Opportunities Arising from COVID-19 Risk Management to Improve Ultrafine Particles Exposure: Case Study in a University Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. State of COVID-19 Pandemic Spread at the Time of the Experimental Campaign
2.2. Site Description
- Identification of routes for entry and exit in order to reduce the possibility of gathering;
- Restriction of access to the canteen (occupation was reduced to a maximum of 120 people simultaneously);
- Instructions to users to stay only for the time necessary to consume the meal (no later than 30 min);
- Installation of Plexiglas® barriers between the face-to-face seats;
- Sanitization and cleaning of all surfaces after each shift.
2.3. Measurement Strategy
- Condensation Particle Counter (CPC mod. 3007, TSI Inc., Shoreview, MN, USA) to measure in real-time the PNC (part/cm3) from 10 nm to 1000 nm, with 1 s time resolution (1 Hz) and accuracy ±20% (total flow 0.7 L/min; detection limits 1 to 100,000 part/cm3).
- DiSCmini (DM mod. TESTO SE & Co. KGaA, Lenzkirch, Germany), handheld instrument for the measurement of personal PNC in the range 10–700 nm, average diameter (Davg) of diffusion charging and Lung Deposited Surface Area (LDSA) in the range 10–300 nm, based on the model published by the International Commission on Radiological Protection [48], with a lower 1 s time resolution. TygonTM sampling lines 1.5 m in length were used to minimize the particle losses [49]. Three different DMs (DM-UF3, DM-UF4, DM-UF5) were used for simultaneous measurements.
- AirWits PM (AW-PM, GeNano Ltd., Espoo, Finland) to measure PM1, PM2.5 and PM10, temperature (°C) and air humidity (%) every 30 min.; detection limits 0–1000 μg/m3, accuracy ±10 μg/m3 (between 0–100 μg/m3) or ±10% (between 100–1000 μg/m3).
- AirWits CO2 (AW-CO, GeNano Ltd., Espoo, Finland) multipurpose meter, equipped with high-quality sensors to measure CO2, temperature (°C) and air humidity (%) every 30 min; detection limits 0–5000 ppm, accuracy 50 ppm or three percentages from reading 0.2/2%. Two AW-CO devices were used during the campaign, denominated AW-CO1 and AW-CO2.
- AirWits IAQ (AW-VOC, GeNano Ltd., Espoo, Finland) to measure the amount of TVOCs, indoor air temperature (°C) and air humidity (%) every 30 min; detection limits 0–60,000 ppb; accuracy 15%. Two AW-VOC devices were used, denominated AW-VOC1 and AW-VOC2.
3. Results and Discussion
3.1. Time Series and Average Data Related to the Activities Inside the Dining Hall
3.2. Two Days Comparison and Plasma-Based Filtration Technology Impact on UFP Concentrations
3.3. Low-Cost Sensors PM, CO2 and TVOCs Data Analysis
3.4. Study Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AirWits CO2 | AW-CO |
AirWits IAQ | AW-VOC |
AirWits PM | AW-PM |
AQG | WHO Air Quality Guidelines |
ARPAT | Agenzia Regionale per la Protezione Ambientale della Toscana |
CO2 | Carbon Dioxide |
CPC | Condensation Particle Counter |
Davg | Average Diameter |
DM | DiSCmini |
EU | European Union |
