Geographical Accessibility and Corporate Technological Innovation—Evidence from a Quasi-Natural Experiment
Abstract
:1. Introduction
2. Development of Hypotheses
2.1. HSR Network and Technological Innovation
2.2. HSR Network and Ambidextrous Innovation
3. Empirical Design
3.1. Sample
3.2. Technological Innovation
3.3. HSR Network Centrality
3.4. Control Variables
3.5. Statistical Model
α7 ∗ Tobin’Q + α8 ∗ Mkt + α9 ∗ Divid + α10 ∗ Inctrl + ∑Ind + ∑Year + ε1
β6 ∗ Cash + β7 ∗ Tobin’Q + β8 ∗ Mkt + β9 ∗ Divid + β10 ∗ Inctrl + ∑Ind + ∑Year + ε2
4. Descriptive Statistics and Empirical Results
4.1. Descriptive Statistics
4.2. Empirical Results: HSR Network Centrality and Technological Innovation
4.3. Robustness Tests
4.3.1. Alternative Measures of HSR Network Centrality
4.3.2. Alternative Measures of Corporate Technological Innovation
4.3.3. Remove the Samples in Center Cities
4.3.4. Propensity Score Matching Method (PSM)
5. Additional Analyses
5.1. Mechanism Analyses
5.1.1. Financing Constraints
5.1.2. Technicians’ Mobility
5.2. Cross-Sectional Tests
5.2.1. Developed or Less Developed Regions
5.2.2. High-Tech or Non-High-Tech Firms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coval, J.D.; Moskowitz, T.J. Home Bias at Home: Local Equity Preference in Domestic Portfolios. J. Financ. 1999, 54, 2045–2073. [Google Scholar] [CrossRef]
- Matsumoto, D.; Serfling, M.; Shaikh, S. Geographic Peer Effects in Management Earnings Forecasts. Contemp. Account. Res. 2022, 39, 2023–2057. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, S.; Kahn, M.E. The role of transportation speed in facilitating high skilled teamwork across cities. J. Urban Econ. 2020, 115, 103212. [Google Scholar] [CrossRef]
- Pan, Y.; Shroff, N.; Zhang, P.D. The dark side of audit market competition. J. Account. Econ. 2023, 75, 101520. [Google Scholar] [CrossRef]
- Contigiani, A.; Testoni, M. Geographic isolation, trade secrecy, and innovation. Res. Policy 2023, 52, 104825. [Google Scholar] [CrossRef]
- Grossman, G.M.; Helpman, E. Endogenous innovation in the theory of growth. J. Econ. Perspect. 1994, 8, 23–44. [Google Scholar] [CrossRef]
- Silvestre, B.S.; Ţîrcă, D.M. Innovations for sustainable development: Moving toward a sustainable future. J. Clean. Prod. 2019, 208, 325–332. [Google Scholar] [CrossRef]
- Monzón, A.; Ortega, E.; López, E. Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities 2013, 30, 18–30. [Google Scholar] [CrossRef]
- Ke, X.; Chen, H.Q.; Hong, Y.M.; Hsiao, C. Do China’s high-speed-rail projects promote local economy?-new evidence from a panel data approach. China Econ. Rev. 2017, 44, 203–226. [Google Scholar] [CrossRef]
- Jia, S.M.; Zhou, C.Y.; Qin, C.L. No difference in effect of high-speed rail on regional economic growth based on match effect perspective? Transp. Res. Part A Policy Pract. 2017, 106, 144–157. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Feddersen, A. From periphery to core: Measuring agglomeration effects using high-speed rail. J. Econ. Geogr. 2018, 18, 355–390. [Google Scholar] [CrossRef]
