Towards Consumption-Based Carbon Inequality Metrics: Socioeconomic and Demographic Insights from Chinese Households
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmentally Extended Input-Output Model
2.2. Linking Household Expenditure Survey Data
2.3. Carbon Inequality Metrics
2.4. Index Decomposition Index
3. Results
3.1. Overview
3.2. Carbon Footprints Inequality Across Income Groups
3.3. Carbon Footprints Inequality Across Age Groups
3.4. Carbon Footprints Inequality Across Urban-Rural Divide
4. Discussion
4.1. Implications of Within-Country Carbon Inequality Research
4.2. Policy Implications of Carbon Equity Policies and Future Outlooks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruckner, B.; Hubacek, K.; Shan, Y.; Zhong, H.; Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 2022, 5, 311–320. [Google Scholar] [CrossRef]
- Hubacek, K.; Baiocchi, G.; Feng, K.; Muñoz Castillo, R.; Sun, L.; Xue, J. Global carbon inequality. Energy Ecol. Environ. 2017, 2, 361–369. [Google Scholar] [CrossRef]
- D’Alessandro, S.; Cieplinski, A.; Distefano, T.; Dittmer, K. Feasible alternatives to green growth. Nat. Sustain. 2020, 3, 329–335. [Google Scholar] [CrossRef]
- Creutzig, F.; Roy, J.; Lamb, W.F.; Azevedo, I.M.L.; Bruine de Bruin, W.; Dalkmann, H.; Edelenbosch, O.Y.; Geels, F.W.; Grubler, A.; Hepburn, C.; et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 2018, 8, 260–263. [Google Scholar] [CrossRef]
- Chakravarty, S.; Chikkatur, A.; de Coninck, H.; Pacala, S.; Socolow, R.; Tavoni, M. Sharing global CO2 emission reductions among one billion high emitters. Proc. Natl. Acad. Sci. USA 2009, 106, 11884–11888. [Google Scholar] [CrossRef]
- Oswald, Y.; Owen, A.; Steinberger, J.K. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 2020, 5, 231–239. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change; Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Keyßer, L.T.; Steinberger, J.K. Scientists’ warning on affluence. Nat. Commun. 2020, 11, 3107. [Google Scholar] [CrossRef]
- Wiedmann, T.; Allen, C. City footprints and SDGs provide untapped potential for assessing city sustainability. Nat. Commun. 2021, 12, 3758. [Google Scholar] [CrossRef]
- Moran, D.; Wood, R.; Hertwich, E.; Mattson, K.; Rodriguez, J.F.D.; Schanes, K.; Barrett, J. Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions. Clim. Policy 2020, 20 (Suppl. S1), S28–S38. [Google Scholar] [CrossRef]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.G.; Qin, B.; Ramaswami, A. From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Zheng, H.; Long, Y.; Wood, R.; Moran, D.; Zhang, Z.; Meng, J.; Feng, K.; Hertwich, E.; Guan, D. Ageing society in developed countries challenges carbon mitigation. Nat. Clim. Change 2022, 12, 241–248. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Song, K. Household carbon inequality in the U.S. J. Clean. Prod. 2021, 278, 123994. [Google Scholar] [CrossRef]
- Mi, Z.; Zheng, J.; Meng, J.; Ou, J.; Hubacek, K.; Liu, Z.; Coffman, D.M.; Stern, N.; Liang, S.; Wei, Y.-M. Economic development and converging household carbon footprints in China. Nat. Sustain. 2020, 3, 529–537. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Guan, D.; Liu, Z.; Meng, J.; Zhang, N.; Wei, Y.-M. Unequal household carbon footprints in China. Nat. Clim. Change 2017, 7, 75–80. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, F. China’s carbon inequality of households: Perspectives of the aging society and urban-rural gaps. Resour. Conserv. Recycl. 2022, 185, 106449. [Google Scholar] [CrossRef]