ILO | International Labour Organization |
INAIL | Italian Workers’ Compensation Authority |
ISS | Italian Health Institute |
ISO | International Standard Organization |
LDSA | Lung Deposited Surface Area |
NO2 | Nitrogen Dioxide |
OECD | Organization for Economic Cooperation and Development |
OSH | Occupational Safety and Health |
PM | Particulate Matter |
PNC | Particle Number Concentration |
SNS | Scuola Normale Superiore |
TVOCs | Total Volatile Organic Compounds |
WHO | World Health Organization |
UFPs | Ultrafine Particles |
UNI | Ente Italiano di Normazione |
US CDC | United States Center for Diseases Control |
US EPA | United States Environmental Protection Agency |
Appendix A
Day 1 | PNC (part/cm3) | Davg (nm) | LDSA (μm/cm2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Din#1 | Din#2 | Rec#3 | Out#4 | Din#1 | Din#2 | Rec#3 | Din#1 | Din#2 | Rec#3 | ||
T1 | avg | ||||||||||
12 am–6 am | st.dev. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
T2 | avg | ||||||||||
6 am–10 am | st.dev. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
T3 | avg | 3186 | 21,135 | 25,589 | 5753 | 59.67 | 33.72 | 36.21 | 4.87 | 41.14 | 47.97 |
10 am–12 pm | st.dev. | 409 | 15,439 | 20,143 | 1755 | 9,26 | 7.77 | 8.18 | 0.67 | 22.10 | 24.06 |
T4 | avg | 7456 | 8359 | 12,233 | 12,112 | 32.69 | 25.03 | 28.72 | 9.12 | 11.34 | 19.72 |
12 pm–2:30 pm | st.dev. | 3170 | 3173 | 5008 | 4363 | 7.84 | 4.17 | 3.98 | 4.07 | 5.76 | 6.91 |
T5 | avg | 10,751 | 6347 | 11,433 | 14,724 | 29.85 | 27.42 | 30.79 | 13.87 | 8.65 | 20.32 |
2:30 pm–4 pm | st.dev. | 4620 | 2356 | 4332 | 4420 | 3.10 | 2.05 | 2.60 | 6.13 | 4.36 | 6.73 |
T6 | avg | 3649 | 3246 | 5233 | 11,396 | 38.49 | 37.05 | 29.66 | 3.97 | 3.82 | 8.29 |
4 pm–5:30 pm | st.dev. | 325 | 152 | 545 | 3445 | 1.87 | 2.24 | 1.90 | 0.56 | 0.14 | 0.64 |
T7 | avg | 7677 | 12,332 | 26,778 | 8886 | 34.22 | 31.27 | 31.56 | 11.37 | 23.16 | 52.92 |
5:30 pm–7 pm | st.dev. | 4167 | 9134 | 28,537 | 4743 | 5.13 | 5.90 | 7.83 | 9.28 | 20.83 | 61.31 |
T8 | avg | 24,706 | 25,093 | 30,060 | 8855 | 35.23 | 38.53 | 37.31 | 41.47 | 75.11 | 70.80 |
7 pm–9:30 pm | st.dev. | 18,388 | 21,345 | 16,881 | 3735 | 7.06 | 12.10 | 7.89 | 29.32 | 63.06 | 40.74 |
T9 | avg | 11,981 | 22,791 | 20,328 | 15,908 | 47.23 | 38.01 | 45.46 | 30.66 | 64.74 | 61.38 |
9:30 pm–11 pm | st.dev. | 4671 | 9241 | 5506 | 6628 | 4.31 | 4.86 | 3.52 | 13.31 | 27.83 | 19.65 |
T10 | avg | 5475 | 7331 | 8017 | 10,111 | 42.52 | 30.31 | 38.79 | 9.43 | 12.43 | 18.73 |
11 pm–12 am | st.dev. | 907 | 1720 | 1745 | 791 | 1.39 | 1.17 | 1.35 | 2.43 | 4.29 | 5.15 |
Day 2 | PNC (part/cm3) | Davg (nm) | LDSA (mm/cm2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Din#1 | Din#2 | Rec#3 | Out#4 | Din#1 | Din#2 | Rec#3 | Din#1 | Din#2 | Rec#3 | ||
T1 | avg | 8897 | 3642 | 9184 | 9035 | 24.53 | 22.59 | 22.00 | 8.95 | 2.55 | 11.21 |
12 am–6 am | st.dev. | 1435 | 448 | 1410 | 3750 | 1.55 | 3.36 | 1.53 | 1.95 | 0.44 | 2.11 |
T2 | avg | 5806 | 2978 | 5650 | 5093 | 24.52 | 24.73 | 21.81 | 5.14 | 1.79 | 6.57 |
