investment (EROI) and Life Cycle Analysis (LCA) of Biofuels in Ecuador. Heliyon 2020, 6, e04213. [Google Scholar] [CrossRef]
- Matheus, T.T.; Farrapo, A.C.; Lagunes, R.M.; Filleti, R.; Garcia, D.P.; Silva, D.A.L. The Effect of Transportation Choices for Mitigating Climate-Related Impacts: The Case of Solid Biofuels Exported to Europe Produced by Latin American Countries. Sustain. Prod. Consum. 2024, 45, 551–566. [Google Scholar] [CrossRef]
- Rivera-Huerta, A.; de la Salud Rubio Lozano, M.; Padilla-Rivera, A.; Güereca, L.P. Social Sustainability Assessment in Livestock Production: A Social Life Cycle Assessment Approach. Sustainability 2019, 11, 4419. [Google Scholar] [CrossRef]
- Aparcana, S.; Salhofer, S. Application of a Methodology for the Social Life Cycle Assessment of Recycling Systems in Low Income Countries: Three Peruvian Case Studies. Int. J. Life Cycle Assess. 2013, 18, 1116–1128. [Google Scholar] [CrossRef]
- Osorio-Tejada, J.L.; Llera-Sastresa, E.; Scarpellini, S.; Morales-Pinzón, T. Social Organizational Life Cycle Assessment of Transport Services: Case Studies in Colombia, Spain, and Malaysia. Sustainability 2022, 14, 10060. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Ortiz-Sanchez, M.; Alzate, C.A.C. Environmental Life Cycle Assessment (E-LCA) and Social Impact Assessment (SIA) of Small-Scale Biorefineries Implemented in Rural Zones: The Avocado (Persea americana var. Americana) Case in Colombia. Environ. Sci. Pollut. Res. 2022, 30, 8790–8808. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, E.M.; Cabrol, D.A.; Cuchietti, A.; González, A.D. Biomass Consumption and Environmental Footprints of Beef Cattle Production in Argentina. Agric. Syst. 2020, 185, 102944. [Google Scholar] [CrossRef]
- Costantini, M.; Vázquez-Rowe, I.; Manzardo, A.; Bacenetti, J. Environmental Impact Assessment of Beef Cattle Production in Semi-Intensive Systems in Paraguay. Sustain. Prod. Consum. 2021, 27, 269–281. [Google Scholar] [CrossRef]
- González-Quintero, R.; Bolívar-Vergara, D.M.; Chirinda, N.; Arango, J.; Pantevez, H.; Barahona-Rosales, R.; Sánchez-Pinzón, M.S. Environmental Impact of Primary Beef Production Chain in Colombia: Carbon Footprint, Non-Renewable Energy and Land Use Using Life Cycle Assessment. Sci. Total Environ. 2021, 773, 145573. [Google Scholar] [CrossRef]
- Viglizzo, E.; Ricard, F. Carbon Accounting per Unit of Food and Unit of Land in Food Production Systems of Argentina. Univers. J. Carbon. Res. 2023, 1, 23–33. [Google Scholar] [CrossRef]
- Giusti, G.; Galo, N.R.; Pereira, R.P.T.; Silva, D.A.L.; Filimonau, V. Assessing the Impact of Drought on Carbon Footprint of Soybean Production from the Life Cycle Perspective. J. Clean. Prod. 2023, 425, 138843. [Google Scholar] [CrossRef]
- Nab, C.; Maslin, M. Life Cycle Assessment Synthesis of the Carbon Footprint of Arabica Coffee: Case Study of Brazil and Vietnam Conventional and Sustainable Coffee Production and Export to the United Kingdom. Geo 2020, 7, e00096. [Google Scholar] [CrossRef]
- Ruviaro, C.F.; Gianezini, M.; Brandão, F.S.; Winck, C.A.; Dewes, H. Life Cycle Assessment in Brazilian Agriculture Facing Worldwide Trends. J. Clean. Prod. 2012, 28, 9–24. [Google Scholar] [CrossRef]
- Cogo Badan, I.; Jung, S.-H.; Singh, R.; Vivekanand, V.; Knappert, J.; Rauh, C.; Lindenberger, C. Life Cycle Assessment of Exopolysaccharides and Phycocyanin Production with Arthrospira platensis. Fermentation 2024, 10, 163. [Google Scholar] [CrossRef]
- Barreto, Ó.S.C.; Almeida, E.d.S.; Medeiros, D.L. Life Cycle Assessment of Biossurfactants: A Critical Analysis. Rev. Gest. Soc. Ambient. 2024, 18, e04708. [Google Scholar] [CrossRef]
- González, M.A.; Arenas, C.N.; Ríos, J.A.; Miranda, J.; Bello, A.P.; Botero, J.; Betancur, M. Life-Cycle Assessment in Hydrangea Cultivation in Colombia and Their Cleaner Production Strategies. Sustainability 2024, 16, 887. [Google Scholar] [CrossRef]
