A Hybrid Approach Combining Scenario Deduction and Type-2 Fuzzy Set-Based Bayesian Network for Failure Risk Assessment in Solar Tower Power Plants
Abstract
1. Introduction
2. Preliminaries
2.1. Bayesian Network
2.2. Interval Type-2 Fuzzy Sets
- (1)
- Addition:
- (2)
- Subtraction:
- (3)
- Multiplication:
- (4)
- Multiplication by crisp number:
3. Research Framework
4. Scenario Deduction
4.1. Analysis of Exemplary Accident Cases in CSPs
4.2. Identification of Critical Scenario States
4.3. Analysis of Scenario Evolution Path
4.4. Determination of Bayesian Network from Scenario Deduction Model
5. Probability Acquisition for the Nodes of BN
5.1. Forming an Expert Group
5.2. Obtaining Prior Probabilities of Basic Nodes in BN
5.2.1. Objective Data
5.2.2. Expert Opinions
- (1)
- Aggregation of expert opinions
- (2)
- Defuzzify the aggregated result
5.3. Obtaining the CPTs of Child Nodes in BN
5.3.1. Acquisition of Expert Opinions
5.3.2. Obtaining the Relative Weights of Parent Nodes Using IT2FS-BWM
5.3.3. Acquiring CPTs Utilizing the Leaky-Weighted Sum Algorithm
6. Accident Consequence Evaluation
6.1. Consequence Evaluation Criteria
6.2. Accident Consequence Evaluation Model
7. Case Study
7.1. Establishing the Scenario Deduction Model and Bayesian Network of the STPP
7.1.1. Scenario Deduction Model of the STPP
7.1.2. Description of Accident Scenario Evolution Path
7.1.3. Determination of the Bayesian Network from Scenario Deduction Model
7.2. Establishing an Expert Group
7.3. Acquiring the Prior Probabilities of the Basic Nodes
7.3.1. Objective Data Collection
7.3.2. Expert Elicitation
7.4. Obtaining the CPTs of the Nodes
7.4.1. Obtaining Experts’ Opinions
7.4.2. Obtaining the Weights of Parent Nodes Utilizing IT2FS-BWM
7.4.3. Utilizing the Leaky-Weighted Sum Algorithm to Calculate the CPTs
8. Results and Discussion
8.1. Failure Probabilities of the Equipment in the STPP
8.2. Importance Analysis of Triggering Factors
8.3. Effectiveness Analysis of Response Measures
8.4. Prediction of Potential Accident Consequences
8.4.1. Effect of Normal Operating Conditions on Accident Consequences
8.4.2. Effect of Response Measures on Accident Consequences
8.4.3. Effect of Accident Scenarios on Accident Consequences
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Solar tower power plant(s) | STPP(s) | Interval type-2 fuzzy number(s) | IT2FN(s) |
Interval type-2 fuzzy set(s) | IT2FS(s) | Conditional probability table(s) | CPT(s) |
Bayesian network(s) | BN(s) | Multi-criteria decision-making | MCDM |
Concentrated solar power | CSP | Upper membership function(s) | UMF(s) |
Analytic hierarchy process | AHP | Lower membership function(s) | LMF(s) |
Analytic network process | ANP | IT2FS-based similarity aggregation method | IT2FS-SAM |
Best–worst method | BWM | IT2FS-based best–worst method | IT2FS-BWM |
Footprint of uncertainty | FOU | Leaky-weighted sum algorithm | Leaky-WSA |
