Regenerative Agrivoltaics: Integrating Photovoltaics and Regenerative Agriculture for Sustainable Food and Energy Systems
Abstract
:1. Introduction
1.1. Regenerative Agriculture: A Sustainable Approach to Food Production
1.2. Agrivoltaics: Integrating Energy and Agriculture
1.3. Economics and Market Growth of Agrivoltaics
1.4. Combining Regenerative Farming and Agrivoltaics
2. Fostering Resilience: Agrivoltaics Meets Regenerative Agriculture in Regenerative Agrivoltaics
3. Innovative Agrivoltaic Strategies for Regenerative Agriculture
3.1. Cover Cropping
3.2. Increasing Crop Diversity
3.3. Organic Annual Cropping
3.4. Composting and Soil Nutrients
3.5. Animal Integration
3.6. Managed Grazing
3.7. Reduced/No-Till Farming Practices
3.8. Silvopasture/Agroforestry
4. Unlocking the Potential of Regenerative Agrivoltaics: Synergies, Challenges, and Theoretical Contributions
4.1. Synergies and Opportunities
4.2. Challenges, Barriers, and Future Directions
- Assessing soil health, fertility, microbial activity, and nutrient cycling under various PV module configurations, types of shading, spectral transmission/spectral engineering and transparency levels to determine optimal conditions for regenerative practices;
- Evaluating carbon sequestration potential through practices like cover cropping, organic amendments, and reduced tillage within agrivoltaic systems;
- Analyzing the effects of shading from solar modules on microbial activity, nutrient cycling, and organic matter dynamics;
- Investigating soil moisture retention and water-use efficiency, as well as agrivoltaic systems integrated with irrigation and fertigation, especially in arid or drought-prone regions;
- Measuring crop performance under different spectral qualities, light intensities, and shading durations and dynamics produced by diverse photovoltaic materials;
- Expanding the crop performance with agrivoltaics to more complicated/alternative cropping systems than standard monocrops, such as mixed, intercrop, and strip cropping systems, for both human food as well as forage;
- Exploring the impacts on biodiversity, including pollinators and above-ground wildlife, within integrated agrivoltaic landscapes;
- Examining the integration of livestock and composted organic waste, evaluating effects on soil structure and nutrient availability;
- Quantifying economic feasibility, including revenue from both energy and agricultural outputs, and cost–benefit comparisons.
- Conducting integrated environmental life-cycle assessments (LCA) to evaluate environmental trade-offs and synergies between energy generation and regenerative land use;
- Developing multifunctionality performance metrics that assess system outcomes across ecological, economic, and social domains;
- Testing policy instruments and incentive models, such as agri-energy subsidies or carbon credits, tailored to regenerative agrivoltaic systems;
- Engaging farmers through participatory research models to understand adoption behaviors, cultural barriers, and site-specific adaptations.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Hofstra, N.; Vermeulen, L.C. Impacts of Population Growth, Urbanisation and Sanitation Changes on Global Human Cryptosporidium Emissions to Surface Water. Int. J. Hyg. Environ. Health 2016, 219, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Hamuda, H.E.A.F.B.; Patko, I. Relationship between Environmental Impacts and Modern Agriculture. Obuda Univ. E-Bull. 2010, 1, 87–98. [Google Scholar]
- Padhiary, M.; Kumar, R. Assessing the Environmental Impacts of Agriculture, Industrial Operations, and Mining on Agro-Ecosystems. In Smart Internet of Things for Environment and Healthcare; Azrour, M., Mabrouki, J., Alabdulatif, A., Guezzaz, A., Amounas, F., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 107–126. ISBN 978-3-031-70102-3. [Google Scholar]
- Maraseni, T.N.; Qu, J. An International Comparison of Agricultural Nitrous Oxide Emissions. J. Clean. Prod. 2016, 135, 1256–1266. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of Climate Change on Agriculture Production and Its Sustainable Solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Rhodes, C.J. The Imperative for Regenerative Agriculture. Sci. Prog. 2017, 100, 80–129. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.P.O.; de Boer, I.J.M.; Schrijver, A.P.; van Zanten, H.H.E. Regenerative Agriculture—The Soil Is the Base. Glob. Food Secur. 2020, 26, 100404. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Elevitch, C.R.; Mazaroli, D.N.; Ragone, D. Agroforestry Standards for Regenerative Agriculture. Sustainability 2018, 10, 3337. [Google Scholar] [CrossRef]
- Project Drawdown. About Project Drawdown. Available online: https://drawdown.org/about (accessed on 29 January 2025).