- Liao, M.; Jia, J.; Han, G.; Wang, G.; Zhang, Z.; Wu, G. Reduced carbon footprint inequality in China: Evidence from latest household survey data. J. Clean. Prod. 2023, 384, 135342. [Google Scholar] [CrossRef]
- Ivanova, D.; Barrett, J.; Wiedenhofer, D.; Macura, B.; Callaghan, M.; Creutzig, F. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 2020, 15, 093001. [Google Scholar] [CrossRef]
- Oswald, Y.; Steinberger, J.K.; Ivanova, D.; Millward-Hopkins, J. Global redistribution of income and household energy footprints: A computational thought experiment. Glob. Sustain. 2021, 4, e4. [Google Scholar] [CrossRef]
- Clark, L.P.; Tabory, S.; Tong, K.; Servadio, J.L.; Kappler, K.; Xu, C.K.; Lawal, A.S.; Wiringa, P.; Kne, L.; Feiock, R.; et al. A data framework for assessing social inequality and equity in multi-sector social, ecological, infrastructural urban systems: Focus on fine-spatial scales. J. Ind. Ecol. 2022, 26, 145–163. [Google Scholar] [CrossRef]
- Tong, K.; Ramaswami, A.; Xu, C.; Feiock, R.; Schmitz, P.; Ohlsen, M. Measuring social equity in urban energy use and interventions using fine-scale data. Proc. Natl. Acad. Sci. USA 2021, 118, e2023554118. [Google Scholar] [CrossRef]
- Sun, S.; Tong, K. Rural-urban inequality in energy use sufficiency and efficiency during a rapid urbanization period. Appl. Energy 2024, 364, 123133. [Google Scholar] [CrossRef]
- Jones, C.; Kammen, D.M. Spatial Distribution of U.S. Household Carbon Footprints Reveals Suburbanization Undermines Greenhouse Gas Benefits of Urban Population Density. Environ. Sci. Technol. 2014, 48, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shan, Y.; Hu, Y.; Tong, K.; Wiedmann, T.; Ramaswami, A.; Guan, D.; Shi, L.; Wang, Y. Review on City-Level Carbon Accounting. Environ. Sci. Technol. 2019, 53, 5545–5558. [Google Scholar] [CrossRef]
- Hachaichi, M.; Baouni, T. Virtual carbon emissions in the big cities of middle-income countries. Urban Clim. 2021, 40, 100986. [Google Scholar] [CrossRef]
- Gill, B.; Moeller, S. GHG Emissions and the Rural-Urban Divide. A Carbon Footprint Analysis Based on the German Official Income and Expenditure Survey. Ecol. Econ. 2018, 145, 160–169. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, X.; Shao, X.; Xiao, J.; Tian, P. Dissecting household carbon and energy inequality: A decade’s insight into regional disparities and urban-rural dynamics in China. Energy Policy 2024, 192, 114243. [Google Scholar] [CrossRef]
- Yu, B.; Wei, Y.-M.; Gomi, K.; Matsuoka, Y. Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households. Nat. Energy 2018, 3, 109–118. [Google Scholar] [CrossRef]
- Yang, K.; Wu, J.; Li, L.; Mi, Z.; Yang, J.; Tang, L. Impact of household size and structure on carbon emissions in China. Struct. Change Econ. Dyn. 2025, 75, 9–19. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C. How does urbanization affect carbon emission efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- Connolly, M.; Shan, Y.; Bruckner, B.; Li, R.; Hubacek, K. Urban and rural carbon footprints in developing countries. Environ. Res. Lett. 2022, 17, 084005. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.; Wei, W.; Song, M.; Dietzenbacher, E.; Wang, X.; Meng, J.; Shan, Y.; Ou, J.; Guan, D. Regional determinants of China’s consumption-based emissions in the economic transition. Environ. Res. Lett. 2020, 15, 074001. [Google Scholar] [CrossRef]
- Otto, I.M.; Kim, K.M.; Dubrovsky, N.; Lucht, W. Shift the focus from the super-poor to the super-rich. Nat. Clim. Change 2019, 9, 82–84. [Google Scholar] [CrossRef]