Type-2 fuzzy set(s) | T2FS(s) |
Appendix A. The Prior Probabilities of Basic Nodes in the BN
Node | Day | Occurrence | Failure |
---|---|---|---|
AV1 | 365 | 150 | 0.411 |
AV2 | 365 | 104 | 0.285 |
Node | Operational Time/Year | Occurrence | Failure |
---|---|---|---|
AD1 | 716 | 2 | 0.002789398 |
AD2 | 3 | 0.004181179 | |
AD4 | 1 | 0.001395673 | |
AM1 | 1 | 0.001395673 | |
AF1 | 2 | 0.002789398 | |
PM2 | 1 | 0.001395673 | |
PM1 | 1 | 0.001395673 | |
PF1 | 2 | 0.002789398 | |
PL1 | 1 | 0.001395673 | |
TD12 | 1 | 0.001395673 | |
TM1 | 1 | 0.001395673 | |
TF1 | 2 | 0.002789398 | |
TL1 | 1 | 0.001395673 | |
TL4 | 1 | 0.001395673 | |
ED14 | 7 | 0.009728901 | |
EM1 | 1 | 0.001395673 | |
EL1 | 1 | 0.001395673 | |
EF1 | 2 | 0.002789398 | |
EL4 | 1 | 0.001395673 | |
AR11 | 4 | 0.005571016 | |
AR12 | 2 | 0.002789398 | |
PR11 | 8 | 0.011110996 | |
PR21 | 4 | 0.005571016 | |
PR31 | 1 | 0.001395673 | |
PR42 | 1 | 0.001395673 | |
TR31 | 716 | 1 | 0.001395673 |
ER11 | 8 | 0.011110996 | |
ER12 | 2 | 0.002789398 | |
ER21 | 4 | 0.005571016 | |
ER51 | 1 | 0.001395673 |
Appendix B. The Prior Probabilities of the Nodes in the BN from Experts
Equipment | Precursor Event | Triggering Factor | E1 | E2 | E3 | E4 | E5 | Prior Probability | |
---|---|---|---|---|---|---|---|---|---|
Receiver | A1 | AO-1 | AO1 | H | MH | M | MH | ML | 0.00349715 |
AO2 | L | MH | ML | M | L | 0.00015737 | |||
AO3 | H | H | VH | MH | MH | 0.01425214 | |||
AO4 | M | MH | MH | M | M | 0.00163636 | |||
A2 | AL-2 | AL3 | M | M | MH | VH | MH | 0.00222082 | |
A3 | AD-3 | AD3 | L | M | ML | ML | M | 0.00038526 | |
AL-3 | AL2 | M | H | MH | H | M | 0.00182 | ||
AO-3 | AO4 | M | MH | MH | M | M | 0.00163636 | ||
AO5 | VL | H | M | M | H | 0.0033 | |||
AO7 | ML | MH | H | ML | MH | 0.00139 | |||
AO8 | MH | H | MH | M | L | 0.00328 | |||
AO-3 | AO9 | M | H | MH | MH | M | 0.00261 | ||
AO11 | L | H | H | ML | M | 0.00307 | |||
AO12 | ML | M | ML | M | M | 0.00061346 | |||
A4 | AV-4 | AV3 | L | M | ML | M | ML | 0.00036 |
Equipment | Precursor Event | Triggering Factor | E1 | E2 | E3 | E4 | E5 | Prior Probability | |
---|---|---|---|---|---|---|---|---|---|
Salt piping | P1 | PO-1 | PO1 | H | M | MH | M | MH | 0.00282556 |
PO2 | VL | L | M | ML | L | 5.67 × 10−5 | |||
PO3 | M | M | ML | ML | M | 0.00071557 | |||
PO4 | MH | MH | M | MH | H | 0.00497099 | |||
PO6 | H | H | H | ML | M | 0.00993591 | |||
PD-1 | PD4 | MH | VH | M | H | MH | 0.00685573 | ||
PD5 | M | MH | M | ML | ML | 0.00069663 | |||
Salt piping | P2 | PO-2 | PO4 | MH | MH | M | MH | H | 0.00497099 |
PO7 | L | ML | L | L | ML | 9.13 × 10−5 | |||
PO8 | M | H | M | H | MH | 0.00488282 | |||
PO9 | ML | M | MH | M | L | 0.00058983 | |||
PO11 | ML | M | M | ML | M | 0.00057442 | |||
PO12 | ML | M | ML | M | M | 0.00061346 | |||
P3 | PO-3 | PO4 | MH | MH | M | MH | H | 0.00497099 | |
PO5 | M | ML | VL | L | M | 0.00043572 | |||
PO7 | M | H | MH | H | MH | 0.0072712 | |||