6 am–10 am | st.dev. | 859 | 431 | 871 | 1397 | 2.23 | 3.96 | 2.28 | 1.60 | 0.86 | 1.76 |
T3 | avg | 10,230 | 11,047 | 11,607 | 7206 | 32.08 | 29.17 | 29.44 | 13.59 | 17.32 | 18.40 |
10 am–12 pm | st.dev. | 8810 | 13,705 | 11,651 | 6499 | 3.75 | 3.94 | 3.35 | 12.71 | 23.65 | 17.90 |
T4 | avg | 24,142 | 21,060 | 21,033 | 12,796 | 33.23 | 31.92 | 31.32 | 48.02 | 53.09 | 44.78 |
12 pm–2:30 pm | st.dev. | 9520 | 14,377 | 9883 | 12,189 | 5.80 | 6.34 | 5.69 | 21.27 | 28.35 | 20.03 |
T5 | avg | 23,808 | 17,497 | 22,202 | 8242 | 40.34 | 43.40 | 39.88 | 53.69 | 57.84 | 56.60 |
2:30 pm–4 pm | st.dev. | 9657 | 6522 | 8878 | 1889 | 1.95 | 1.82 | 1.61 | 22.82 | 25.39 | 22.76 |
T6 | avg | 8779 | 6653 | 8105 | 6285 | 34.66 | 33.31 | 33.24 | 14.12 | 12.44 | 15.89 |
4 pm–5:30 pm | st.dev. | 1221 | 1086 | 1007 | 3400 | 2.65 | 2.18 | 2.79 | 3.83 | 3.98 | 3.64 |
T7 | avg | 8450 | 11,325 | 9727 | 4948 | 39.29 | 35.40 | 37.83 | 16.74 | 29.90 | 24.64 |
5:30 pm–7 pm | st.dev. | 5488 | 10,969 | 8384 | 2980 | 5.02 | 4.70 | 5.64 | 17.56 | 40.16 | 27.96 |
T8 | avg | 21,358 | 20,565 | 23,774 | 8521 | 41.74 | 34.20 | 37.65 | 49.13 | 46.68 | 53.44 |
7 pm–9:30 pm | st.dev. | 9785 | 10,324 | 14,177 | 5460 | 6.55 | 5.75 | 5.77 | 25.28 | 21.22 | 25.10 |
T9 | avg | 11,683 | 10,654 | 11,756 | 5323 | 48.31 | 40.82 | 45.72 | 30.89 | 29.66 | 34.01 |
9:30 pm–11 pm | st.dev. | 3978 | 4177 | 4180 | 922 | 4.10 | 0.85 | 2.23 | 13.90 | 14.33 | 12.00 |
T10 | avg | 5990 | 5649 | 5599 | 6046 | 45.78 | 39.92 | 44.13 | 11.88 | 12.15 | 14.31 |
11 pm–12 am | st.dev. | 357 | 286 | 483 | 861 | 1.24 | 0.71 | 1.17 | 0.98 | 0.94 | 1.38 |
Day 1 | Day 2 | Day 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | #1 | #2 | #3 | #1 | #2 | #3 | |
T1 | - | - | - | −0.0955 | 0.3388 | −0.0212 | 0.7079 | 0.5263 | 0.4402 |
T2 | - | - | - | −0.2379 | −0.1295 | 0.1904 | - | - | - |
T3 | 0.1523 | −0.1604 | −0.2393 | −0.0009 | 0.0081 | −0.0314 | - | - | - |
T4 | 0.7583 | 0.5952 | 0.6043 | 0.4494 | 0.2438 | 0.3794 | - | - | - |
T5 | 0.4042 | 0.6501 | 0.5907 | 0.6509 | 0.6670 | 0.6793 | - | - | - |
T6 | 0.0725 | −0.1095 | 0.1106 | 0.4881 | 0.5428 | 0.4658 | - | - | - |
T7 | −0.5402 | −0.1111 | −0.1876 | −0.1431 | −0.1135 | −0.1149 | - | - | - |
T8 | 0.6076 | −0.0363 | 0.4222 | 0.0190 | 0.0857 | 0.0738 | - | - | - |
T9 | −0.5115 | −0.5948 | −0.7251 | −0.0873 | −0.0914 | −0.0979 | - | - | - |
T10 | 0.4881 | 0.5861 | 0.5235 | 0.6232 | 0.7511 | 0.7027 | - | - | - |
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Ohlwein, S.; Kappeler, R.; Kutlar Joss, M.; Kunzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public. Health 2019, 64, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Kim, Y.; Shin, G.; Bae, S. Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea. Int. J. Environ. Res. Public Health 2022, 19, 2494. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Ambient (Outdoor) Air Pollution. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 28 March 2025).