- Dennig, F.; Budolfson, M.B.; Fleurbaey, M.; Siebert, A.; Socolow, R.H. Inequality, climate impacts on the future poor, and carbon prices. Proc. Natl. Acad. Sci. USA 2015, 112, 15827–15832. [Google Scholar] [CrossRef]
- Chancel, L.; Piketty, T. Carbon and Inequality: From Kyoto to Paris; Paris School of Economics: Paris, France, 2015. [Google Scholar]
- Hubacek, K.; Baiocchi, G.; Feng, K.; Patwardhan, A. Poverty eradication in a carbon constrained world. Nat. Commun. 2017, 8, 912. [Google Scholar] [CrossRef]
- Apeti, A.E.; Bambe, B.W.W.; Edoh, E.D.; Ly, A. Wealth inequality and carbon inequality. Ecol. Econ. 2025, 227, 108406. [Google Scholar] [CrossRef]
- Semieniuk, G.; Yakovenko, V.M. Historical evolution of global inequality in carbon emissions and footprints versus redistributive scenarios. J. Clean. Prod. 2020, 264, 121420. [Google Scholar] [CrossRef]
- Huang, R.; Tian, L. CO2 emissions inequality through the lens of developing countries. Appl. Energy 2021, 281, 116043. [Google Scholar] [CrossRef]
- Kerkhof, A.C.; Benders, R.M.J.; Moll, H.C. Determinants of variation in household CO2 emissions between and within countries. Energy Policy 2009, 37, 1509–1517. [Google Scholar] [CrossRef]
- Malik, A.; Lan, J.; Lenzen, M. Trends in Global Greenhouse Gas Emissions from 1990 to 2010. Environ. Sci. Technol. 2016, 50, 4722–4730. [Google Scholar] [CrossRef]
- Parrique, T.B.J.; Briens, F.; Kerschner, C.; Kraus-Polk, A.; Kuokkanen, A.; Spangenberg, J.H. Decoupling Debunked—Evidence and Arguments Against Green Growth as a Sole Strategy for Sustainability; European Environmental Bureau: Brussels, Belgium, 2019. [Google Scholar]
- Ivanova, D.; Vita, G.; Wood, R.; Lausselet, C.; Dumitru, A.; Krause, K.; Macsinga, I.; Hertwich, E.G. Carbon mitigation in domains of high consumer lock-in. Glob. Environ. Change 2018, 52, 117–130. [Google Scholar] [CrossRef]
- Geels, F.W.; Schwanen, T.; Sorrell, S.; Jenkins, K.; Sovacool, B.K. Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Res. Soc. Sci. 2018, 40, 23–35. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Liddle, B.; Jiang, L.; Smith, K.R.; Pachauri, S.; Dalton, M.; Fuchs, R. Demographic change and carbon dioxide emissions. Lancet 2012, 380, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Dalton, M.; O’Neill, B.; Prskawetz, A.; Jiang, L.; Pitkin, J. Population aging and future carbon emissions in the United States. Energy Econ. 2008, 30, 642–675. [Google Scholar] [CrossRef]
- Shigetomi, Y.; Nansai, K.; Kagawa, S.; Tohno, S. Changes in the Carbon Footprint of Japanese Households in an Aging Society. Environ. Sci. Technol. 2014, 48, 6069–6080. [Google Scholar] [CrossRef]
- Long, Y.; Yoshida, Y.; Meng, J.; Guan, D.; Yao, L.; Zhang, H. Unequal age-based household emission and its monthly variation embodied in energy consumption—A cases study of Tokyo, Japan. Appl. Energy 2019, 247, 350–362. [Google Scholar] [CrossRef]
- Feng, K.; Davis, S.J.; Sun, L.; Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 2015, 6, 7714. [Google Scholar] [CrossRef]
- Fragkias, M.; Lobo, J.; Strumsky, D.; Seto, K.C. Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas. PLoS ONE 2013, 8, e64727. [Google Scholar] [CrossRef]