PO8 | L | ML | L | L | ML | 9.13 × 10−5 | |||
PO9 | M | H | M | H | MH | 0.00488282 | |||
PO10 | M | MH | ML | MH | M | 0.00175873 | |||
PO11 | ML | M | M | ML | M | 0.00057442 | |||
PO12 | ML | M | ML | M | M | 0.00061346 | |||
PF-3 | PF2 | M | M | ML | M | ML | 0.00067646 | ||
PD-3 | PD5 | M | MH | M | ML | ML | 0.00069663 | ||
PD6 | MH | M | ML | M | ML | 0.0011461 | |||
PD7 | H | M | MH | M | ML | 0.0035874 | |||
PL-3 | PL2 | L | MH | M | ML | M | 0.00066429 | ||
P4 | PV-4 | PV3 | M | ML | M | MH | M | 0.00016133 |
Equipment | Precursor Event | Triggering Factor | E1 | E2 | E3 | E4 | E5 | Prior Probability | |
---|---|---|---|---|---|---|---|---|---|
Salt tank | T1 | TO-1 | TO4 | M | M | ML | M | L | 0.00065613 |
TO5 | ML | L | M | ML | L | 0.00011925 | |||
TO7 | L | MH | L | M | MH | 0.00070409 | |||
TO8 | L | M | MH | M | ML | 0.00056349 | |||
TO9 | M | L | ML | M | ML | 0.00035527 | |||
TO10 | MH | MH | M | MH | M | 0.00314227 | |||
TO11 | MH | H | MH | M | M | 0.00321713 | |||
TO12 | H | MH | ML | MH | MH | 0.00499926 | |||
TD-1 | TD8 | ML | L | L | M | MH | 0.00015741 | ||
Salt tank | T1 | TD-1 | TD9 | MH | ML | MH | M | M | 0.00150557 |
TD10 | L | L | ML | M | ML | 0.00010829 | |||
TD11 | MH | ML | M | M | ML | 0.00056439 | |||
TD-2 | TD13 | ML | L | L | L | ML | 9.13 × 10−5 | ||
TO-2 | TO4 | M | M | ML | M | L | 0.00065613 | ||
TO5 | ML | L | M | ML | L | 0.00011925 | |||
TO8 | L | M | MH | M | ML | 0.00056349 | |||
TM-2 | TM4 | M | MH | MH | M | ML | 0.00155942 | ||
T3 | TV-3 | TV3 | L | L | ML | M | M | 0.00016133 | |
T4 | TL-4 | TL3 | L | L | ML | M | L | 6.79 × 10−5 |
Equipment | Precursor Event | Triggering Factor | E1 | E2 | E3 | E4 | E5 | Prior Probability | |
---|---|---|---|---|---|---|---|---|---|
Heat exchanger | E1 | EO-1 | EO2 | M | ML | M | MH | M | 0.00090868 |
EO3 | ML | L | ML | M | ML | 0.00019768 | |||
EO4 | H | MH | M | MH | M | 0.00349715 | |||
EM-1 | EM3 | ML | ML | M | L | L | 0.00014309 | ||
E2 | EL-2 | EL3 | M | M | MH | VH | MH | 0.00222082 | |
E3 | EO-3 | EO4 | H | MH | M | MH | M | 0.00349715 | |
EO8 | ML | M | M | ML | ML | 0.00035227 | |||
E4 | EO-4 | EO9 | VL | M | L | ML | M | 0.00037826 | |
EO10 | M | H | MH | MH | H | 0.0078315 | |||
EO12 | L | MH | ML | H | M | 0.001075 | |||
EL-4 | EL2 | ML | M | MH | M | MH | 0.00132528 | ||
EO-4 | EO4 | H | MH | M | MH | M | 0.00349715 | ||
EO5 | M | MH | MH | MH | M | 0.00249917 | |||
EO7 | MH | H | MH | ML | M | 0.00364236 | |||
EO8 | ML | M | M | ML | ML | 0.00035227 | |||
EO9 | VL | M | L | ML | M | 0.00037826 | |||
O10 | M | H | MH | MH | H | 0.0078315 | |||
EO11 | L | MH | M | MH | ML | 0.0013009 | |||
Heat exchanger | E5 | EL-5 | EL3 | M | M | MH | VH | MH | 0.00222082 |
E6 | EV-6 | EV3 | L | L | ML | M | M | 0.00016133 |
Equipment | Node | E1 | E2 | E3 | E4 | E5 | Prior Probability |
---|---|---|---|---|---|---|---|
Receiver | AR21 | H | M | MH | M | H | 0.00483352 |
AR22 | VL | L | M | ML | L | 5.67 × 10−5 | |