- Piscitelli, P.; Miani, A.; Setti, L.; De Gennaro, G.; Rodo, X.; Artinano, B.; Vara, E.; Rancan, L.; Arias, J.; Passarini, F.; et al. The role of outdoor and indoor air quality in the spread of SARS-CoV-2: Overview and recommendations by the research group on COVID-19 and particulate matter (RESCOP commission). Environ. Res. 2022, 211, 113038. [Google Scholar] [CrossRef]
- Di Biagio, K.; Baldini, M.; Dolcini, J.; Serafini, P.; Sarti, D.; Dorillo, I.; Ranzi, A.; Settimo, G.; Bartolacci, S.; Simeoni, T.V.; et al. Atmospheric particulate matter effects on SARS-CoV-2 infection and spreading dynamics: A spatio-temporal point process model. Environ. Res. 2022, 212, 113617. [Google Scholar] [CrossRef]
- Hassan, M.A.; Mehmood, T.; Lodhi, E.; Bilal, M.; Dar, A.A.; Liu, J. Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly. Int. J. Environ. Res. Public. Health 2022, 19, 13540. [Google Scholar] [CrossRef]
- Copat, C.; Cristaldi, A.; Fiore, M.; Grasso, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environ. Res. 2020, 191, 110129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.J.; Xie, J.G.; Huang, F.M.; Cao, L.Q. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- Ho, C.C.; Hung, S.C.E.; Ho, W.C. Effects of short- and long-term exposure to atmospheric pollution on COVID-19 risk and fatality: Analysis of the first epidemic wave in northern Italy. Environ. Res. 2021, 199, 111293. [Google Scholar] [CrossRef]
- Marquès, M.; Domingo, J.L. Contamination of inert surfaces by SARS-CoV-2: Persistence, stability and infectivity. A review. Environ. Res. 2021, 193, 110559. [Google Scholar] [CrossRef]
- Zhou, X.D.; Josey, K.; Kamareddine, L.; Caine, M.C.; Liu, T.J.; Mickley, L.J.; Cooper, M.; Dominici, F. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci. Adv. 2021, 7, eabi8789. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, G.; Gianfagna, F.; Karachaliou, M.; Guasti, L.; Kogevinas, M.; Ferrario, M.M. Association between long-term exposure to air pollutants with breakthrough SARS-CoV-2 infections and antibody responses among COVID-19 vaccinated older adults in Northern Italy. Environ. Res. 2025, 265, 120450. [Google Scholar] [CrossRef] [PubMed]
- Bourdrel, T.; Annesi-Maesano, I.; Alahmad, B.; Maesano, C.N.; Bind, M.A. The impact of outdoor air pollution on COVID-19: A review of evidence from animal, and human studies. Eur. Respir. Rev. 2021, 30, 200242. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Gola, M.; Appolloni, L.; Dettori, M.; Fara, G.M.; Rebecchi, A.; Settimo, G.; Capolongo, S. COVID-19 and Living space challenge. Well-being and Public Health recommendations for a healthy, safe, and sustainable housing. Acta Biomed. 2020, 91, 61–75. [Google Scholar] [CrossRef]
- Brunekreef, B.; Downward, G.; Forastiere, F.; Gehring, U.; Heederik, D.J.J.; Hoek, G.; Koopmans, M.P.G.; Smit, L.A.M.; Vermeulen, R.C.H. Air pollution and COVID-19. In Including Elements of Air Pollution in Rural Areas, Indoor Air Pollution and Vulnerability and Resilience Aspects of Our Society Against Respiratory Disease, Social Inequality Stemming from Air Pollution; European Parliament: Luxembourg, 2021. [Google Scholar]
- Rudnick, S.N.; Milton, D.K. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 2003, 13, 237–245. [Google Scholar] [CrossRef]
- Peng, Z.; Jimenez, J.L. Exhaled CO as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environ. Sci. Technol. Lett. 2021, 8, 392–397. [Google Scholar] [CrossRef]
- Braggion, A.; Dugerdil, A.; Wilson, O.; Hovagemyan, F.; Flahault, A. Indoor Air Quality and COVID-19: A Scoping Review. Public Health Rev. 2023, 44, 1605803. [Google Scholar] [CrossRef]
- International Labour Organization (ILO); World Health Organization (WHO). Preventing and Mitigating COVID-19 at Work; Geneva. 2021. Available online: https://iris.who.int/bitstream/handle/10665/341328/WHO-2019-nCoV-Workplace-actions-Policy-brief-2021.1-eng.pdf?sequence=1 (accessed on 28 March 2025).
- U.S. Environmental Protection Agency (US EPA). Indoor Air and Coronavirus (COVID-19). 2022. Available online: https://www.epa.gov/indoor-air-quality-iaq/indoor-air-and-coronavirus-covid-19#:~:text=Although%20improvements%20to%20ventilation%20and,include%20physical%20distancing%2C%20wearing%20face (accessed on 28 March 2025).