- Eichler, S.; Mehra, M.; Toensmeier, E.; Frischmann, C. Regenerative Annual Cropping. Project Drawdown. Available online: https://drawdown.org/solutions/regenerative-annual-cropping (accessed on 27 January 2025).
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An Agronomic Perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- White, C. Why Regenerative Agriculture? Am. J. Econ. Sociol. 2020, 79, 799–812. [Google Scholar] [CrossRef]
- O’Donoghue, T.; Minasny, B.; McBratney, A. Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability 2022, 14, 5815. [Google Scholar] [CrossRef]
- Francis, C.A.; Harwood, R.R.; Parr, J.F. The Potential for Regenerative Agriculture in the Developing World. Am. J. Altern. Agric. 1986, 1, 65–74. [Google Scholar] [CrossRef]
- Lal, R. Regenerative Agriculture for Food and Climate. J. Soil Water Conserv. 2020, 75, 123A–124A. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Lal, R. Aligning Science and Policy of Regenerative Agriculture. Soil Sci. Soc. Am. J. 2020, 84, 1808–1820. [Google Scholar] [CrossRef]
- Grand View Research. Regenerative Agriculture Market Size & Share Report, 2030; Grand View Research: San Francisco, CA, USA, 2023. [Google Scholar]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Advances in Renewable Energy for Sustainable Development. Renew. Energy 2023, 219, 119377. [Google Scholar] [CrossRef]
- Choudhary, P.; Srivastava, R.K. Sustainability Perspectives- a Review for Solar Photovoltaic Trends and Growth Opportunities. J. Clean. Prod. 2019, 227, 589–612. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Documenting a Decade of Cost Declines for PV Systems. Available online: https://www.nrel.gov/news/program/2021/documenting-a-decade-of-cost-declines-for-pv-systems.html (accessed on 6 September 2024).
- Späth, L. Large-Scale Photovoltaics? Yes Please, but Not like This! Insights on Different Perspectives Underlying the Trade-off between Land Use and Renewable Electricity Development. Energy Policy 2018, 122, 429–437. [Google Scholar] [CrossRef]
- Pimentel, D.; Marklein, A.; Toth, M.A.; Karpoff, M.; Paul, G.S.; McCormack, R.; Kyriazis, J.; Krueger, T. Biofuel Impacts on World Food Supply: Use of Fossil Fuel, Land and Water Resources. Energies 2008, 1, 41–78. [Google Scholar] [CrossRef]
- Jamil, U.; Bonnington, A.; Pearce, J.M. The Agrivoltaic Potential of Canada. Sustainability 2023, 15, 3228. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Kim, H.C.; Alsema, E. Emissions from Photovoltaic Life Cycles. Environ. Sci. Technol. 2008, 42, 2168–2174. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Meng, S.; Zhang, X.; Zhao, H.; Ning, X.; Chen, F.; Omer, A.A.A.; Ingenhoff, J.; Liu, W. Increasing the Comprehensive Economic Benefits of Farmland with Even-Lighting Agrivoltaic Systems. PLoS ONE 2021, 16, e0254482. [Google Scholar] [CrossRef] [PubMed]
- Trommsdorff, M.; Hopf, M.; Hörnle, O.; Berwind, M.; Schindele, S.; Wydra, K. Can Synergies in Agriculture through an Integration of Solar Energy Reduce the Cost of Agrivoltaics? An Economic Analysis in Apple Farming. Appl. Energy 2023, 350, 121619. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Lahham, N. Solar Energy Farming as a Development Innovation for Vulnerable Water Basins. Dev. Pract. 2019, 29, 619–634. [Google Scholar] [CrossRef]
- Miao, R.; Khanna, M. Harnessing Advances in Agricultural Technologies to Optimize Resource Utilization in the Food-Energy-Water Nexus. Annu. Rev. Resour. Econ. 2020, 12, 65–85. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.-M.; Dejean, C.; Belaud, G. Water Budget and Crop Modelling for Agrivoltaic Systems: Application to Irrigated Lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Giudice, B.D.; Stillinger, C.; Chapman, E.; Martin, M.; Riihimaki, B. Residential Agrivoltaics: Energy Efficiency and Water Conservation in the Urban Landscape. In Proceedings of the 2021 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 7–9 April 2021; pp. 237–244. [Google Scholar]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining Food and Energy Production: Design of an Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. Var. rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy 2021, 11, 733. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic Systems: Applications, Challenges, and Opportunities. A Review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable Agrivoltaic Influence on Soil Moisture, Micrometeorology and Water-Use Efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Jamil, U.; Pearce, J.M. Maximizing Biomass with Agrivoltaics: Potential and Policy in Saskatchewan Canada. Biomass 2023, 3, 188–216. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Deboutte, G. Agrivoltaics Can Increase Grape Yield by Up to 60%. pv Magazine International. 2024. Available online: https://www.pv-magazine.com/2024/11/29/agrivoltaics-can-increase-grape-yield-by-up-to-60/ (accessed on 16 April 2025).