Salt piping | PR31 | L | L | ML | M | ML | 0.00010829 |
PR32 | H | M | MH | M | H | 0.00483352 | |
PR41 | VL | L | M | ML | L | 5.67 × 10−5 | |
Salt tank | TR11 | MH | H | MH | M | M | 0.00321713 |
TR12 | VL | L | M | ML | L | 5.67 × 10−5 | |
TR21 | H | M | MH | M | H | 0.00483352 | |
TR32 | VL | L | M | ML | L | 5.67 × 10−5 | |
TR41 | M | H | H | ML | L | 0.00347908 | |
Heat exchanger | ER31 | H | M | MH | M | H | 0.00483352 |
ER32 | VL | L | M | ML | L | 5.67 × 10−5 | |
ER41 | M | H | H | ML | L | 0.00347908 |
Appendix C. The CPT of the “AO-1” Node
AO1 | AO2 | AO3 | AO4 | Operation Issues | |
y | n | ||||
y | y | y | y | 0.741509434 | 0.258490566 |
y | y | y | n | 0.681659998 | 0.318340002 |
y | y | n | y | 0.531090857 | 0.468909143 |
y | y | n | n | 0.478316893 | 0.521683107 |
y | n | y | y | 0.677831259 | 0.322168741 |
y | n | y | n | 0.617981823 | 0.382018177 |
y | n | n | y | 0.474488154 | 0.525511846 |
y | n | n | n | 0.414638718 | 0.585361282 |
n | y | y | y | 0.596682037 | 0.403317963 |
n | y | y | n | 0.536832601 | 0.463167399 |
n | y | n | y | 0.393338931 | 0.606661069 |
n | y | n | n | 0.333489495 | 0.666510505 |
n | n | y | y | 0.533003862 | 0.466996138 |
n | n | y | n | 0.473154426 | 0.526845574 |
n | n | n | y | 0.329660757 | 0.670339243 |
n | n | n | n | 0.269811321 | 0.730188679 |
Appendix D. Failure-Induced Consequences of Critical Equipment
Node | Level | Direct Economic Losses (C1) | Casualties (C2) | Equipment Damage (C3) |
AS1 = T (Receiver) | I | 37% | 49% | 27% |
II | 45% | 38% | 58% | |
III | 18% | 13% | 13% | |
IV | 0% | 0% | 2% | |
PS1 = T (Salt piping) | I | 62% | 48% | 16% |
II | 37% | 34% | 37% | |
III | 1% | 18% | 42% | |
IV | 0% | 0% | 5% | |
TS1 = T (Salt tank) | I | 16% | 38% | 0% |
II | 30% | 52% | 8% | |
III | 45% | 10% | 19% | |
IV | 9% | 0% | 73% | |
ES1 = T (Heat exchanger) | I | 31% | 48% | 41% |
II | 51% | 35% | 58% | |
III | 18% | 17% | 1% | |
IV | 0% | 0% | 0% |
References
- China Solar Thermal Alliance (CSTA). Blue Book of China’s Concentrating Solar Power Industry 2024; China Solar Thermal Alliance: Beijing, China, 2025; Available online: http://www.cnste.org (accessed on 3 April 2025).
- Mehos, M.; Price, H.; Cable, R.; Kearney, D.; Kelly, B.; Kolb, G.; Morse, F. Concentrating Solar Power Best Practices Study; National Renewable Energy Laboratory: Golden, CO, USA, 2020; NREL/TP-5500-75763. Available online: https://docs.nrel.gov/docs/fy20osti/75763.pdf (accessed on 19 December 2024).
- Reilly, H.E.; Kolb, G.J. An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project; Sandia National Laboratories: Albuquerque, NM, USA, 2002; SAND2002-0120. [Google Scholar]
- CSPPLAZA Solar Thermal Power Network. Global Accidents Summary of Concentrated Solar Power Plants: Preventive Measures for Domestic Demonstration Projects. 2017. Available online: https://www.cspplaza.com/article-9101-1.html/ (accessed on 10 March 2017).