- U.S. Center for Disease Control (CDC). Scientific Brief: SARS-CoV-2 Transmission; National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases: Atlanta, GA, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570442/ (accessed on 28 March 2025).
- Italian Health Institute (ISS). Ad Interim Provisions to Prevent and Manage the Indoor Environment in Relation to the Transmission of the Infection by the SARS-CoV-2 Virus. Updating Rapporto ISS COVID-19 n. 5/2020 Rev. 2. Version of April 18, 2021 [Italian Version]; ISS Working Group Environment and Indoor Air Quality: Rome, Italy, 2021; 21p. [Google Scholar]
- Morawska, L.; Li, Y.; Salthammer, T. Lessons from the COVID-19 pandemic for ventilation and indoor air quality. Science 2024, 385, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Touati, F.; Crescini, D.; Ben Mnaouer, A. State-of-the-Art Low-Cost Air Quality Sensors, Assemblies, Calibration and Evaluation for Respiration-Associated Diseases: A Systematic Review. Atmosphere 2024, 15, 471. [Google Scholar] [CrossRef]
- Boccuni, F.; Ferrante, R.; Tombolini, F.; Iavicoli, S.; Pelliccioni, A. Relationship between Indoor High Frequency Size Distribution of Ultrafine Particles and Their Metrics in a University Site. Sustainability 2021, 13, 5504. [Google Scholar] [CrossRef]
- Higgins, C.; Kumar, P.; Morawska, L. Indoor air quality monitoring and source apportionment using low-cost sensors. Environ. Res. Commun 2024, 6, 012001. [Google Scholar] [CrossRef]
- Boccuni, F.; Rondinone, B.M.; Buresti, G.; Brusco, A.; Bucciarelli, A.; D’Amario, S.; Persechino, B.; Iavicoli, S.; Marinaccio, A. Covid-19 Occupational Risk Incidence and Working Sectors Involved During the Pandemic in Italy. Saf. Health Work 2023, 14, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, F.; Notario, A.; Cabañas, B.; Martín, P.; Salgado, S.; Gabriel, M.F. Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain. Environ. Res. 2021, 197, 111092. [Google Scholar] [CrossRef]
- Allen, J.G.; Marr, L.C. Recognizing and controlling airborne transmission of SARS-CoV-2 in indoor environments. Indoor Air 2020, 30, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Nazaroff, W.W.; Jimenez, J.L.; Boerstra, A.; Buonanno, G.; Dancer, S.J.; Kurnitski, J.; Marr, L.C.; Morawska, L.; Noakes, C. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air 2021, 31, 314–323. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef]
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, eabd9149. [Google Scholar] [CrossRef]
- Jones, N.R.; Qureshi, Z.U.; Temple, R.J.; Larwood, J.P.J.; Greenhalgh, T.; Bourouiba, L. Two metres or one: What is the evidence for physical distancing in covid-19? BMJ Br. Med. J. 2020, 370, m3223. [Google Scholar] [CrossRef]
- Rosti, M.E.; Olivieri, S.; Cavaiola, M.; Seminara, A.; Mazzino, A. Fluid dynamics of COVID-19 airborne infection suggests urgent data for a scientific design of social distancing. Sci. Rep. 2020, 10, 22426. [Google Scholar] [CrossRef]
- Cravero, C.; Marsano, D. Simulation of COVID-19 indoor emissions from coughing and breathing with air conditioning and mask protection effects. Indoor Built Environ. 2022, 31, 1242–1261. [Google Scholar] [CrossRef]
- Li, Y.; Qian, H.; Hang, J.; Chen, X.; Cheng, P.; Ling, H.; Wang, S.; Liang, P.; Li, J.; Xiao, S.; et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build. Environ. 2021, 196, 107788. [Google Scholar] [CrossRef] [PubMed]
- Brandal, L.T.; MacDonald, E.; Veneti, L.; Ravlo, T.; Lange, H.; Naseer, U.; Feruglio, S.; Bragstad, K.; Hungnes, O.; Odeskaug, L.E.; et al. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Euro Surveill 2021, 26, 2101147. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, S.; Boccuni, F.; Buresti, G.; Gagliardi, D.; Persechino, B.; Valenti, A.; Rondinone, B.M. Risk assessment at work and prevention strategies on COVID-19 in Italy. PLoS ONE 2021, 16, e0248874. [Google Scholar] [CrossRef]