- Trommsdorff, M.; Dhal, I.S.; Özdemir, Ö.E.; Ketzer, D.; Weinberger, N.; Rösch, C. Chapter 5—Agrivoltaics: Solar Power Generation and Food Production. In Solar Energy Advancements in Agriculture and Food Production Systems; Gorjian, S., Campana, P.E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 159–210. ISBN 978-0-323-89866-9. [Google Scholar]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Herbert, S.J. Yield Comparisons UMass Farm NREL Co-Location Project 2016-17. 2018. Available online: https://www.umass.edu/agriculture-food-environment/clean-energy/research-initiatives/solar-agriculture/researching-agricultural-economic-impacts-of-agrivoltaics-dual-use-solar (accessed on 16 April 2025).
- Herbert, S.J.; Oleskewicz, K. UMass Dual-Use Solar Agricultural Report and Final Report Summary; University of Massachusetts: Amherst, MA, USA, 2019. [Google Scholar]
- Jamil, U.; Givans, J.; Pearce, J.M. Impacts of Type of Partial Transparency on Strawberry Agrivoltaics: Uniform Illumination Thin Film Cadmium-Telluride and Non-Uniform Crystalline Silicon Solar Photovoltaic Modules. Renew. Energy 2025, 247, 122913. [Google Scholar] [CrossRef]
- Jamil, U.; Pearce, J.M. Experimental Impacts of Transparency on Strawberry Agrivoltaics Using Thin Film Photovoltaic Modules under Low Light Conditions. Solar Energy 2025, 290, 113375. [Google Scholar] [CrossRef]
- Jamil, U.; Pearce, J.M. Strawberry Agrivoltaics in Canada: Comparing Uniform Thin Film and Non-Uniform Crystalline Silicon Semi-Transparent Solar Photovoltaic Modules in Controlled Environment Agriculture (To Be Published). 2025; in press. [Google Scholar]
- Jamil, U.; Rahman, M.; Pearce, J.M. Complexities in Agrivoltaic Policy Mandates Illustrated with Semitransparent Photovoltaic Yields. SSRN 2024. [Google Scholar] [CrossRef]
- Jamil, U.; Rahman, M.M.; Hayibo, K.S.; Alrayes, L.; Fordjour, E.; Thomas, R.; Pearce, J.M. Impacts of Transparency in Agrivoltaics Lettuce Cultivation Using Uniform or Non-Uniform Semitransparent Solar Photovoltaic Modules. SSRN 2024. [Google Scholar] [CrossRef]
- Willockx, B.; Kladas, A.; Lavaert, C.; Uytterhaegen, B.; Cappelle, J. How agrivoltaics can be used as a crop protection system. In Proceedings of the EUROSIS, Rennes, France, 5–8 April 2022. [Google Scholar]
- Xiao, Y.; Zhang, H.; Pan, S.; Wang, Q.; He, J.; Jia, X. An Agrivoltaic Park Enhancing Ecological, Economic and Social Benefits on Degraded Land in Jiangshan, China. AIP Conf. Proc. 2022, 2635, 020002. [Google Scholar] [CrossRef]
- Williams, J. How China Uses Renewable Energy to Restore the Desert; The Earthbound Report: Singapore, 2022. [Google Scholar]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.; Weselek, A.; Bauerle, A.; Högy, P.; et al. Implementation of Agrophotovoltaics: Techno-Economic Analysis of the Price-Performance Ratio and Its Policy Implications. Appl. Energy 2020, 265, 114737. [Google Scholar] [CrossRef]
- Mavani, D.D.; Chauhan, P.M.; Joshi, V. Beauty of Agrivoltaic System Regarding Double Utilization of Same Piece of Land for Generation of Electricity & Food Production. Int. J. Sci. Eng. Res. 2019, 10, 118–148. [Google Scholar]
- Mow, B. Solar Sheep and Voltaic Veggies: Uniting Solar Power and Agriculture. Available online: https://web.archive.org/web/20241205025105/https://www.nrel.gov/state-local-tribal/blog/posts/solar-sheep-and-voltaic-veggies-uniting-solar-power-and-agriculture.html/ (accessed on 1 April 2023).