- Ribeiro, H.V.; Rybski, D.; Kropp, J.P. Effects of changing population or density on urban carbon dioxide emissions. Nat. Commun. 2019, 10, 3204. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Smetschka, B.; Akenji, L.; Jalas, M.; Haberl, H. Household time use, carbon footprints, and urban form: A review of the potential contributions of everyday living to the 1.5 °C climate target. Curr. Opin. Environ. Sustain. 2018, 30, 7–17. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Saheb, Y.; Hickel, J. Large inequalities in climate mitigation scenarios are not supported by theories of distributive justice. Energy Res. Soc. Sci. 2024, 118, 103813. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Oswald, Y. Reducing global inequality to secure human wellbeing and climate safety: A modelling study. Lancet Planet. Health 2023, 7, e147–e154. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.D.; van Ruijven, B.J.; Riahi, K.; Bosetti, V. Improving poverty and inequality modelling in climate research. Nat. Clim. Change 2017, 7, 857–862. [Google Scholar] [CrossRef]
- Rao, N.D.; Wilson, C. Advancing energy and well-being research. Nat. Sustain. 2022, 5, 98–103. [Google Scholar] [CrossRef]
- Raworth, K. A Doughnut for the Anthropocene: Humanity’s compass in the 21st century. Lancet Planet. Health 2017, 1, e48–e49. [Google Scholar] [CrossRef]
- Raworth, K. A Safe and Just Space for Humanity: Can We Live Within the Doughnut; Oxfam International: Nairobi, Kenya, 2012; Volume 8. [Google Scholar]
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Oswald, Y. ‘Fair’ inequality, consumption and climate mitigation. Environ. Res. Lett. 2021, 16, 034007. [Google Scholar] [CrossRef]
- Wiese, F.; Zell-Ziegler, C.; Burghardt, C.; Kloos, Y.; Schäfer, M. Reducing demand: A quantitative analysis of energy service demand indicators in sufficiency-oriented scenarios. Environ. Res. Commun. 2024, 6, 121003. [Google Scholar] [CrossRef]
- Kiatpongsan, S.; Norton, M.I. How Much (More) Should CEOs Make? A Universal Desire for More Equal Pay. Perspect. Psychol. Sci. 2014, 9, 587–593. [Google Scholar] [CrossRef]
- Nielsen, K.S.; Bauer, J.M.; Debnath, R.; Emogor, C.A.; Geiger, S.M.; Ghai, S.; Gwozdz, W.; Hahnel, U.J.J. Underestimation of personal carbon footprint inequality in four diverse countries. Nat. Clim. Change 2024, 14, 1136–1143. [Google Scholar] [CrossRef]
- Millward-Hopkins, J. Inequality can double the energy required to secure universal decent living. Nat. Commun. 2022, 13, 5028. [Google Scholar] [CrossRef]
- Kikstra, J.S.; Mastrucci, A.; Min, J.; Riahi, K.; Rao, N.D. Decent living gaps and energy needs around the world. Environ. Res. Lett. 2021, 16, 095006. [Google Scholar] [CrossRef]
- Jaccard, I.S.; Pichler, P.-P.; Többen, J.; Weisz, H. The energy and carbon inequality corridor for a 1.5 °C compatible and just Europe. Environ. Res. Lett. 2021, 16, 064082. [Google Scholar] [CrossRef]
- IRP. Global Resources Outlook 2019: Natural Resources for the Future We Want; A Report of the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Lenzen, M.; Keyβer, L.; Hickel, J. Degrowth scenarios for emissions neutrality. Nat. Food 2022, 3, 308–309. [Google Scholar] [CrossRef]
- IRP. Integrated Resource Plan (IRP2019); South Africa Department of Energy, IRP: Pretoria, South Africa, 2019. [Google Scholar]
- Keyßer, L.T.; Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 2021, 12, 2676. [Google Scholar] [CrossRef]
- Liebe, U.; Gewinner, J.; Diekmann, A. Large and persistent effects of green energy defaults in the household and business sectors. Nat. Hum. Behav. 2021, 5, 576–585. [Google Scholar] [CrossRef]
- Lohmann, P.M.; Gsottbauer, E.; Doherty, A.; Kontoleon, A. Do carbon footprint labels promote climatarian diets? Evidence from a large-scale field experiment. J. Environ. Econ. Manag. 2022, 114, 102693. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Park, A.; Sawada, Y.; Tan, E.S. Reducing single-use cutlery with green nudges: Evidence from China’s food-delivery industry. Science 2023, 381, eadd9884. [Google Scholar] [CrossRef]