- El Chami, D.; Santagata, R.; Moretti, S.; Moreschi, L.; Del Borghi, A.; Gallo, M. A Life Cycle Assessment to Evaluate the Environmental Benefits of Applying the Circular Economy Model to the Fertiliser Sector. Sustainability 2023, 15, 15468. [Google Scholar] [CrossRef]
- Hernández-Padilla, F.; Margni, M.; Noyola, A.; Guereca-Hernandez, L.; Bulle, C. Assessing Wastewater Treatment in Latin America and the Caribbean: Enhancing Life Cycle Assessment Interpretation by Regionalization and Impact Assessment Sensibility. J. Clean. Prod. 2017, 142, 2140–2153. [Google Scholar] [CrossRef]
- Reyes, A. Revealing the Contribution of Informal Settlements to Climate Change Mitigation in Latin America: A Case Study of Isidro Fabela, Mexico City. Sustainability 2021, 13, 12108. [Google Scholar] [CrossRef]
- Nemecek, T.; Frick, C.; Dubois, D.; Gaillard, G. Comparing Farming Systems at Crop Rotation Level by LCA. In Proceedings of the International Conference on LCA in Foods, Gothenburg, Sweden, 26–27 April 2001; pp. 65–69. [Google Scholar]
- van der Voet, E. Land Use in LCA; CML-SSP Working Paper 02.002; Leiden University: Leiden, The Netherlands, 2002. [Google Scholar]
- Oliveral, A.; Cristobal, S.; Saizar, C. Análisis de Ciclo de Vida Ambiental, Económico y Social. Innotec 2016, 7, 20–27. [Google Scholar]
- Silva, D.A.L.; Filleti, R.A.P.; Musule, R.; Matheus, T.T.; Freire, F. A Systematic Review and Life Cycle Assessment of Biomass Pellets and Briquettes Production in Latin America. Renew. Sustain. Energy Rev. 2022, 157, 112042. [Google Scholar] [CrossRef]
- Krohn, B.J.; Fripp, M. A Life Cycle Assessment of Biodiesel Derived from the “Niche Filling” Energy Crop Camelina in the USA. Appl. Energy 2012, 92, 92–98. [Google Scholar] [CrossRef]
- Maloof, A.; Piburn, J.; Tootle, G.; Kerr, G. Recent Alpine Glacier Variability: Wind River Range, Wyoming, USA. Geosciences 2014, 4, 191–201. [Google Scholar] [CrossRef]
- Wood, S.; Layzell, D. A Canadian Biomass Inventory: Feedstocks for a Bio-Based Economy Report; Industry Canada: Toronto, ON, Canada, 2003; p. 42. [Google Scholar]
- WRI; WBCSD Greenhouse Gas Protocol. Product Life Cycle Accounting and Reporting Standard; World Resources Institute: Washington, DC, USA, 2011. [Google Scholar]
- Alaloul, W.S.; Altaf, M.; Musarat, M.A.; Javed, M.F.; Mosavi, A. Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study. Sustainability 2021, 13, 4377. [Google Scholar] [CrossRef]
- Meneses-Jácome, A.; Diaz-Chavez, R.; Velásquez-Arredondo, H.I.; Cárdenas-Chávez, D.L.; Parra, R.; Ruiz-Colorado, A.A. Sustainable Energy from Agro-Industrial Wastewaters in Latin-America. Renew. Sustain. Energy Rev. 2016, 56, 1249–1262. [Google Scholar] [CrossRef]
- Falasca, S.L.; Flores, N.; Lamas, M.C.; Carballo, S.M.; Anschau, A. Crambe Abyssinica: An Almost Unknown Crop with a Promissory Future to Produce Biodiesel in Argentina. Int. J. Hydrogen Energy 2010, 35, 5808–5812. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Mora-Frank, C.; Berrezueta, E. Bibliometric Analysis of Groundwater’s Life Cycle Assessment Research. Water 2022, 14, 1082. [Google Scholar] [CrossRef]
- Lapola, D.M.; Schaldach, R.; Alcamo, J.; Bondeau, A.; Koch, J.; Koelking, C.; Priess, J.A. Indirect Land-Use Changes Can Overcome Carbon Savings from Biofuels in Brazil. Proc. Natl. Acad. Sci. USA 2010, 107, 3388–3393. [Google Scholar] [CrossRef]
- Lueddeckens, S.; Saling, P.; Guenther, E. Temporal Issues in Life Cycle Assessment—A Systematic Review. Int. J. Life Cycle Assess. 2020, 25, 1385–1401. [Google Scholar] [CrossRef]
- Navarro, I.; de la Torre, A.; Sanz, P.; Baldi, I.; Harkes, P.; Huerta-Lwanga, E.; Nørgaard, T.; Glavan, M.; Pasković, I.; Pasković, M.P.; et al. Occurrence of Pesticide Residues in Indoor Dust of Farmworker Households across Europe and Argentina. Sci. Total Environ. 2023, 905, 167797. [Google Scholar] [CrossRef]
- Valdes, C. Brazil’s Ethanol Industry: Looking Forward; USDA—United States Department of Agriculture: Washington, DC, USA, 2011.