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential Is Greatest Over Croplands. Sci. Rep. 2019, 9, 11442. [Google Scholar] [CrossRef] [PubMed]
- Brain, R. The Local Food Movement: Definitions, Benefits, and Resources. USU Ext. Publ. 2012, 1, 1–4. [Google Scholar]
- Martinez, S.; Hand, M.; Pra, M.; Pollack, S.; Ralston, K.; Smith, T.; Vogel, S.; Clark, S.; Lohr, L.; Low, S.; et al. Local Food Systems: Concepts, Impacts, and Issues. In Local Food Systems: Background and Issues; Diane Publishing: Collingdale, PA, USA, 2010; pp. 1–75. [Google Scholar]
- Feenstra, G.W. Local Food Systems and Sustainable Communities. Am. J. Altern. Agric. 1997, 12, 28–36. [Google Scholar] [CrossRef]
- Prehoda, E.W.; Pearce, J.M. Potential Lives Saved by Replacing Coal with Solar Photovoltaic Electricity Production in the U.S. Renew. Sustain. Energy Rev. 2017, 80, 710–715. [Google Scholar] [CrossRef]
- Sommerfeldt, N.; Pearce, J.M. Can Grid-Tied Solar Photovoltaics Lead to Residential Heating Electrification? A Techno-Economic Case Study in the Midwestern U.S. Appl. Energy 2023, 336, 120838. [Google Scholar] [CrossRef]
- McDonald, M.T.; Hayibo, K.S.; Hafting, F.; Pearce, J.M. Economics of Open-Source Solar Photovoltaic Powered Cryptocurrency Mining. Ledger 2022, 8, 1–26. [Google Scholar]
- Tributsch, H. Photovoltaic Hydrogen Generation. Int. J. Hydrogen Energy 2008, 33, 5911–5930. [Google Scholar] [CrossRef]
- Fereidooni, M.; Mostafaeipour, A.; Kalantar, V.; Goudarzi, H. A Comprehensive Evaluation of Hydrogen Production from Photovoltaic Power Station. Renew. Sustain. Energy Rev. 2018, 82, 415–423. [Google Scholar] [CrossRef]
- Pal, P.; Mukherjee, V. Off-Grid Solar Photovoltaic/Hydrogen Fuel Cell System for Renewable Energy Generation: An Investigation Based on Techno-Economic Feasibility Assessment for the Application of End-User Load Demand in North-East India. Renew. Sustain. Energy Rev. 2021, 149, 111421. [Google Scholar] [CrossRef]
- Fasihi, M.; Weiss, R.; Savolainen, J.; Breyer, C. Global Potential of Green Ammonia Based on Hybrid PV-Wind Power Plants. Appl. Energy 2021, 294, 116170. [Google Scholar] [CrossRef]
- Du, Z.; Denkenberger, D.; Pearce, J.M. Solar Photovoltaic Powered On-Site Ammonia Production for Nitrogen Fertilization. Solar Energy 2015, 122, 562–568. [Google Scholar] [CrossRef]
- Thompson, E.P.; Bombelli, E.L.; Shubham, S.; Watson, H.; Everard, A.; D’Ardes, V.; Schievano, A.; Bocchi, S.; Zand, N.; Howe, C.J.; et al. Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland. Adv. Energy Mater. 2020, 10, 2001189. [Google Scholar] [CrossRef]
- Meyer, T.K.; Pearce, J.M. How Easy Is It to Feed Everyone? Economic Alternatives to Eliminate Human Nutrition Deficits. Food Ethics 2022, 8, 3. [Google Scholar] [CrossRef]
- Fernández-Solas, Á.; Fernández-Ocaña, A.M.; Almonacid, F.; Fernández, E.F. Potential of Agrivoltaics Systems into Olive Groves in the Mediterranean Region. Appl. Energy 2023, 352, 121988. [Google Scholar] [CrossRef]
- Asgari, N.; Jamil, U.; Pearce, J.M. Net Zero Agrivoltaic Arrays for Agrotunnel Vertical Growing Systems: Energy Analysis and System Sizing. Sustainability 2024, 16, 6120. [Google Scholar] [CrossRef]
- Jamil, U.; Pearce, J.M. Energy Policy for Agrivoltaics in Alberta Canada. Energies 2023, 16, 53. [Google Scholar] [CrossRef]
- Gasch, A.; Lara, R.; Pearce, J.M. Financial Analysis of Agrivoltaic Sheep: Breeding and Auction Lamb Business Models. Appl. Energy 2025, 381, 125057. [Google Scholar] [CrossRef]
- MarkNtel Advisors. Global Agrivoltaics Market Research Report: Forecast (2024–2030). Available online: https://www.marknteladvisors.com/research-library/agrivoltaic-market.html (accessed on 6 September 2024).