- National Energy Administration (NEA). Notice from the General Office of the National Energy Administration on Conducting Safety Inspections for Molten Salt Thermal Storage and Other Integrated Energy Utilization Projects. 2023. Available online: https://zfxxgk.nea.gov.cn/2023-05/17/c_1310720738.htm (accessed on 7 January 2025).
- CSPPLAZA Solar Thermal Power Network. The Noor Ouarzazate Phase III Concentrated Solar Power Plant in Morocco Has Officially Resumed Operations. 2024. Available online: https://www.cspplaza.com/article-27909-1.html (accessed on 12 February 2025).
- Prieto, C.; Ruiz-Cabañas, F.J.; Madina, V.; Fernández, A.I.; Cabeza, L.F. Corrosion performance of alloy 800H and alloy 625 for potential use as molten salts solar receiver materials in concentrating solar power tower plants. J. Energy Storage 2022, 55, 105824. [Google Scholar] [CrossRef]
- Wan, Z.J.; Fang, J.B.; Tu, N.; Wei, J.J.; Qaisrani, M.A. Numerical study on thermal stress and cold startup induced thermal fatigue of a water/steam cavity receiver in concentrated solar power (CSP) plants. Sol. Energy 2018, 170, 430–441. [Google Scholar] [CrossRef]
- Gonzalez-Gomez, P.A.; Rodriguez-Sanchez, M.R.; Laporte-Azcue, M.; Santana, D. Calculating molten-salt central-receiver lifetime under creep-fatigue damage. Sol. Energy 2020, 213, 180–197. [Google Scholar] [CrossRef]
- Lau, M.Y.; Liu, Y.M.; Kaber, D.B. Consequence severity-probability importance measure for fault tree analysis. Int. J. Syst. Assur. Eng. Manag. 2023, 15, 854–870. [Google Scholar] [CrossRef]
- Yang, D.D.; Xing, K.X.; Pan, L.D.; Li, N.; Yu, J.X. Sustainable risk management framework for petroleum storage facilities: Integrating bow-tie analysis and dynamic Bayesian networks. Sustainability 2025, 16, 2642. [Google Scholar] [CrossRef]
- Hefaidh, H.; Djebabra, M.B. A conceptual framework for risk matrix capitalization. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 755–764. [Google Scholar] [CrossRef]
- Wang, D.; Wan, K.; Ma, W. Emergency decision-making model of environmental emergencies based on case-based reasoning method. J. Environ. Manag. 2020, 262, 110382. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.F.; Hu, Y.C.; Zhang, Y.L.; Zuo, T.; Wang, J.H.; Fan, S.J. Evaluation on consequences prediction of fire accident in emergency processes for oil-gas storage and transportation by scenario deduction. J. Loss Prev. Process Ind. 2021, 72, 104570. [Google Scholar] [CrossRef]
- She, J.; Guo, Z.; Li, Z.; Liang, S.; Zhou, Y. Research on scenario deduction and emergency decision-making evaluation for construction safety accidents. Reliab. Eng. Syst. Saf. 2024, 251, 110317. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, M.X.; Yang, K.; Sun, S.H. Scenario derivation and consequence evaluation of dust explosion accident based on dynamic Bayesian network. J. Loss Prev. Process Ind. 2023, 83, 105055. [Google Scholar] [CrossRef]
- Tang, M.; Zeng, H.; Wang, K. Bayesian water quality evaluation model based on generalized triangular fuzzy number and its application. Environ. Process 2022, 9, 6. [Google Scholar] [CrossRef]
- Yaşlı, F.; Bolat, B. A novel risk analysis approach for occupational safety using Bayesian network and interval type-2 fuzzy sets: The case of underground mining. J. Intell. Fuzzy Syst. 2022, 42, 265–282. [Google Scholar] [CrossRef]
- Tang, J.; Liu, X.W.; Wang, W.Z. COVID-19 medical waste transportation risk evaluation integrating type-2 fuzzy total interpretive structural modeling and Bayesian network. Expert. Syst. Appl. 2023, 213, 118885. [Google Scholar] [CrossRef]
