Driving the Sustainability Transition in Energy Storage: System Analyses of Innovation Networks in China’s Electric Vehicle Battery Industry
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Cooperative Network Embeddedness and Innovation Performance
- (1)
- Centrality and innovation performance
- (2)
- Structural holes and innovation performance
2.2. The Mediating Role of External Knowledge Search
2.3. Moderating Effect of Network Scale
2.4. Moderating Effect of Relationship Intensity
- (1)
- The moderating role of relationship strength between external knowledge search and innovation performance
- (2)
- The moderated mediation effect
3. Materials and Methods
3.1. Data Sources and Processing
3.1.1. Data Sources
3.1.2. Network Construction
3.2. Data Analysis
3.2.1. Changes in Joint Patent Applications
3.2.2. Evolution Diagram of Cooperative Innovation Network
3.2.3. Evolutionary Characteristics of Cooperative Innovation Networks
3.3. Empirical Sample and Model Selection
3.3.1. Empirical Samples
3.3.2. Variable Measures
- (1)
- Explained variables
- (2)
- Explanatory variables
- Network Centrality (NC)
- b.
- Structure Hole (SH)
- (3)
- Mediation variables
- (4)
- Modulating variables
- Network Size (NS)
- b.
- Relationship Intensity (RI)
- (5)
- Control variables
3.3.3. Model Selection
3.3.4. Model Design
- (1)
- Benchmark and mediated effect models
- (2)
- Moderating effect models and moderated mediators
- Network size
- b.
- Relationship strength
4. Results
4.1. Sample Data Analysis
4.1.1. Descriptive Statistical Analysis
4.1.2. Correlation Analysis
4.2. Empirical Results
4.2.1. Total Effect Test
4.2.2. Robustness Test
4.2.3. Mediator Effect Test
4.2.4. Moderating Effect Test
- (1)
- The moderating effect of network scale
- (2)
- The moderating effects of relationship intensity
5. Discussion
6. Conclusions and Implications
6.1. Conclusions
6.2. Practical Implications
6.3. Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NEVs | new energy vehicles |
References
- Zhang, Z.; Hu, G.; Mu, X.; Kong, L. From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. J. Environ. Manag. 2022, 322, 116087. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hao, H.; Cheng, X.; Zhao, F. Critical issues of energy efficient and new energy vehicles development in China. Energy Policy 2018, 115, 92–97. [Google Scholar] [CrossRef]
- Su, C.-W.; Yuan, X.; Tao, R.; Umar, M. Can new energy vehicles help to achieve carbon neutrality targets? J. Environ. Manag. 2021, 297, 113348. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Liu, X.; Zuo, J. The development of new energy vehicles for a sustainable future: A review. Renew. Sustain. Energy Rev. 2015, 42, 298–305. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, C. Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China. Energy Policy 2023, 177, 113527. [Google Scholar] [CrossRef]
- Khan, K.; Su, C.W.; Rehman, A.U.; Ullah, R. Is technological innovation a driver of renewable energy? Technol. Soc. 2022, 70, 102044. [Google Scholar] [CrossRef]
- Feng, Z.; Luo, N.; Shalpegin, T.; Cui, H. The influence of carbon emission reduction instruments on blockchain technology adoption in recycling batteries of the new energy vehicles. Int. J. Prod. Res. 2024, 62, 891–908. [Google Scholar] [CrossRef]
- Zahoor, A.; Yu, Y.; Zhang, H.; Nihed, B.; Afrane, S.; Peng, S.; Sápi, A.; Lin, C.J.; Mao, G. Can the new energy vehicles (NEVs) and power battery industry help China to meet the carbon neutrality goal before 2060? J. Environ. Manag. 2023, 336, 117663. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Radziwon, A.; Bogers, M. Open innovation in SMEs: Exploring inter-organizational relationships in an ecosystem. Technol. Forecast. Soc. Change 2019, 146, 573–587. [Google Scholar] [CrossRef]
- Wilhelm, M.; Dolfsma, W. Managing knowledge boundaries for open innovation—Lessons from the automotive industry. Int. J. Oper. Prod. Manag. 2018, 38, 230–248. [Google Scholar] [CrossRef]