- Singh, S. Energy Crisis and Climate Change. In Energy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 1–17. ISBN 978-1-119-74150-3. [Google Scholar]
- Peterson, E. The Coming Global Food Crisis. In Cornhusker Economics; University of Nebraska-Lincoln: Lincoln, NE, USA, 2022. [Google Scholar]
- Weselek, A.; Bauerle, A.; Hartung, J.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic System Impacts on Microclimate and Yield of Different Crops within an Organic Crop Rotation in a Temperate Climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Schulte, L.A.; Dale, B.E.; Bozzetto, S.; Liebman, M.; Souza, G.M.; Haddad, N.; Richard, T.L.; Basso, B.; Brown, R.C.; Hilbert, J.A.; et al. Meeting Global Challenges with Regenerative Agriculture Producing Food and Energy. Nat. Sustain. 2022, 5, 384–388. [Google Scholar] [CrossRef]
- UN THE 17 GOALS. Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 24 May 2023).
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of Cover Crops in Improving Soil and Row Crop Productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Frye, W.W.; Blevins, R.L.; Smith, M.S.; Corak, S.J.; Varco, J.J. Role of Annual Legume Cover Crops in Efficient Use of Water and Nitrogen. In Cropping Strategies for Efficient Use of Water and Nitrogen; ASA Special Publications: Madison, WI, USA, 1988; Volume 51. [Google Scholar]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Juillion, P.; Lopez, G.; Fumey, D.; Lesniak, V.; Génard, M.; Vercambre, G. Shading Apple Trees with an Agrivoltaic System: Impact on Water Relations, Leaf Morphophysiological Characteristics and Yield Determinants. Sci. Hortic. 2022, 306, 111434. [Google Scholar] [CrossRef]
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative Agrivoltaic Systems to Produce Sustainable Energy: An Economic and Environmental Assessment. Appl. Energy 2021, 281, 116102. [Google Scholar] [CrossRef]
- Chen, X.; Jia, L.; Jia, T.; Hao, Z. An Carbon Neutrality Industrial Chain of “Desert-Photovoltaic Power Generation-Ecological Agriculture”: Practice from the Ulan Buh Desert, Dengkou, Inner Mongolia. Zgdzyw 2022, 5, 549–552. [Google Scholar] [CrossRef]
- Ramos-Fuentes, I.A.; Elamri, Y.; Cheviron, B.; Dejean, C.; Belaud, G.; Fumey, D. Effects of Shade and Deficit Irrigation on Maize Growth and Development in Fixed and Dynamic AgriVoltaic Systems. Agric. Water Manag. 2023, 280, 108187. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Curci, L.M.; Leggieri, A.; Lenucci, M.; Basset, A.; Santino, A.; Piro, G.; De Caroli, M. Shading Effects in Agrivoltaic Systems Can Make the Difference in Boosting Food Security in Climate Change. Appl. Energy 2024, 358, 122565. [Google Scholar] [CrossRef]
- Uchanski, M.; Hickey, T.; Bousselot, J.; Barth, K.L. Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules. Energies 2023, 16, 3012. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Zhang, W.; Li, M.; Liu, W.; Ali Abaker Omer, A.; Zheng, J.; Zhang, X.; Liu, W. Spectral-Splitting Concentrator Agrivoltaics for Higher Hybrid Solar Energy Conversion Efficiency. Energy Convers. Manag. 2023, 276, 116567. [Google Scholar] [CrossRef]
- Handler, R.; Pearce, J.M. Greener Sheep: Life Cycle Analysis of Integrated Sheep Agrivoltaic Systems. Clean. Energy Syst. 2022, 3, 100036. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Bastos, A.C. Discussion: Avoid Severe (Future) Soil Erosion from Agrivoltaics. Sci. Total Environ. 2023, 873, 162249. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing Soil Fertility in Organic Farming Systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018, 6, 26. [Google Scholar] [CrossRef]
- Cherlinka, V. Heat Stress in Plants: Symptoms, Prevention, and Recovery. Available online: https://eos.com/blog/heat-stress-in-plants/ (accessed on 27 January 2025).