- Liu, J.W.; Li, X.F.; Zhang, Y.X.; Li, T.; Wei, L.P.; Wu, W. Failure risk assessment by multi-state dynamic Bayesian network based on interval type-2 fuzzy sets and leaky-weighted sum algorithm: A case study of crude oil pipelines. Expert. Syst. Appl. 2024, 250, 123942. [Google Scholar] [CrossRef]
- Erol, H.; Dikmen, I.; Atasoy, G.; Birgonul, M. An analytic network process model for risk quantification of mega construction projects. Expert. Syst. Appl. 2021, 191, 116215. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 2016, 64, 126–130. [Google Scholar] [CrossRef]
- Li, Z.; Xing, Y.P.; Dong, P. A novel q-rung orthopair fuzzy best-worst method, Shannon entropy and MARCOS method for mobile medical app service quality evaluation. Appl. Soft. Comput. 2024, 155, 111417. [Google Scholar] [CrossRef]
- He, J.M.; Wu, Y.N.; Yong, X.K.; Ke, Y.M.; Tan, Q.L.; Liu, F.T. Lifecycle risk assessment on the sustainable development of upgrading energy projects using abandoned mines: An ISM-BWM method. Sustain. Energy Technol. Assess. 2022, 54, 102833. [Google Scholar] [CrossRef]
- Pearl, J. Fusion, propagation, and structuring in belief networks. Artif. Intell. 1986, 29, 241–288. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning. In Learning Systems and Intelligent Robots; Fu, K.S., Tou, J.T., Eds.; Springer: Boston, MA, USA, 1974; pp. 1–10. [Google Scholar] [CrossRef]
- Mendel, J.M. Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Mendel, J.M.; Rajati, M.R.; Sussner, P. On clarifying some definitions and notations used for type-2 fuzzy sets as well as some recommended changes. Inf. Sci. 2016, 340–341, 337–345. [Google Scholar] [CrossRef]
- Aisbett, J.; Rickard, J.T.; Morgenthaler, D.G. Type-2 fuzzy sets as functions on spaces. IEEE Trans. Fuzzy Syst. 2010, 18, 841–844. [Google Scholar] [CrossRef]
- Han, S.L.; Wang, W.; Liu, X.W. A new type-2 fuzzy multi-criteria hybrid method for rail transit operation safety assessment. Appl. Soft. Comput. 2021, 113, 107927. [Google Scholar] [CrossRef]
- Prieto, C.; Osuna, R.; Fernández, A.I.; Cabeza, L.F. Thermal storage in a MW scale. Molten salt solar thermal pilot facility: Plant description and commissioning experiences. Renew. Energy 2016, 99, 852–866. [Google Scholar] [CrossRef]
- Litwin, R. Receiver System: Lessons Learned from Solar Two; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2002. [Google Scholar] [CrossRef]
- Peiro, G.; Prieto, C.; Gasia, J.; Jove, A.; Miro, L.; Cabeza, L.F. Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renew. Energy 2018, 121, 236–248. [Google Scholar] [CrossRef]
- Guijarro-Gil, M.J.; Botejara-Antúnez, M.; Díaz-Parralejo, A.; García-Sanz-Calcedo, J. Selection of Sol-Gel Coatings by the Analytic Hierarchy Process and Life Cycle Assessment for Concentrated Solar Power Plants. Sustainability 2025, 17, 2449. [Google Scholar] [CrossRef]
- Ramzali, N.; Lavasani, M.R.M.; Ghodousi, J. Safety barriers analysis of offshore drilling system by employing fuzzy event tree analysis. Saf. Sci. 2015, 78, 49–59. [Google Scholar] [CrossRef]
- Yu, J.X.; Ding, H.Y.; Yu, Y.; Wu, S.B.; Zeng, Q.Z.; Ma, W.T. A novel risk analysis approach for FPSO single point mooring system using Bayesian network and interval type-2 fuzzy sets. Ocean Eng. 2022, 266, 113144. [Google Scholar] [CrossRef]
- Ghorabaee, M.K.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Comput. Ind. Eng. 2017, 112, 156–174. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wang, S.; Liu, Q.; Liu, D.P.; Yang, Y.; Dan, Y.; Wu, W. Failure risk assessment of coal gasifier based on the integration of Bayesian network and trapezoidal intuitionistic fuzzy number-based similarity aggregation method (TpIFN-SAM). Processes 2022, 10, 1863. [Google Scholar] [CrossRef]