- Sánchez-Mateos, H.S.; Givoni, M. The Accessibility Impact of a New High-Speed Rail Line in the UK—A Preliminary Analysis of Winners and Losers. J. Transp. Geogr. 2012, 25, 105–114. [Google Scholar] [CrossRef]
- Lin, Y. Travel costs and urban specialization patterns: Evidence from China’s high speed railway system. J. Urban Econ. 2016, 98, 98–123. [Google Scholar] [CrossRef]
- Tian, X. The causes and consequences of venture capital stage financing. J. Financ. Econ. 2011, 101, 132–159. [Google Scholar] [CrossRef]
- John, K.; Knyazeva, A.; Knyazeva, D. Does geography matter? Firm location and corporate payout policy. J. Financ. Econ. 2011, 101, 533–551. [Google Scholar] [CrossRef]
- Norman, N.; Bennett, C.; Cowart, S.; Felzien, M. Boot camp translation: A method for building a community of solution. Am. Board Fam. Med. 2013, 26, 254–263. [Google Scholar] [CrossRef]
- Nielsson, U.; Wójcik, D. Proximity and IPO underpricing. J. Corp. Financ. 2016, 38, 92–105. [Google Scholar] [CrossRef]
- Beck, T.; Ongena, S.; Şendeniz-Yüncü, İ. Keep walking? Geographical proximity, religion, and relationship banking. J. Corp. Financ. 2019, 55, 49–68. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Kong, D.; Wang, Q. High-speed rail, small city, and cost of debt: Firm-level evidence. Pac.-Basin Financ. J. 2019, 57, 101194. [Google Scholar] [CrossRef]
- Kong, D.; Liu, L.; Liu, S. Market information traveling on high-speed rail: The case if analysis forecasts. Pac.-Basin Financ. J. 2020, 61, 101320. [Google Scholar] [CrossRef]
- Chen, D.; Ma, Y.; Martin, X.; Michaely, R. On the fast track: Information acquisition costs and information production. J. Corp. Financ. 2022, 143, 794–823. [Google Scholar] [CrossRef]
- Chen, H.; Qu, Y.; Shen, T.; Wang, Q.; Xu, D.X. The geography of information acquisition. J. Financ. Quant. Anal. 2022, 57, 2251–2285. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, W.; Zhou, Z.; Yuan, L. Geographic proximity, information flows and corporate innovation: Evidence from the high-speed rail construction in China. Pac.-Basin Financ. J. 2020, 61, 101342. [Google Scholar] [CrossRef]
- Ouyang, C.; Xiong, J.; Liu, L.; Yao, J. Geographic proximity and trade credit: Evidence from a quasi-natural experiment. J. Corp. Financ. 2024, 84, 102535. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Wang, J.; Wu, Z. The effect of geographic proximity on corporate tax avoidance: Evidence from China. J. Corp. Financ. 2022, 72, 102131. [Google Scholar] [CrossRef]
- Xiong, J.; Ouyang, C.; Tong, J.; Zhang, F. Fraud commitment in a smaller world: Evidence from a natural experiment. J. Corp. Financ. 2021, 70, 102090. [Google Scholar] [CrossRef]
- Kuang, C.; Liu, Z.; Zhu, W. Need for speed: High-speed rail and firm performance. J. Corp. Financ. 2021, 66, 101830. [Google Scholar] [CrossRef]
- Gao, H.; Qu, Y.; Shen, T. Geographic proximity and price efficiency: Evidence from high-speed railway connections between firms and financial centers. Financ. Manag. 2022, 51, 117–141. [Google Scholar] [CrossRef]