- Soniewicki, M.; Hauke-Lopes, A. Network Embeddedness and Company Competitiveness. J. Comput. Inf. Syst. 2023, 65, 344–359. [Google Scholar] [CrossRef]
- Uzzi, B.; Gillespie, J.J. Knowledge spillover in corporate financing networks: Embeddedness and the firm’s debt performance. Strateg. Manag. J. 2002, 23, 595–618. [Google Scholar] [CrossRef]
- Ge, C.; Lv, W.; Wang, J. The Impact of Digital Technology Innovation Network Embedding on Firms’ Innovation Performance: The Role of Knowledge Acquisition and Digital Transformation. Sustainability 2023, 15, 6938. [Google Scholar] [CrossRef]
- Pan, X.; Song, M.L.; Zhang, J.; Zhou, G. Innovation network, technological learning and innovation performance of high-tech cluster enterprises. J. Knowl. Manag. 2019, 23, 1729–1746. [Google Scholar] [CrossRef]
- Pomegbe, W.W.K.; Li, W.; Dogbe, C.S.K.; Otoo, C.O.A. Enhancing the innovation performance of small and medium-sized enterprises through network embeddedness. J. Compet. 2020, 12, 156. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Kou, K. Research on the influence of network embeddedness on innovation performance: Evidence from China’s listed firms. J. Innov. Knowl. 2022, 7, 100210. [Google Scholar]
- Schillebeeckx, S.J.; Lin, Y.; George, G.; Alnuaimi, T. Knowledge recombination and inventor networks: The asymmetric effects of embeddedness on knowledge reuse and impact. J. Manag. 2021, 47, 838–866. [Google Scholar] [CrossRef]
- Segarra-Ciprés, M.; Bou-Llusar, J.C. External knowledge search for innovation: The role of firms’ innovation strategy and industry context. J. Knowl. Manag. 2018, 22, 280–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhang, H. The Influence of External Knowledge Searches on Enterprises’ Innovation Performance: A Meta-Analysis. Sustainability 2022, 14, 8081. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Grimpe, C.; Sofka, W. Search patterns and absorptive capacity: Low-and high-technology sectors in European countries. Res. Policy 2009, 38, 495–506. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.-Y. Research on external search and innovation performance from the contingency perspective: The moderating effect of organizational slack. South China J. Econ. 2014, 9, 1–13. [Google Scholar]
- Granovetter, M. Economic action and social structure: The problem of embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Uzzi, B. Social structure and competition in interfirm networks. Adm. Sci. Q. 1997, 42, 37–69. [Google Scholar]
- Coleman, J.S. Social capital in the creation of human capital. Am. J. Sociol. 1988, 94, S95–S120. [Google Scholar] [CrossRef]
- Wang, X.-X.; Jiao, H.-Y. The impact of network positions in scientific collaboration on pharmaceutical firms’ technological innovation performance: Moderating roles of scientific collaboration strength and patent stock. Front. Public Health 2022, 10, 980845. [Google Scholar] [CrossRef]
- Owen-Smith, J.; Powell, W.W. Knowledge networks as channels and conduits: The effects of spillovers in the Boston biotechnology community. Organ. Sci. 2004, 15, 5–21. [Google Scholar] [CrossRef]
- Aalbers, R.; Dolfsma, W.; Koppius, O. Individual connectedness in innovation networks: On the role of individual motivation. Res. Policy 2013, 42, 624–634. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Gilsing, V.; Nooteboom, B.; Vanhaverbeke, W.; Duysters, G.; Van Den Oord, A. Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Res. Policy 2008, 37, 1717–1731. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Wang, M.-C.; Huang, Y.-C. The double-edged sword of technological diversity in R&D alliances: Network position and learning speed as moderators. Eur. Manag. J. 2015, 33, 450–461. [Google Scholar]
- Dahlander, L.; Gann, D.M.; Wallin, M.W. How open is innovation? A retrospective and ideas forward. Res. Policy 2021, 50, 104218. [Google Scholar] [CrossRef]
- Landis, B. Personality and social networks in organizations: A review and future directions. J. Organ. Behav. 2016, 37, 107–121. [Google Scholar] [CrossRef]