- Brunelle, T.; Chakir, R.; Carpentier, A.; Dorin, B.; Goll, D.; Guilpart, N.; Maggi, F.; Makowski, D.; Nesme, T.; Roosen, J.; et al. Reducing Chemical Inputs in Agriculture Requires a System Change. Commun. Earth Environ. 2024, 5, 369. [Google Scholar] [CrossRef]
- Cuppari, R.I.; Higgins, C.W.; Characklis, G.W. Agrivoltaics and Weather Risk: A Diversification Strategy for Landowners. Appl. Energy 2021, 291, 116809. [Google Scholar] [CrossRef]
- Ravilla, A.; Shirkey, G.; Chen, J.; Jarchow, M.; Stary, O.; Celik, I. Techno-Economic and Life Cycle Assessment of Agrivoltaic System (AVS) Designs. Sci. Total Environ. 2024, 912, 169274. [Google Scholar] [CrossRef]
- Lal, R. Challenges and Opportunities in Soil Organic Matter Research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural Waste Recycling in Horticultural Intensive Farming Systems by On-Farm Composting and Compost-Based Tea Application Improves Soil Quality and Plant Health: A Review under the Perspective of a Circular Economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-Farm Compost: A Useful Tool to Improve Soil Quality under Intensive Farming Systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Z.; Li, W.; Shi, W.; Sui, X. The Early Effects of an Agrivoltaic System within a Different Crop Cultivation on Soil Quality in Dry–Hot Valley Eco-Fragile Areas. Agronomy 2024, 14, 584. [Google Scholar] [CrossRef]
- Sharpe, K.T.; Heins, B.J.; Buchanan, E.S.; Reese, M.H. Evaluation of Solar Photovoltaic Systems to Shade Cows in a Pasture-Based Dairy Herd. J. Dairy Sci. 2021, 104, 2794–2806. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. In Sustainable Agriculture Volume 2; Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 761–786. ISBN 978-94-007-0394-0. [Google Scholar]
- Bedada, W.; Karltun, E.; Lemenih, M.; Tolera, M. Long-Term Addition of Compost and NP Fertilizer Increases Crop Yield and Improves Soil Quality in Experiments on Smallholder Farms. Agric. Ecosyst. Environ. 2014, 195, 193–201. [Google Scholar] [CrossRef]
- Andrew, A.C.; Higgins, C.W.; Smallman, M.A.; Graham, M.; Ates, S. Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System. Front. Sustain. Food Syst. 2021, 5, 659175. [Google Scholar] [CrossRef]
- Lytle, W.; Meyer, T.K.; Tanikella, N.G.; Burnham, L.; Engel, J.; Schelly, C.; Pearce, J.M. Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. J. Clean. Prod. 2021, 282, 124476. [Google Scholar] [CrossRef]
- Pascaris, A.S.; Handler, R.; Schelly, C.; Pearce, J.M. Life Cycle Assessment of Pasture-Based Agrivoltaic Systems: Emissions and Energy Use of Integrated Rabbit Production. Clean. Responsible Consum. 2021, 3, 100030. [Google Scholar] [CrossRef]
- Heins, B.J.; Sharpe, K.T.; Buchanan, E.S.; Reese, M.H. Agrivoltaics to Shade Cows in a Pasture-Based Dairy System. AIP Conf. Proc. 2022, 2635, 060001. [Google Scholar] [CrossRef]
- Mao, J.; Olk, D.C.; Fang, X.; He, Z.; Schmidt-Rohr, K. Influence of Animal Manure Application on the Chemical Structures of Soil Organic Matter as Investigated by Advanced Solid-State NMR and FT-IR Spectroscopy. Geoderma 2008, 146, 353–362. [Google Scholar] [CrossRef]
- Wilkinson, S.R. Plant Nutrient and Economic Valus of Animal Manures. J. Anim. Sci. 1979, 48, 121–133. [Google Scholar] [CrossRef]