- Porter, M.E. Capital disadvantage: America’s failing capital investment system. Harv. Bus. Rev. 1992, 5, 65–82. [Google Scholar]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Romer, P.M. Increasing returns and long-run growth. J. Political Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, H. Trade policy uncertainty and innovation: Firm level evidence from China’s WTO accession. J. Int. Econ. 2020, 127, 103387. [Google Scholar] [CrossRef]
- March, J.G. Exploration and exploitation in organizational learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Raisch, S.; Birkinshaw, J. Organizational ambidexterity: Antecedents, outcomes, and moderators. J. Manag. 2008, 34, 375–409. [Google Scholar] [CrossRef]
- Benner, M.J.; Tushman, M.L. Exploitation, exploration, and process management: The productivity dilemma revisited. Acad. Manag. Rev. 2003, 28, 238–256. [Google Scholar] [CrossRef]
- Kollmann, T.; Stockmann, C. Antecedents of strategic ambidexterity: Effects of entrepreneurial orientation on exploratory and exploitative innovations in adolescent organisations. Int. J. Technol. Manag. 2010, 52, 153–174. [Google Scholar] [CrossRef]
- Lin, C.; Chang, C.C. A patent-based study of the relationships among technological portfolio, ambidextrous innovation, and firm performance. Technol. Anal. Strateg. Manag. 2015, 27, 1193–1211. [Google Scholar] [CrossRef]
- Cornaggia, J.; Mao, Y.; Tian, X.; Wolfe, B. Does banking competition affect innovation? J. Financ. Econ. 2015, 115, 189–209. [Google Scholar] [CrossRef]
- Malini, S.; Neumann, R. R&D, patents, and financing constraints of the top global innovative firms. J. Econ. Behav. Organ. 2022, 196, 546–567. [Google Scholar] [CrossRef]
- Boeing, P. The Allocation and Effectiveness of China’s R&D Subsidies: Evidence from Listed Firms. Res. Policy 2016, 45, 1774–1789. [Google Scholar] [CrossRef]
- Torfs, W.; Zhao, L. Everybody needs good neighbors? Labor mobility costs, cities and matching. Reg. Sci. Urban Econ. 2015, 55, 39–54. [Google Scholar] [CrossRef]
- Koskinen, K.U.; Vanharanta, H. The role of tacit knowledge in innovation processes of small technology companies. Int. J. Prod. Econ. 2002, 80, 57–64. [Google Scholar] [CrossRef]
- Leonard, D.A. Core Capabilities and Core Rigidities: A Paradox in Managing New Product Development. Strateg. Manag. J. 1992, 51, 111–125. [Google Scholar] [CrossRef]
- Kamien, M.I.; Schwartz, N.L. Self-Financing of an R&D Project. Am. Econ. Rev. 1976, 68, 252–261. [Google Scholar]
- Hottenrott, H.; Czarnitzki, D. Financial Constraints: Routine Versus Cutting Edge R&D Investment. J. Econ. Manag. Strategy 2011, 20, 121–157. [Google Scholar] [CrossRef]
- Canace, T.; Li, J.; Ma, T. Analyst following and R&D investment. Rev. Account. Stud. 2024, 29, 2688–2723. [Google Scholar] [CrossRef]
- Accounting Department. Accounting Standards for Business Enterprises No.6—Intangible Assets (2006). Ministry of Finance of the People’s Republic of China. 2006, March 9. Available online: https://kjs.mof.gov.cn/zt/kjzzss/kuaijizhunzeshishi/200806/t20080618_46242.htm (accessed on 24 May 2024).