- Magnusson, K.; Nygard, K.; Methi, F.; Vold, L.; Telle, K. Occupational risk of COVID-19 in the first versus second epidemic wave in Norway, 2020. Euro Surveill 2021, 26, 2001875. [Google Scholar] [CrossRef]
- Marinaccio, A.; Boccuni, F.; Rondinone, B.M.; Brusco, A.; D’Amario, S.; Iavicoli, S. Occupational factors in the COVID-19 pandemic in Italy: Compensation claims applications support establishing an occupational surveillance system. Occup. Environ. Med. 2020, 77, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Verbeeck, J.; Vandersmissen, G.; Peeters, J.; Klamer, S.; Hancart, S.; Lernout, T.; Dewatripont, M.; Godderis, L.; Molenberghs, G. Confirmed COVID-19 Cases per Economic Activity during Autumn Wave in Belgium. Int. J. Environ. Res. Public Health 2021, 18, 12489. [Google Scholar] [CrossRef]
- Italian Ministry of Health. Linee Guida Sulle Specifiche Tecniche in Merito All’adozione di Dispositivi Mobili di Purificazione e Impianti Fissi di Aerazione e Agli Standard Minimi di Qualità Dell’aria Negli Ambienti Scolastici e in Quelli Confinati Degli Stessi Edifici. D.P.R. 26 Luglio 2022 [Italian Version]. (GU Serie Generale n.180 del 03-08-2022). 2022. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2022-08-03&atto.codiceRedazionale=22A04476&elenco30giorni=false (accessed on 28 March 2025).
- Dottori, M.; Fava, G.; Ruello, M.L. Bacteria removal and viability attenuation by means of an electrostatic barrier. Indoor Built Environ. 2004, 13, 309–314. [Google Scholar] [CrossRef]
- Ente Italiano Di Normazione (UNI). UNI 11254:2007 Filtri per Aria Elettrostatici Attivi per la Ventilazione Generale—Determinazione Della Prestazione di Filtrazione [Italian Version]; UNI: Milano, Italy, 2007. [Google Scholar]
- EN 779:2012; Particulate Air Filters for General Ventilation. European Standard Committee (CEN): Brussels, Belgium, 2012.
- EN ISO 16890-1:2016; Air Filters for General Ventilation—Part 1: Technical Specifications, Requirements and Classification System Based Upon Particulate Matter Efficiency (ePM). International Standard Organization (ISO): Geneva, Switzerland, 2016.
- International Committee for Radiological Protection (ICRP). Human Respiratory Tract Model for Radiological Protection; ICRP: Ottawa, ON, Canada, 1994. [Google Scholar]
- Asbach, C.; Kaminski, H.; Lamboy, Y.; Schneiderwind, U.; Fierz, M.; Todea, A.M. Silicone sampling tubes can cause drastic artifacts in measurements with aerosol instrumentation based on unipolar diffusion charging. Aerosol Sci. Technol. 2016, 50, 1375–1384. [Google Scholar] [CrossRef]
- Boccuni, F.; Ferrante, R.; Tombolini, F.; Natale, C.; Gordiani, A.; Sabella, S.; Iavicoli, S. Occupational exposure to graphene and silica nanoparticles. Part I: Workplace measurements and samplings. Nanotoxicology 2020, 14, 1280–1300. [Google Scholar] [CrossRef]
- Bellagamba, I.; Boccuni, F.; Ferrante, R.; Tombolini, F.; Natale, C.; Marra, F.; Sarto, M.S.; Iavicoli, S. Occupational Exposure during the Production and the Spray Deposition of Graphene Nanoplatelets-Based Polymeric Coatings. Nanomaterials 2023, 13, 1378. [Google Scholar] [CrossRef]
- Fierz, M.; Houle, C.; Steigmeier, P.; Burtscher, H. Design, Calibration, and Field Performance of a Miniature Diffusion Size Classifier. Aerosol Sci. Technol. 2011, 45, 1–10. [Google Scholar] [CrossRef]
- Oberdörster, G. Pulmonary effects of inhaled ultrafine particles. Int Arch. Occup. Environ. Health 2000, 74, 1–8. [Google Scholar] [CrossRef]
- Afshari, A.; Matson, U.; Ekberg, L.E. Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air 2005, 15, 141–150. [Google Scholar] [CrossRef]