- Udroiu, N.-A. The Use of Agrivoltaic Systems, an Alternative for Romanian Farmers. Sci. Pap. Ser. D Anim. Sci. 2023, 66, 410–420. [Google Scholar]
- Díaz de Otálora, X.; Epelde, L.; Arranz, J.; Garbisu, C.; Ruiz, R.; Mandaluniz, N. Regenerative Rotational Grazing Management of Dairy Sheep Increases Springtime Grass Production and Topsoil Carbon Storage. Ecol. Indic. 2021, 125, 107484. [Google Scholar] [CrossRef]
- Sturchio, M.A.; Kannenberg, S.A.; Knapp, A.K. Agrivoltaic Arrays Can Maintain Semi-Arid Grassland Productivity and Extend the Seasonality of Forage Quality. Appl. Energy 2024, 356, 122418. [Google Scholar] [CrossRef]
- Seitz, T.J.; Schütte, U.M.E.; Drown, D.M. Soil Disturbance Affects Plant Productivity via Soil Microbial Community Shifts. Front. Microbiol. 2021, 12, 619711. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.R.; van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and Cropping System Diversification Improve Soil Health and Crop Yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, G.; Singh, R.P. Conservation Tillage and Optimal Water Supply Enhance Microbial Enzyme (Glucosidase, Urease and Phosphatase) Activities in Fields under Wheat Cultivation during Various Nitrogen Management Practices. Arch. Agron. Soil Sci. 2013, 59, 911–928. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic Systems to Optimise Land Use for Electric Energy Production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Yue, S.; Guo, M.; Zou, P.; Wu, W.; Zhou, X. Effects of Photovoltaic Panels on Soil Temperature and Moisture in Desert Areas. Environ. Sci. Pollut. Res. 2021, 28, 17506–17518. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Matthews, F.; Liakos, L.; Bezak, N.; Diodato, N.; Ballabio, C. Global Rainfall Erosivity Projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J. How a Photovoltaic Panel Impacts Rainfall-Runoff and Soil Erosion Processes on Slopes at the Plot Scale. J. Hydrol. 2023, 620, 129522. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power Loss Due to Soiling on Solar Panel: A Review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef]
- Krasner, N.Z.; Fox, J.; Armstrong, A.; Ave, K.; Carvalho, F.; Li, Y.; Walston, L.J.; Ricketts, M.P.; Jordaan, S.M.; Abou Najm, M.; et al. Impacts of Photovoltaic Solar Energy on Soil Carbon: A Global Systematic Review and Framework. Renew. Sustain. Energy Rev. 2025, 208, 115032. [Google Scholar] [CrossRef]
- Towner, E.; Karas, T.; Janski, J.; Macknick, J.; Ravi, S. Managed Sheep Grazing Can Improve Soil Quality and Carbon Sequestration at Solar Photovoltaic Sites; dSPACE Inc.: Wixom, MI, USA, 2022. [Google Scholar] [CrossRef]
- Grubbs, E.K.; Gruss, S.M.; Schull, V.Z.; Gosney, M.J.; Mickelbart, M.V.; Brouder, S.; Gitau, M.W.; Bermel, P.; Tuinstra, M.R.; Agrawal, R. Optimized Agrivoltaic Tracking for Nearly-Full Commodity Crop and Energy Production. Renew. Sustain. Energy Rev. 2024, 191, 114018. [Google Scholar] [CrossRef]
- Willockx, B.; Reher, T.; Lavaert, C.; Herteleer, B.; Van de Poel, B.; Cappelle, J. Design and Evaluation of an Agrivoltaic System for a Pear Orchard. Appl. Energy 2024, 353, 122166. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Bruhwyler, R.; Sánchez, H.; Meza, C.; Lebeau, F.; Brunet, P.; Dabadie, G.; Dittmann, S.; Gottschalg, R.; Negroni, J.J. Vertical Agrivoltaics and Its Potential for Electricity Production and Agricultural Water Demand: A Case Study in the Area of Chanco, Chile. Sustain. Energy Technol. Assess. 2023, 60, 103425. [Google Scholar] [CrossRef]