- Li, P.; Shu, W.; Tang, Q.; Zheng, Y. Internal control and corporate innovation: Evidence from China. Asia Pac. J. Account. Econ. 2019, 26, 622–642. [Google Scholar] [CrossRef]
- Freeman, L. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994; pp. 177–198. [Google Scholar]
- Gong, T.; Wang, X.; Zhang, L.; Gao, X.; Xie, E. Symbolic or substantial? Different responses of state-owned and privately owned firms to government innovation policies. Technovation 2023, 127, 102827. [Google Scholar] [CrossRef]
- Brown, J.R.; Fazzari, S.M.; Petersen, B.C. Financing innovation and growth: Cash flow, external equity, and the 1990s R&D boom. J. Financ. 2009, 64, 151–185. [Google Scholar] [CrossRef]
- Guariglia, A.; Liu, P. To what extent do financing constraints affect Chinese firms’ innovation activities? Int. Rev. Financ. Anal. 2014, 36, 223–240. [Google Scholar] [CrossRef]
- Dong, X.; Yu, M. Does FinTech development facilitate firms’ innovation? Evidence from China. Int. Rev. Financ. Anal. 2023, 89, 102805. [Google Scholar] [CrossRef]
- Ghoul, S.E.; Guedhami, O.; Ni, Y. Does Information Asymmetry Matter to Equity Pricing? Evidence from Firms’ Geographic Location. Contemp. Account. Res. 2013, 30, 140–181. [Google Scholar] [CrossRef]
- Loughran, T. The Impact of Firm Location on Equity Issuance. Financ. Manag. 2008, 37, 1–21. [Google Scholar] [CrossRef]
- Hadlock, C.J.; Pierce, J.R. New Evidence on Measuring Financial Constraints: Moving Beyond the KZ Index. Rev. Financ. Stud. 2010, 23, 1910–1940. [Google Scholar] [CrossRef]
- Heuermann, D.F.; Schmieder, J.F. The Effect of infrastructure on Worker Mobility: Evidence from high-Speed Rail Expansion in Germany. J. Econ. Geogr. 2019, 19, 335–372. [Google Scholar] [CrossRef]
- Chen, Z.; He, D.; Qin, Z.; Zhou, J.; Yang, T. The Influence of High-speed Rail on the Level and Structure of Urban Economic Vitality: An Empirical Study Based on Real GDP Data. Appl. Spat. Anal. Policy 2024, 17, 495–520. [Google Scholar] [CrossRef]
- Zhang, R.; Aljumah, A.I.; Ghardallou, W.; Li, Z.; Li, J.; Cifuentes-Faura, J. How economic development promotes the sustainability targets? Role of natural resources utilization. Resour. Policy 2023, 85, 103998. [Google Scholar] [CrossRef]
- Su, R.; Huang, X.; Chen, R.; Guo, X. Spatial and Social Inequality of Hierarchical Healthcare Accessibility in Urban System: A case study in Shanghai, China. Sustain. Cities Soc. 2024, 109, 105540. [Google Scholar] [CrossRef]
- Agrawal, A.; Goldfarb, A. Restructuring Research: Communication Costs and the Democratization of University Innovation. Am. Econ. Rev. 2008, 98, 1578–1590. [Google Scholar] [CrossRef]
- Storper, M.; Venables, A.J. Buzz: Face-to-Face Contact and the Urban Economy. J. Econ. Geogr. 2004, 4, 351–370. [Google Scholar] [CrossRef]
- Flaherty, L.; Pearce, K.; Rubin, R. Internet and face-to-face communication: Not functional alternatives. Commun. Q. 1998, 46, 250–268. [Google Scholar] [CrossRef]
- Tillema, T.; Dijst, M.; Schwanen, T. Face-to-face and electronic communications in maintaining social networks: The influence of geographical and relational distance and of information content. New Media Soc. 2010, 12, 965–983. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