- Wallace, L.A.; Ott, W.R.; Weschler, C.J. Ultrafine particles from electric appliances and cooking pans: Experiments suggesting desorption/nucleation of sorbed organics as the primary source. Indoor Air 2015, 25, 536–546. [Google Scholar] [CrossRef]
- D’Amico, A.; Pini, A.; Zazzini, S.; D’Alessandro, D.; Leuzzi, G.; Currà, E. Modelling VOC Emissions from Building Materials for Healthy Building Design. Sustainability 2021, 13, 184. [Google Scholar] [CrossRef]
- Di Menno di Bucchianico, A.D.; Cusano, M.; Gaddi, R.; Gaeta, A.; Leone, G.; Boccuni, F.; Ferrante, R.; Pelliccioni, A.; Cattani, G. Indoor and Outdoor Particle Number Concentration in the Sapienza University Campus of Rome. Sustainability 2021, 13, 9126. [Google Scholar] [CrossRef]
- Morawska, L.; Ayoko, G.A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.H.; Clifford, S.; Fu, S.C.; Hänninen, O.; He, C.; Isaxon, C.; et al. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 2017, 108, 75–83. [Google Scholar] [CrossRef]
- Licina, D.; Morrison, G.C.; Bekö, G.; Weschler, C.J.; Nazaroff, W.W. Clothing-Mediated Exposures to Chemicals and Particles. Environ. Sci. Technol. 2019, 53, 5559–5575. [Google Scholar] [CrossRef]
- Marcovecchio, F.; Perrino, C. Bioaerosol Contribution to Atmospheric Particulate Matter in Indoor University Environments. Sustainability 2021, 13, 1149. [Google Scholar] [CrossRef]
- Chen, C.; Yao, M.Y.; Luo, X.; Zhu, Y.L.; Liu, Z.Y.; Zhuo, H.C.; Zhao, B. Outdoor-to-indoor transport of ultrafine particles: Measurement and model development of infiltration factor. Environ. Pollut. 2020, 267, 115402. [Google Scholar] [CrossRef]
- Natale, C.; Tombolini, F.; Ferrante, R.; Sebastiani, F.; Gordiani, A.; Manigrasso, M.; Del Rio Castillo, A.E.; Bonaccorso, F.; Sabella, S.; Boccuni, F. Scaling up the graphene production from R&D to the pilot plant stage: Implications for workers’ exposure to airborne nano-objects. NanoImpact 2025, 38, 100555. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Cooperation and Development (OECD). Harmonized Tiered Approach to Measure and Assess the Potential Exposure to Airborne Emissions of Engineered Nano-Objects and Their Agglomerates and Aggregates at Workplaces. ENV/JM/MONO (2015) 19. 2015. Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2015)19&doclanguage=en (accessed on 28 March 2025).
- McCormick, S.; Niang, M.; Dahm, M.M. Occupational Exposures to Engineered Nanomaterials: A Review of Workplace Exposure Assessment Methods. Curr. Environ. Health Rep. 2021, 8, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zhang, Q.W.; Xing, M.L.; Gao, X.J.; Zhou, L.F.; Tollerud, D.J.; Tang, S.C.; Zhang, M.B. Relationships between number, surface area, and mass concentrations of different nanoparticles in workplaces. Environ. Sci. Process. Impacts 2015, 17, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Agenzia Regionale Per La Protezione Ambientale Della Toscana. Archivio Storico dei Dati Orari; 2021 [Italian Version]. Available online: https://www.arpat.toscana.it/temi-ambientali/aria/qualita-aria/archivio_dati_orari (accessed on 5 May 2025).
- European Union (EU). Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on Ambient Air Quality and Cleaner Air for Europe. 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/2881/oj/eng (accessed on 28 March 2025).
- World Health Organization (WHO). WHO Global Air Quality Guidelines. 2021. Available online: https://www.who.int/news-room/questions-and-answers/item/who-global-air-quality-guidelines (accessed on 28 March 2025).
- Italian Health Institute (ISS). Interim Technical Note. CO2 Monitoring for Prevention and Management in indoor Environments in Relation to the Transmission of SARS-CoV-2 Virus Infection. 2022. Available online: https://www.iss.it/documents/20126/6703853/NT_co2_DEF.pdf/ (accessed on 28 March 2025).