- Grangeia, C.; Santos, L.; Lazaro, L.L.B. The Brazilian Biofuel Policy (RenovaBio) and Its Uncertainties: An Assessment of Technical, Socioeconomic and Institutional Aspects. Energy Convers. Manag. X 2022, 13, 100156. [Google Scholar] [CrossRef]
- Rebello, T.A.; Roque, R.P.; Gonçalves, R.F.; Calmon, J.L.; Queiroz, L.M. Life Cycle Assessment of Urban Wastewater Treatment Plants: A Critical Analysis and Guideline Proposal. Water Sci. Technol. 2021, 83, 501–514. [Google Scholar] [CrossRef]
Topic 1: Environmental Impact and Production Processes | Topic 2: Agricultural and Animal Production Impacts | Topic 3: Environmental Footprint of Products | Topic 4: Energy Systems and Emissions | Topic 5: LCA Studies and Methodological Challenges | Topic 6: LCA Approaches and Tools | Topic 7: Technology, GHG Emissions and Climate | Topic 8: Building Materials and Infrastructure | Topic 9: Global Environmental Scenarios | Topic 10: Waste Management and Recycling | Topic 11: Sustainability Indicators and Frameworks |
---|---|---|---|---|---|---|---|---|---|---|
environmental | production | Products | energy | lca | approach | life | building | impact | waste | sustainability |
process | impacts | water | emissions | studies | different | performance | environmental | potential | environmental | social |
production | environmental | Food | electricity | research | results | cycle | life | environmental | scenario | assessment |
impacts | system | Environmental | system | data | based | cost | construction | categories | life | life |
processes | use | producto | gas | literature | can | economic | carbon | global | management | indicators |
results | agricultural | Consumption | systems | life | model | results | materials | study | study | framework |
technology | systems | Impact | ghg | review | method | analysis | cycle | warming | scenarios | slca |
assessment | impact | Supply | cycle | cycle | assessment | concrete | design | life | recycling | sustainable |
considered | land | Footprint | fuel | study | analysis | costs | buildings | human | cycle | development |
raw | using | Impacts | renewable | future | developed | study | lca | cycle | circular | slca |
material | organic | Chain | consumption | analysis | used | infrastructure | potential | depletion | assessment | economic |
manufacturing | soil | Results | technologies | several | proposed | significant | emissions | gwp | impacts | results |
extraction | conventional | Use | greenhouse | paper | however | higher | impacts | using | plastic | value |
industrial | feed | Milk | climate | challenges | tool | using | using | eutrophication | packaging | sector |
resources | agriculture | Primary | emission | methodological | lca | stages | stage | assess | materials | assess |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Cando, L.J.; Mora-Ochoa, Y.I.; Freire-Sanchez, A.S.; Medina-Rodriguez, B.X. Life Cycle Sustainability Assessment of Agriproducts in Latin America: Overview Based on Latent Dirichlet Allocation. Sustainability 2025, 17, 4954. https://doi.org/10.3390/su17114954
Ramírez-Cando LJ, Mora-Ochoa YI, Freire-Sanchez AS, Medina-Rodriguez BX. Life Cycle Sustainability Assessment of Agriproducts in Latin America: Overview Based on Latent Dirichlet Allocation. Sustainability. 2025; 17(11):4954. https://doi.org/10.3390/su17114954
Chicago/Turabian StyleRamírez-Cando, Lenin J., Yuliana I. Mora-Ochoa, Adriana S. Freire-Sanchez, and Bryan X. Medina-Rodriguez. 2025. "Life Cycle Sustainability Assessment of Agriproducts in Latin America: Overview Based on Latent Dirichlet Allocation" Sustainability 17, no. 11: 4954. https://doi.org/10.3390/su17114954
APA StyleRamírez-Cando, L. J., Mora-Ochoa, Y. I., Freire-Sanchez, A. S., & Medina-Rodriguez, B. X. (2025). Life Cycle Sustainability Assessment of Agriproducts in Latin America: Overview Based on Latent Dirichlet Allocation. Sustainability, 17(11), 4954. https://doi.org/10.3390/su17114954