- Berger, S.; Kilchenmann, A.; Lenz, O.; Ockenfels, A.; Schlöder, F.; Wyss, A.M. Large but diminishing effects of climate action nudges under rising costs. Nat. Hum. Behav. 2022, 6, 1381–1385. [Google Scholar] [CrossRef]
- Maki, A. The potential cost of nudges. Nat. Clim. Change 2019, 9, 439. [Google Scholar] [CrossRef]
- Hagmann, D.; Ho, E.H.; Loewenstein, G. Nudging out support for a carbon tax. Nat. Clim. Change 2019, 9, 484–489. [Google Scholar] [CrossRef]
- Dubois, G.; Sovacool, B.; Aall, C.; Nilsson, M.; Barbier, C.; Herrmann, A.; Bruyère, S.; Andersson, C.; Skold, B.; Nadaud, F.; et al. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci. 2019, 52, 144–158. [Google Scholar] [CrossRef]
- Wilson, R.S.; Herziger, A.; Hamilton, M.; Brooks, J.S. From incremental to transformative adaptation in individual responses to climate-exacerbated hazards. Nat. Clim. Change 2020, 10, 200–208. [Google Scholar] [CrossRef]
- Lunetto, M.; Hale, J.; Michie, S. Achieving effective climate action in cities by understanding behavioral systems. One Earth 2022, 5, 745–748. [Google Scholar] [CrossRef]
- Gan, L.; Yin, Z.; Jia, N.; Xu, S.; Ma, S.; Zheng, L. Data You Need to Know About China; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Tian, P.; Ma, H.; Zhang, Z.; Yu, Y.; Li, D. China’s current carbon inequality is predominantly determined by capital disparity. Ecol. Econ. 2025, 230, 108515. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Feng, K.; Liu, Z.; Fromer, N.; Tan, X.; Alsaedi, A.; Hayat, T.; Weisz, H.; Schellnhuber, H.J.; et al. Physical and virtual carbon metabolism of global cities. Nat. Commun. 2020, 11, 182. [Google Scholar] [CrossRef]
Consumption Category | Carbon-Gini | AAA65 Share | AAA Share | Disparity Ratio | AA65 Share | AA Share | Disparity Ratio | A65 Share | A Share | Disparity Ratio |
---|---|---|---|---|---|---|---|---|---|---|
Food | 0.54 | 8.1% | 71.0% | 1.06 | 1.3% | 15.0% | 1.46 | 0.2% | 4.4% | 3.05 |
Clothing | 0.71 | 8.1% | 70.0% | 1.04 | 1.4% | 17.0% | 1.53 | 0.2% | 3.3% | 2.45 |
Residence | 0.50 | 8.4% | 70.3% | 1.01 | 1.5% | 15.8% | 1.38 | 0.2% | 3.9% | 2.54 |
Household facilities | 0.47 | 8.2% | 70.2% | 1.03 | 1.4% | 16.1% | 1.49 | 0.2% | 4.0% | 2.59 |
Transport | 0.59 | 8.7% | 70.4% | 0.97 | 1.3% | 15.6% | 1.47 | 0.2% | 3.7% | 2.60 |
Education | 0.50 | 8.6% | 71.0% | 1.00 | 1.4% | 15.2% | 1.42 | 0.2% | 3.7% | 2.62 |
Health Care | 0.69 | 7.8% | 71.4% | 1.10 | 1.6% | 15.5% | 1.26 | 0.2% | 3.6% | 2.57 |
Others | 0.63 | 7.6% | 70.7% | 1.11 | 1.3% | 15.2% | 1.48 | 0.2% | 5.0% | 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wiedmann, T.; Shen, T. Towards Consumption-Based Carbon Inequality Metrics: Socioeconomic and Demographic Insights from Chinese Households. Sustainability 2025, 17, 4916. https://doi.org/10.3390/su17114916
Li M, Wiedmann T, Shen T. Towards Consumption-Based Carbon Inequality Metrics: Socioeconomic and Demographic Insights from Chinese Households. Sustainability. 2025; 17(11):4916. https://doi.org/10.3390/su17114916
Chicago/Turabian StyleLi, Mo, Thomas Wiedmann, and Tianfang Shen. 2025. "Towards Consumption-Based Carbon Inequality Metrics: Socioeconomic and Demographic Insights from Chinese Households" Sustainability 17, no. 11: 4916. https://doi.org/10.3390/su17114916
APA StyleLi, M., Wiedmann, T., & Shen, T. (2025). Towards Consumption-Based Carbon Inequality Metrics: Socioeconomic and Demographic Insights from Chinese Households. Sustainability, 17(11), 4916. https://doi.org/10.3390/su17114916