Innovation | Innovation investment/average total assets |
Exploration | Research stage innovation investment/average total assets |
Exploitation | Innovation investment in development phase/average total assets |
CD | Ln(Cd + 1) |
CB | Ln(Cb + 1) |
Lev | Total liabilities/total assets |
Roa | Ebit/average total assets |
Size | The natural logarithm of total assets |
Age | Number of years since a firm was listed |
Cash | Total cash and cash equivalents/assets |
Tobins’Q | Market capitalization/total assets |
Mkt | Marketization index of China’s provinces (2018) |
Divid | Dividends/earnings per share |
Inctrl | Internal control index issued by Shenzhen Dibo Company/1000 |
Ind | Industry dummy variable |
Year | Annual dummy variable |
Variable | N | Mean | Std. Dev. | Median | Min | Max |
---|---|---|---|---|---|---|
Innovation | 10,931 | 0.024 | 0.019 | 0.020 | 0 | 0.105 |
Exploration | 10,931 | 0.020 | 0.017 | 0.017 | 0 | 0.089 |
Exploitation | 10,931 | 0.003 | 0.007 | 0 | 0 | 0.042 |
CD | 10,931 | 1.800 | 1.019 | 2.079 | 0 | 3.761 |
Lev | 10,931 | 0.358 | 0.181 | 0.345 | 0.047 | 0.825 |
Roa | 10,931 | 0.150 | 0.213 | 0.074 | 0.005 | 1.142 |
Size | 10,931 | 21.811 | 1.025 | 21.701 | 19.918 | 25.381 |
Age | 10,931 | 7.836 | 5.786 | 6 | 1 | 25 |
Cash | 10,931 | 1.089 | 1.801 | 0.459 | 0.035 | 11.499 |
Tobins | 10,931 | 2.453 | 1.82 | 1.902 | 0.353 | 10.159 |
Mkt | 10,931 | 8.478 | 1.577 | 9.02 | 3.49 | 10.173 |
Divid | 10,931 | 0.314 | 0.330 | 0.239 | 0 | 2.072 |
Inctrl | 10,931 | 0.658 | 0.093 | 0.674 | 0 | 0.799 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Innovation | Exploration | Exploitation | |
CD | 0.001 *** | 0.001 *** | 0.000 |
(7.55) | (7.97) | (1.21) | |
Lev | 0.000 | −0.000 | −0.000 |
(0.10) | (−0.37) | (−0.13) | |
Roa | 0.015 *** | 0.017 *** | −0.003 *** |
(10.70) | (13.55) | (−4.06) | |
Size | 0.000 | −0.001 *** | 0.001 *** |
(0.14) | (−3.70) | (7.20) | |
Age | −0.000 *** | −0.000 *** | −0.000 |
(−4.84) | (−5.08) | (−0.83) | |
Cash | −0.000 | −0.000 *** | 0.000 ** |
(−1.26) | (−3.39) | (1.96) | |
Tobins’Q | 0.002 *** | 0.002 *** | 0.000 *** |
(20.37) | (18.31) | (7.05) | |
Mkt | 0.001 *** | 0.002 *** | −0.000 *** |
(12.17) | (16.81) | (−6.42) | |
Divide | 0.001 | 0.001 ** | −0.000 ** |
(1.11) | (2.01) | (−2.26) | |
Inctrl | 0.009 *** | 0.009 *** | 0.001 |
(5.53) | (5.56) | (0.86) | |
Constant | −0.014 *** | 0.000 | −0.013 *** |
(−2.92) | (0.06) | (−5.93) | |
Ind | YES | YES | YES |
Year | YES | YES | YES |
N | 10,931 | 10,931 | 10,931 |
F | 122.7 | 115.1 | 31.63 |
Adj. R2 | 0.292 | 0.279 | 0.0940 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Innovation | Exploration | Exploitation | Innovation2 | Exploration2 | Exploitation2 | |
CB | 0.009 *** (6.65) | 0.008 *** (6.57) | 0.001 (1.58) | |||
CD | 0.003 *** (9.35) | 0.003 *** (9.69) | 0.000 ** (2.18) | |||
Lev | 0.000 (0.33) | −0.000 (−0.13) | −0.000 (−0.09) | −0.021 *** (−7.69) | −0.018 *** (−7.86) | −0.003 *** (−2.69) |