- Sojib Ahmed, M.; Rezwan Khan, M.; Haque, A.; Ryyan Khan, M. Agrivoltaics Analysis in a Techno-Economic Framework: Understanding Why Agrivoltaics on Rice Will Always Be Profitable. Appl. Energy 2022, 323, 119560. [Google Scholar] [CrossRef]
- Chalgynbayeva, A.; Balogh, P.; Szőllősi, L.; Gabnai, Z.; Apáti, F.; Sipos, M.; Bai, A. The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study. Sustainability 2024, 16, 2325. [Google Scholar] [CrossRef]
- Juillion, P.; Lopez, G.; Fumey, D.; Lesniak, V.; Génard, M.; Vercambre, G. Combining Field Experiments under an Agrivoltaic System and a Kinetic Fruit Model to Understand the Impact of Shading on Apple Carbohydrate Metabolism and Quality. Agrofor. Syst. 2024, 98, 2829–2846. [Google Scholar] [CrossRef]
- Jamil, U.; Vandewetering, N.; Sadat, S.A.; Pearce, J.M. Wood- and Cable-Based Variable Tilt Stilt-Mounted Solar Photovoltaic Racking System. Designs 2024, 8, 6. [Google Scholar] [CrossRef]
- Jamil, U.; Vandewetering, N.; Pearce, J.M. Solar Photovoltaic Wood Racking Mechanical Design for Trellis-Based Agrivoltaics. PLoS ONE 2023, 18, e0294682. [Google Scholar] [CrossRef] [PubMed]
- Vandewetering, N.; Jamil, U.; Pearce, J.M. Ballast-Supported Foundation Designs for Low-Cost Open-Source Solar Photovoltaic Racking. Designs 2024, 8, 17. [Google Scholar] [CrossRef]
- Rahman, M.M.; Jamil, U.; Pearce, J.M. Open-Source Photosynthetically Active Radiation Sensor for Enhanced Agricultural and Agrivoltaics Monitoring. Preprints 2025. [Google Scholar] [CrossRef]
- Jamil, U.; Sadat, S.A.; Pearce, J.M. Distributed Manufacturing for Distributed Generation: 3-D Printed Solar Photovoltaic Module Mounting Mechanisms for Wood Racking. Renew. Energy 2024, 228, 120651. [Google Scholar] [CrossRef]
Crop Type | Crop Yield Increase with Agrivoltaics |
---|---|
Celeriac | 31.9%, 48% [34] |
Winter wheat | 3% [35] |
Pasture grass | 90% [36,37] |
Potato | 11% [35] |
Celery | 12% [35] |
Chiltepin pepper | 150% [38] |
Cherry tomato | 90% [38] |
Vine grapes | 25%, 60% [39,40] |
Corn | 4.9% [41] |
Swiss chard | 70% [40,42,43] |
Broccoli | 40% [40,42,43] |
Kale | 25% [40,42,43] |
Common bean | 350% [40,42,43] |
Strawberries | 18% [44,45,46] |
Lettuce | 2%, 3.6% [47,48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, U.; Pearce, J.M. Regenerative Agrivoltaics: Integrating Photovoltaics and Regenerative Agriculture for Sustainable Food and Energy Systems. Sustainability 2025, 17, 4799. https://doi.org/10.3390/su17114799
Jamil U, Pearce JM. Regenerative Agrivoltaics: Integrating Photovoltaics and Regenerative Agriculture for Sustainable Food and Energy Systems. Sustainability. 2025; 17(11):4799. https://doi.org/10.3390/su17114799
Chicago/Turabian StyleJamil, Uzair, and Joshua M. Pearce. 2025. "Regenerative Agrivoltaics: Integrating Photovoltaics and Regenerative Agriculture for Sustainable Food and Energy Systems" Sustainability 17, no. 11: 4799. https://doi.org/10.3390/su17114799
APA StyleJamil, U., & Pearce, J. M. (2025). Regenerative Agrivoltaics: Integrating Photovoltaics and Regenerative Agriculture for Sustainable Food and Energy Systems. Sustainability, 17(11), 4799. https://doi.org/10.3390/su17114799