- Bhoonah, R.; Mendez, M.; Maury-Micolier, A. Human health impacts and indoor chemical reactions of VOCs from cleaning products and occupants. Atmos. Environ. 2024, 338, 120846. [Google Scholar] [CrossRef]
- Asbach, C.; Kaminski, H.; Von Barany, D.; Kuhlbusch, T.A.J.; Monz, C.; Dziurowitz, N.; Pelzer, J.; Vossen, K.; Berlin, K.; Dietrich, S.; et al. Comparability of Portable Nanoparticle Exposure Monitors. Ann. Occup. Hyg. 2012, 56, 606–621. [Google Scholar] [CrossRef]
- Kim, D.; Shin, D.; Hwang, J. Calibration of Low-cost Sensors for Measurement of Indoor Particulate Matter Concentrations via Laboratory/Field Evaluation. Aerosol Air Qual. Res. 2023, 23, 230097. [Google Scholar] [CrossRef]
- Karagulian, F.; Gerboles, M.; Barbiere, M.; Kotsev, A.; Lagler, F.; Borowiak, A. Review of Sensors for Air Quality Monitoring; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
No. | Period | Time Slot | Occupancy | Ventilation | Activities |
---|---|---|---|---|---|
T1 | Night | 0 am–6 am | None | Doors/windows closed; forced ventilation ON | None |
T2 | Morning | 6 am–10 am | None | Doors/windows closed; forced ventilation ON | None |
T3 | Pre-Lunch | 10 am–12 pm | Canteen personnel max 10 pers. | Doors/windows occasionally open; forced ventilation ON | Cleaning/washing and cooking preparation activities |
T4 | Lunch | 12 pm–2:30 pm | Canteen personnel and students max 120 pers. | Doors/windows frequently open; forced ventilation ON | Lunch activities |
T5 | Post-Lunch | 2:30 pm–4 pm | Canteen personnel max 10 pers. | Doors/windows occasionally open; forced ventilation ON | Cleaning/washing and recovery activities |
T6 | Afternoon | 4 pm–5:30 pm | None | Doors/windows closed; forced ventilation ON | None |
T7 | Pre-Dinner | 5:30 pm–7 pm | Canteen personnel max 10 pers. | Doors/windows occasionally open; forced ventilation ON | Cleaning/washing and cooking preparation activities |
T8 | Dinner | 7 pm–9:30 pm | Canteen personnel and students max 120 pers. | Doors/windows frequently open; forced ventilation ON | Dinner activities |
T9 | Post-Dinner | 9:30 pm–11 pm | Canteen personnel max 10 pers. | Doors/windows occasionally open; forced ventilation ON | Cleaning/washing and recovery activities |
T10 | Night | 11 pm–0 am | None | Doors/windows closed; forced ventilation ON | None |
Filters | PM1 (μg/m3) | PM2.5 (μg/m3) | PM10 (μg/m3) |
---|---|---|---|
ON | 1.23 | 3.94 | 6.35 |
OFF | 3.23 | 6.59 | 9.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccuni, F.; Ferrante, R.; Tombolini, F.; Iavicoli, S.; Pingue, P. Opportunities Arising from COVID-19 Risk Management to Improve Ultrafine Particles Exposure: Case Study in a University Setting. Sustainability 2025, 17, 4803. https://doi.org/10.3390/su17114803
Boccuni F, Ferrante R, Tombolini F, Iavicoli S, Pingue P. Opportunities Arising from COVID-19 Risk Management to Improve Ultrafine Particles Exposure: Case Study in a University Setting. Sustainability. 2025; 17(11):4803. https://doi.org/10.3390/su17114803
Chicago/Turabian StyleBoccuni, Fabio, Riccardo Ferrante, Francesca Tombolini, Sergio Iavicoli, and Pasqualantonio Pingue. 2025. "Opportunities Arising from COVID-19 Risk Management to Improve Ultrafine Particles Exposure: Case Study in a University Setting" Sustainability 17, no. 11: 4803. https://doi.org/10.3390/su17114803
APA StyleBoccuni, F., Ferrante, R., Tombolini, F., Iavicoli, S., & Pingue, P. (2025). Opportunities Arising from COVID-19 Risk Management to Improve Ultrafine Particles Exposure: Case Study in a University Setting. Sustainability, 17(11), 4803. https://doi.org/10.3390/su17114803