Roa | 0.015 *** (10.60) | 0.017 *** (13.44) | −0.003 *** (−4.06) | −0.057 *** (−18.03) | −0.043 *** (−16.29) | −0.013 *** (−8.43) |
Size | 0.000 (0.16) | −0.001 *** (−3.67) | 0.001 *** (7.19) | 0.001 *** (3.18) | −0.000 (−0.64) | 0.002 *** (7.23) |
Age | −0.000 *** (−4.90) | −0.000 *** (−5.15) | −0.000 (−0.82) | −0.000 *** (−6.17) | −0.000 *** (−8.16) | 0.000 (0.18) |
Cash | −0.000 (−0.96) | −0.000 *** (−3.07) | 0.000 ** (2.01) | 0.004 *** (16.01) | 0.003 *** (12.78) | 0.001 *** (7.70) |
Tobins’Q | 0.002 *** (20.72) | 0.002 *** (18.68) | 0.000 *** (7.11) | 0.005 *** (19.49) | 0.004 *** (18.38) | 0.001 *** (7.27) |
Mkt | 0.001 *** (12.15) | 0.002 *** (16.87) | −0.000 *** (−6.51) | 0.001 *** (3.93) | 0.002 *** (9.59) | −0.001 *** (−7.53) |
Divide | 0.001 (1.22) | 0.001 ** (2.13) | −0.000 ** (−2.24) | −0.003 *** (−2.74) | −0.002 * (−1.93) | −0.001 *** (−2.66) |
Inctrl | 0.009 *** (5.38) | 0.008 *** (5.42) | 0.001 (0.81) | 0.006 (1.47) | 0.005 * (1.67) | −0.001 (−0.38) |
Constant | −0.013 *** (−2.80) | 0.001 (0.14) | −0.013 *** (−5.86) | −0.028 *** (−2.58) | 0.001 (0.14) | −0.026 *** (−5.12) |
Ind | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
N | 10,931 | 10,931 | 10,931 | 10,931 | 10,931 | 10,931 |
F | 122.2 | 114.3 | 31.66 | 174.2 | 153.0 | 43.21 |
Adj. R2 | 0.291 | 0.277 | 0.094 | 0.370 | 0.340 | 0.125 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Innovation | Exploration | Exploitation | |
CD | 0.001 *** (4.98) | 0.001 *** (5.45) | −0.000 (−0.14) |
Lev | 0.002 (1.06) | −0.001 (−0.57) | 0.002 ** (3.25) |
Roa | 0.020 *** (11.45) | 0.022 *** (13.30) | −0.002 * (−2.03) |
Size | −0.000 (−1.35) | −0.001 ** (−3.11) | 0.000 * (2.51) |
Age | −0.000 * (−2.08) | −0.000 (−1.65) | −0.000 (−1.30) |
Cash | −0.000 * (−2.11) | −0.000 ** (−2.75) | 0.000 (0.59) |
Tobins’Q | 0.002 *** (13.52) | 0.002 *** (11.99) | 0.000 *** (3.76) |
Mkt | 0.001 *** (7.22) | 0.001 *** (11.38) | −0.000 *** (−6.88) |
Divide | 0.000 (0.38) | 0.001 (1.85) | −0.001 ** (−2.63) |
Inctrl | 0.009 *** (4.46) | 0.009 *** (4.87) | −0.000 (−0.46) |
Constant | −0.007 (−1.17) | −0.000 (−0.02) | −0.004 (−1.61) |
Ind | YES | YES | YES |
Year | YES | YES | YES |
N | 5259 | 5259 | 5259 |
F | 40.32 | 47.70 | 7.60 |
Adj. R2 | 0.207 | 0.237 | 0.042 |
Variables | Samples | Treat Group | Control Group | Difference | Std. Dev. | T-Value |
---|---|---|---|---|---|---|
Innovation | Unmatched | 0.0252 | 0.0183 | 0.0069 | 0.000435 | 15.93 |
ATT | 0.0252 | 0.0202 | 0.0050 | 0.000568 | 8.83 | |
Exploration | Unmatched | 0.0216 | 0.0155 | 0.0061 | 0.000386 | 15.85 |
ATT | 0.0216 | 0.0178 | 0.0039 | 0.000519 | 7.93 | |
Exploration | Unmatched | 0.0034 | 0.0026 | 0.0007 | 0.000173 | 4.28 |
ATT | 0.0035 | 0.0023 | 0.0011 | 0.000243 | 4.52 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Innovation | Exploration | Exploitation | |
CD | 0.005 *** (8.22) | 0.004 *** (7.21) | 0.001 *** (3.58) |
Lev | −0.004 (−1.36) | −0.004 (−1.45) | −0.001 (−0.37) |
Roa | 0.011 *** (4.82) | 0.014 *** (6.17) | −0.003 *** (−4.27) |
Size | −0.001 (−1.10) | −0.001 (−1.46) | 0 (0.37) |