- Rosenthal, R.; Jacobson, L. Pygmalion in the classroom. Urban Rev. 1968, 3, 16–20. [Google Scholar] [CrossRef]
- Burt, R.S.; Kilduff, M.; Tasselli, S. Social network analysis: Foundations and frontiers on advantage. Annu. Rev. Psychol. 2013, 64, 527–547. [Google Scholar] [CrossRef]
- Qian, X.; Yang, Y.; Xu, W. Firm network location, absorptive capacity and innovation performance-An interaction effect model. Manag. World 2010, 13, 118–129. [Google Scholar]
- Kim, D.-Y.; Zhu, P. Supplier dependence and R&D intensity: The moderating role of network centrality and interconnectedness. J. Oper. Manag. 2018, 64, 7–18. [Google Scholar]
- Kneeland, M.K.; Schilling, M.A.; Aharonson, B.S. Exploring uncharted territory: Knowledge search processes in the origination of outlier innovation. Organ. Sci. 2020, 31, 535–557. [Google Scholar] [CrossRef]
- Granovetter, M.S. The strength of weak ties. Am. J. Sociol. 1973, 78, 1360–1380. [Google Scholar] [CrossRef]
- Cassetta, E.; Monarca, U.; Dileo, I.; Di Berardino, C.; Pini, M. The relationship between digital technologies and internationalisation. Evid. Ital. SMEs. Ind. Innov. 2019, 27, 311–339. [Google Scholar] [CrossRef]
- Li, M.; Su, J.; Hu, C. The impact of enterprise network location and relationship strength on technology innovation performance in industry university research cooperation. Sci. Technol. Prog. Policy 2020, 37, 118–124. [Google Scholar]
- Wang, C.; Rodan, S.; Fruin, M.; Xu, X. Knowledge networks, collaboration networks, and exploratory innovation. Acad. Manag. J. 2014, 57, 484–514. [Google Scholar] [CrossRef]
- Li, P.; Bathelt, H. Location strategy in cluster networks. J. Int. Bus. Stud. 2018, 49, 967–989. [Google Scholar] [CrossRef]
- Liao, W.; Gu, J.; Li, K. Roles of related and unrelated external technologies in shaping regional breakthrough technological advantages. Technol. Forecast. Soc. Change 2025, 210, 123871. [Google Scholar] [CrossRef]
- Kim, M.; Koo, D.W.; Han, H.S. Innovative behavior motivations among frontline employees: The mediating role of knowledge management. Int. J. Hosp. Manag. 2021, 99, 103062. [Google Scholar] [CrossRef]
- Wang, T.; Yu, X.; Cui, N. The substitute effect of internal R&D and external knowledge acquisition in emerging markets. Eur. J. Mark. 2020, 54, 1117–1146. [Google Scholar] [CrossRef]
- Dyer, J.H.; Hatch, N.W. Using Supplier Networks to Learn Faster. MIT Sloan Management Review, 15 April 2004. [Google Scholar]
- Wang, C.; Chin, T.; Lin, J.-H. Openness and firm innovation performance: The moderating effect of ambidextrous knowledge search strategy. J. Knowl. Manag. 2020, 24, 301–323. [Google Scholar] [CrossRef]
- Snijders, T.A.B.; Bosker, R.J. Multilevel analysis: An introduction to basic and advanced multilevel modeling, 2nd ed. Struct. Equ. Model.-A Multidiscip. J. 2013, 20, 541–550. [Google Scholar]
- Ahuja, G. Collaboration networks, structural holes and innovation: A longitudinal study. Adm. Sci. Q. 2000, 45, 425–455. [Google Scholar] [CrossRef]
- Zaheer, A.; Bell, G.G. Benefiting from Net-work Position: Firm Capabilities, Structural holes, and Performance. Strateg. Manag. J. 2005, 26, 809–825. [Google Scholar] [CrossRef]
- Fainshmidt, S.; Frazier, M.L. What Facilitates Dynamic Capabilities? The Role of Organizational Climate for Trust. Long Range Plan. 2017, 50, 550–566. [Google Scholar] [CrossRef]
- Michelfelder, I.; Kratzer, J. Why and how combining strong and weak ties within a single interorganizational R&D collaboration outperforms other collaboration structures. J. Prod. Innov. Manag. 2013, 30, 1159–1177. [Google Scholar]
- Aven, B.; Morse, L.; Iorio, A. The valley of trust: The effect of relational strength on monitoring quality. Organ. Behav. Hum. Decis. Process. 2021, 166, 179–193. [Google Scholar] [CrossRef]