Age | 0 (−1.04) | 0 (−1.48) | 0 (0.61) |
Cash | 0 (−0.79) | −0.001 * (−2.56) | 0.000 * (2.06) |
Tobins’Q | 0.002 *** (4.9) | 0.002 *** (5.25) | 0 (−0.58) |
Mkt | 0.002 *** (7.13) | 0.002 *** (8.94) | 0 (−1.04) |
Divide | −0.001 (−0.76) | 0 (−0.32) | −0.001 (−1.25) |
Inctrl | 0.008 ** (2.87) | 0.009 ** (2.99) | −0.001 (−0.56) |
Constant | 0.011 (0.69) | 0.01 (0.7) | 0.003 (0.54) |
Ind | YES | YES | YES |
Year | YES | YES | YES |
N | 3508 | 3508 | 3508 |
F | 30.7 | 39.95 | 12.07 |
Adj. R2 | 0.143 | 0.182 | 0.018 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
FC | Innovation | Exploration | Rdpersonratio | Innovation | Exploration | |
CD | −0.002 *** | 0.001 *** | 0.001 *** | 1.061 *** | 0.001 *** | 0.001 *** |
(−3.13) | (7.49) | (7.86) | (7.56) | (4.69) | (5.13) | |
FC | −0.005 ** | −0.008 *** | ||||
(−2.01) | (−3.55) | |||||
Rdpersonratio | 0.001 *** | 0.0005 *** | ||||
(37.10) | (32.07) | |||||
Lev | −0.054 *** | −0.000 | −0.001 | −4.692 *** | 0.004 *** | 0.002 * |
(−11.17) | (−0.12) | (−0.75) | (−4.45) | (2.71) | (1.77) | |
Roa | 0.034 *** | 0.015 *** | 0.018 *** | −9.621 *** | 0.020 *** | 0.021 *** |
(6.04) | (10.79) | (13.74) | (−9.36) | (14.39) | (16.02) | |
Size | 0.019 *** | 0.000 | −0.001 *** | 0.157 | −0.000 | −0.001 *** |
(22.62) | (0.56) | (−2.87) | (0.89) | (−1.03) | (−4.43) | |
Age | 0.040 *** | 0.000 | 0.000 * | −0.141 *** | 0.000 | −0.000 * |
(318.34) | (0.40) | (1.79) | (−5.36) | (0.36) | (−1.91) | |
Cash | −0.006 *** | −0.000 | −0.000 *** | 0.610 *** | −0.001 *** | −0.001 *** |
(−13.89) | (−1.52) | (−3.83) | (4.82) | (−3.85) | (−4.62) | |
Tobins’Q | −0.009 *** | 0.002 *** | 0.002 *** | 0.923 *** | 0.002 *** | 0.001 *** |
(−20.95) | (19.58) | (17.27) | (9.79) | (14.25) | (12.67) | |
Mkt | 0.002 *** | 0.001 *** | 0.002 *** | 0.472 *** | 0.001 *** | 0.001 *** |
(3.56) | (12.23) | (16.93) | (5.18) | (7.30) | (10.85) | |
Divide | −0.001 | 0.001 | 0.001 ** | −1.892 *** | 0.002 *** | 0.002 *** |
(−0.56) | (1.10) | (1.99) | (−4.69) | (4.24) | (4.30) | |
Inctrl | −0.027 *** | 0.009 *** | 0.008 *** | 2.508 * | 0.007 *** | 0.007 *** |
(−4.03) | (5.45) | (5.42) | (1.76) | (3.79) | (4.18) | |
Constant | 2.728 *** | −0.001 | 0.021 *** | 1.596 | −0.013 ** | 0.001 |
(144.13) | (−0.08) | (2.90) | (0.37) | (−2.26) | (0.22) | |
Ind | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
N | 10,931 | 10,931 | 10,931 | 6951 | 6951 | 6951 |
F | 4398 | 119.6 | 112.5 | 110.5 | 137.1 | 123.1 |
Adj. R2 | 0.937 | 0.292 | 0.279 | 0.342 | 0.400 | 0.374 |
Variable | Innovation | Exploration | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Developed Regions | Less Developed Regions | Developed Regions | Less Developed Regions | |
CD | 0.001 *** | 0.002 *** | 0.001 *** | 0.002 *** |
(5.55) | (6.79) | (6.36) | (6.61) | |
Lev | −0.000 | −0.000 | −0.001 | −0.001 |
(−0.31) | (−0.07) | (−0.87) | (−0.44) | |
Roa | 0.018 *** | 0.007 ** | 0.020 *** | 0.010 *** |
(9.14) | (2.15) | (11.00) | (3.45) | |
Size | 0.000 | −0.000 | −0.001 *** | −0.001 |
(0.46) | (−0.67) | (−2.82) | (−1.62) | |
Age | −0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** |