- Liu, N.; Mao, J.; Guan, J. Knowledge convergence and organization innovation: The moderating role of relational embeddedness. Scientometrics 2020, 125, 1899–1921. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, X.; Zhang, Z. The time lags effects of innovation input on output in national innovation systems: The case of China. Discret. Dyn. Nat. Soc. 2016, 2016, 1963815. [Google Scholar] [CrossRef]
- Jin, Y.; Cao, X. An Empirical Analysis on the Impact of Innovation Network Structure on Crossover Innovation Performance of Emerging Technologies. Comput. Intell. Neurosci. 2022, 2022, 8312086. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Xiao, Y.; Chen, H.; Su, Z.; Xiang, C. Collaborative network, technological progress and potato production in China. Potato Res. 2024, 1–23. [Google Scholar] [CrossRef]
- Wang, J. Knowledge creation in collaboration networks: Effects of tie configuration. Res. Policy 2016, 45, 68–80. [Google Scholar] [CrossRef]
- You, C.; Luo, Q.; Liu, W. The Role of Urban Digital Intelligence in Fostering Sustainable Collaborative Innovation: An Analysis of Spillover Effects. Sustainability 2025, 17, 1890. [Google Scholar] [CrossRef]
- Wang, X.; Sethi, S.P.; Chang, S. Pollution abatement using cap-and-trade in a dynamic supply chain and its coordination. Transp. Res. Part E Logist. Transp. Rev. 2022, 158, 102592. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, C. Is patent an effective tool to measure technological innovation performance. Stud. Sci. Sci. 2021, 39, 1498–1503. [Google Scholar]
- Hao, J.-J.; Li, C.; Yuan, R.; Khansa, P.; Muhammad Asif, K.; Sun, X. Dual Innovation performance through knowledge-based network structure: Evidence from electronic information industry. Eng. Econ. 2022, 33, 47–58. [Google Scholar]
- Wang, Y.; Guo, B.; Yin, Y. Open innovation search in manufacturing firms: The role of organizational slack and absorptive capacity. J. Knowl. Manag. 2017, 21, 656–674. [Google Scholar] [CrossRef]
- Wang, Y.; Urban, F.; Zhou, Y.; Chen, L. Comparing the technology trajectories of solar PV and solar water heaters in China: Using a patent lens. Sustainability 2018, 10, 4166. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Different methods for testing moderated mediation models: Competitors or backups? Acta Psychol. Sin. 2014, 46, 714–726. [Google Scholar] [CrossRef]
- Lyu, Y.; He, B.; Zhu, Y.; Li, L. Network embeddedness and inbound open innovation practice: The moderating role of technology cluster. Technol. Forecast. Soc. Change 2019, 144, 12–24. [Google Scholar] [CrossRef]
- Zhang, S.; Shu, J.; Wang, X.; Zhang, Z. A supply chain system involving the interaction of guarantee finance with product quality and after-sales service. IEEE Trans. Eng. Manag. 2024, 71, 3414–3429. [Google Scholar] [CrossRef]
- Li, X.; Liu, X. The impact of the collaborative innovation network embeddedness on enterprise green innovation performance. Front. Environ. Sci. 2023, 11, 1190697. [Google Scholar] [CrossRef]
- Park, S.H.; Russo, M.V. When competition eclipses cooperation: An event history analysis of joint venture failure. Manag. Sci. 1996, 42, 875–890. [Google Scholar] [CrossRef]
- Rowley, T.; Behrens, D.; Krackhardt, D. Redundant governance structures: An analysis of structural and relational embeddedness in the steel and semiconductor industries. Strateg. Manag. J. 2000, 21, 369–386. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, S. Dynamic order allocation in a duopoly hybrid workforce of competition: A machine learning approach. Eur. J. Oper. Res. 2024, 315, 668–690. [Google Scholar] [CrossRef]
Variable | N | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
IP | 392 | 15.036 | 33.656 | 1 | 238 |
NC | 392 | 0.004 | 0.004 | 0.001 | 0.030 |
SH | 392 | 2.302 | 2.783 | 1 | 18.76 |
KS | 392 | 71.084 | 153.094 | 0 | 1004 |
RI | 392 | 2.77 | 3.858 | 1 | 22 |
NS | 392 | 867.5 | 1.912 | 608 | 1127 |
Age | 392 | 38.240 | 37.979 | 1 | 161 |
Variable | KS | IP | ||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
NC | 0.7372 *** (4.5188) | 0.8366 *** (4.9850) | 0.6092 *** (3.9253) | |||||