(−2.92) | (−3.26) | (−2.91) | (−4.27) | |
Cash | −0.000 | −0.000 * | −0.000 *** | −0.000 *** |
(−0.87) | (−1.85) | (−2.95) | (−3.04) | |
Tobins’Q | 0.002 *** | 0.002 *** | 0.002 *** | 0.001 *** |
(13.09) | (7.35) | (12.16) | (6.41) | |
Mkt | 0.001 *** | 0.002 *** | 0.002 *** | 0.001 *** |
(3.42) | (5.39) | (9.33) | (5.38) | |
Divide | −0.000 | 0.003 *** | 0.001 | 0.001 ** |
(−0.32) | (3.26) | (1.33) | (2.13) | |
Inctrl | 0.011 *** | 0.007 *** | 0.011 *** | 0.005 *** |
(4.88) | (3.03) | (5.22) | (2.76) | |
Constant | −0.017 ** | −0.001 | −0.004 | 0.008 |
(−2.44) | (−0.12) | (−0.61) | (1.03) | |
Ind | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
N | 8219 | 2712 | 8219 | 2712 |
F | 89.27 | 39.60 | 81.16 | 37.08 |
Adj. R2 | 0.284 | 0.256 | 0.265 | 0.240 |
Difference | 2.29 *** | 2.80 *** |
Variable | Innovation | Exploration | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
High-Tech Firms | Non-High-Tech Firms | High-Tech Firms | Non-High-Tech Firms | |
CD | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
(5.22) | (4.03) | (5.22) | (5.24) | |
Lev | −0.000 | −0.000 | −0.000 | −0.002 |
(−0.07) | (−0.19) | (−0.05) | (−1.37) | |
Roa | 0.023 *** | 0.015 *** | 0.025 *** | 0.016 *** |
(10.91) | (9.02) | (13.40) | (10.59) | |
Size | 0.001 * | −0.001 *** | −0.000 | −0.001 *** |
(2.11) | (−4.04) | (−1.21) | (−5.94) | |
Age | −0.000 ** | −0.000 *** | −0.000 *** | −0.000 ** |
(−3.18) | (−4.38) | (−4.35) | (−2.71) | |
Cash | −0.000 | −0.000 ** | −0.000 ** | −0.000 ** |
(−0.79) | (−2.77) | (−2.67) | (−3.09) | |
Tobins’Q | 0.003 *** | 0.001 *** | 0.002 *** | 0.000 ** |
(17.46) | (4.17) | (15.74) | (3.26) | |
Mkt | 0.002 *** | 0.001 *** | 0.002 *** | 0.001 *** |
(10.66) | (7.63) | (14.90) | (9.64) | |
Divide | 0.001 | 0.001 | 0.001 | 0.002 *** |
(1.09) | (1.83) | (1.15) | (3.40) | |
Inctrl | 0.012 *** | 0.007 *** | 0.010 *** | 0.007 *** |
(4.91) | (3.68) | (4.59) | (4.05) | |
Constant | −0.020 ** | 0.018 ** | −0.001 | 0.023 *** |
(−3.07) | (3.18) | (−0.16) | (4.60) | |
Ind | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
N | 6894 | 4037 | 6894 | 4037 |
F | 105.39 | 28.76 | 98.57 | 37.36 |
Adj. R2 | 0.267 | 0.194 | 0.254 | 0.240 |
Difference | 0.001 *** | 0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Wang, M. Geographical Accessibility and Corporate Technological Innovation—Evidence from a Quasi-Natural Experiment. Sustainability 2025, 17, 4846. https://doi.org/10.3390/su17114846
Qiao X, Wang M. Geographical Accessibility and Corporate Technological Innovation—Evidence from a Quasi-Natural Experiment. Sustainability. 2025; 17(11):4846. https://doi.org/10.3390/su17114846
Chicago/Turabian StyleQiao, Xiaoli, and Man Wang. 2025. "Geographical Accessibility and Corporate Technological Innovation—Evidence from a Quasi-Natural Experiment" Sustainability 17, no. 11: 4846. https://doi.org/10.3390/su17114846
APA StyleQiao, X., & Wang, M. (2025). Geographical Accessibility and Corporate Technological Innovation—Evidence from a Quasi-Natural Experiment. Sustainability, 17(11), 4846. https://doi.org/10.3390/su17114846