SH | 0.1046 *** (5.5792) | 0.1007 *** (5.3242) | 0.0825 *** (4.3920) | |||||
KS | 0.0018 *** (8.6019) | 0.0019 *** (9.3112) | ||||||
Age | 0.0069 * (1.7217) | 0.0070 *** (2.5790) | 0.0077 *** (2.7613) | 0.0067 ** (2.4837) | 0.0049 (1.2047) | 0.0070 * (1.7298) | 0.0078 (1.4352) | 0.0106 * (1.9104) |
Constant | 1.0735 *** (5.0082) | 0.0132 (0.0738) | 0.1474 (0.8977) | 0.3276 ** (2.0753) | 0.8634 *** (3.8570) | 0.9790 *** (4.5324) | 1.1203 *** (4.3436) | 1.1602 *** (4.5849) |
Name | yes | yes | yes | yes | yes | yes | yes | yes |
Year | yes | yes | yes | yes | yes | yes | yes | yes |
Prob > chi2 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variable | Regression Coefficients | |||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
NC | 0.606 *** (3.94) | 0.891 *** (5.22) | 0.635 *** (6.69) | |||
SH | 0.084 *** (4.68) | 0.098 *** (5.02) | 0.099 *** (7.90) | |||
Constant | 1.061 *** (4.71) | 1.170 *** (5.41) | 1.028 *** (5.46) | 1.009 *** (4.57) | 0.006 *** (4.93) | 0.005 *** (4.31) |
Control | yes | yes | yes | yes | yes | yes |
Time | yes | yes | yes | yes | yes | yes |
Individual | yes | yes | yes | yes | yes | yes |
region | yes | yes |
Variable | IP | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
NC | 0.8366 *** (4.9850) | 0.9619 *** (6.2544) | ||
SH | 0.1007 *** (5.3242) | 0.1049 *** (5.2679) | ||
NS | 0.0773 *** (5.1120) | 0.0303 ** (2.4715) | 0.0696 *** (5.0719) | 0.0243 * (1.9056) |
NC × NS | 0.0397 *** (3.1419) | |||
SH × NS | 0.0041 * (1.6869) | |||
Age | 0.0049 (1.2047) | 0.0070 * (1.7298) | 0.0046 (1.1383) | 0.0066 (1.6106) |
Constant | 0.3933 (1.6297) | 0.7950 *** (3.7052) | 0.5015 ** (2.1002) | 0.8890 *** (4.0076) |
Name | yes | yes | yes | yes |
Year | yes | yes | yes | yes |
Prob > chi2 | 0 | 0 | 0 | 0 |
Variable | KS | IP | ||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
NC | 0.8509 *** (5.1540) | 0.8829 *** (5.6521) | 0.6548 *** (4.3384) | |||||
SH | 0.1168 *** (5.9517) | 0.1065 *** (5.7249) | 0.0794 *** (4.3220) | |||||
KS | 0.0017 *** (6.4837) | 0.0024 *** (10.6305) | 0.0021 *** (8.7771) | 0.0022 *** (9.4648) | ||||
RI | 0.6000 *** (3.5562) | 0.5177 *** (3.0432) | 0.0418 *** (3.3612) | 0.7808 *** (6.3143) | 0.8140 *** (8.1275) | 0.8988 *** (6.8025) | 0.7981 *** (7.7450) | 0.7707 *** (6.4909) |
NC × RI | 0.5324 *** (3.3715) | 0.0587 (1.5578) | 0.2079 * (1.6780) | 0.2048 (1.4339) | ||||
SH × RI | 0.0261 (1.0848) | |||||||
KS × RI | −0.0013 *** (−5.7006) | −0.0015 *** (−5.9402) | −0.0012 *** (−5.4108) | |||||
Age | 0.0064 ** (2.4008) | 0.0072 *** (2.5767) | 0.0163 ** (2.3932) | 0.0119 * (1.6811) | 0.0039 (0.9409) | 0.0020 (0.3300) | 0.0066 (1.6034) | 0.0074 (1.1572) |
Constant | −0.0657 (0.3636) | 0.0694 (0.4111) | 0.9993 *** (3.8333) | 1.3000 *** (4.2500) | 1.0091 *** (4.1148) | 1.5375 *** (4.4734) | 1.0490 *** (4.5042) | 1.3958 *** (4.5464) |
Name | yes | yes | yes | yes | yes | yes | yes | yes |
Year | yes | yes | yes | yes | yes | yes | yes | yes |
Prob > chi2 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Li, L.; Liu, W. Driving the Sustainability Transition in Energy Storage: System Analyses of Innovation Networks in China’s Electric Vehicle Battery Industry. Sustainability 2025, 17, 4850. https://doi.org/10.3390/su17114850
Liu D, Li L, Liu W. Driving the Sustainability Transition in Energy Storage: System Analyses of Innovation Networks in China’s Electric Vehicle Battery Industry. Sustainability. 2025; 17(11):4850. https://doi.org/10.3390/su17114850
Chicago/Turabian StyleLiu, Dengjuan, Li Li, and Wei Liu. 2025. "Driving the Sustainability Transition in Energy Storage: System Analyses of Innovation Networks in China’s Electric Vehicle Battery Industry" Sustainability 17, no. 11: 4850. https://doi.org/10.3390/su17114850
APA StyleLiu, D., Li, L., & Liu, W. (2025). Driving the Sustainability Transition in Energy Storage: System Analyses of Innovation Networks in China’s Electric Vehicle Battery Industry. Sustainability, 17(11), 4850. https://doi.org/10.3390/su17114850