- Celik, E.; Gul, M.; Aydin, N.; Gumus, A.T.; Guneri, A.F. A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowl.-Based Syst. 2015, 85, 329–341. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, L.G.; Chen, Y.; Chen, H.Y. An integrated approach to green supplier selection based on the interval type-2 fuzzy best-worst and extended VIKOR methods. Inf. Sci. 2019, 502, 394–417. [Google Scholar] [CrossRef]
- Celik, E. Analyzing the shelter site selection criteria for disaster preparedness using best–worst method under interval type-2 fuzzy sets. Sustainability 2024, 16, 2127. [Google Scholar] [CrossRef]
- Das, B. Generating conditional probabilities for Bayesian networks: Easing the knowledge acquisition problem. arXiv 2004, arXiv:cs/0411034. [Google Scholar]
- Baker, S.; Mendes, E. Assessing the weighted sum algorithm for automatic generation of probabilities in Bayesian networks. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 867–873. [Google Scholar] [CrossRef]
- Farsi, H.; Dizene, R.; Flamant, G.; Notton, G. Multi-criteria decision making methods for suitable site selection of concentrating solar power plants. Sustainability 2024, 16, 7673. [Google Scholar] [CrossRef]
- OREDA Project Joint Industry Project. Offshore and Onshore Reliability Data (OREDA Handbook), 6th ed.; DNV AS: Oslo, Norway, 2015; Available online: https://oredata.com/ (accessed on 5 December 2024).
- American Petroleum Institute (API). API Recommended Practice 581: Risk-Based Inspection Technology. United States. 2016. Available online: https://www.api.org/ (accessed on 29 October 2024).
- Niu, D.S.; Zhou, Z.; Xiao, B.; Zhao, L. Research progress on anti-freezing of molten salt pipeline systems in parabolic trough solar thermal power plants. Therm. Power Gener. 2019, 49, 63–86. [Google Scholar] [CrossRef]
- CSPPLAZA Solar Thermal Power Network. Seven Root Cause Analysis of Molten Salt Leakage Accident at Crescent Dunes Solar Thermal Power Plant. 2016. Available online: https://guangfu.bjx.com.cn/news/20161207/794644.shtml (accessed on 2 February 2025).
- Ye, D.; Zheng, W.; Li, F.; Guo, H.; Zeng, X.; Cai, J. Failure mechanisms and mitigation strategies for leakage in high-temperature molten salt storage tanks. Equip. Manag. Maint. 2023, 57, 149–151. [Google Scholar] [CrossRef]
NO. | Date | CSP Plant | Accident Type | Accident Cause | Consequence |
---|---|---|---|---|---|
1 | 1996.06 | The Solar Two Project [3] | Cracking of absorber tube | Receiver blockage | Five months of downtime |
2 | 2010.02 | La Dehesa Solar Thermal Power Plant [4] | Molten salt splashing | Operational mistake | Six people injured |
3 | 2015.01 | Solana Solar Power Plant [4] | Two fires occurred within three months | Thermal energy storage system failure | Power plant shutdown |
4 | 2016.05 | Luanpah Tower 3 Solar Thermal Power Plant [4] | Fire | Improper mirror field focusing | Temporary shutdown of the power plant |
5 | 2016.07 | Gemasolar Solar Thermal Power Plant [4] | Molten salt tank leakage | Design issues of storage tank foundation | Repair costs exceeding EUR 9 million, leading to bankruptcy |
6 | 2016.10 | Crescent Dunes [4] | Small-scale tank leakage | Weld quality | USD 4 million electricity sales loss, bankruptcy |
7 | 2023.05 | Fenghe Molten Salt Thermal Energy Storage Project [5] | Bursting of high-temperature molten salt | Molten salt | 1 fatality and 13 injuries |
8 | 2024.11 | Noor 150 MW [6] | Molten salt tank leakage | Operations and maintenance | USD 47 million electricity sales loss |
Category | Classification | Score |
---|---|---|
Job title | Senior Executive | 10 |
Professor | 8 | |
Engineer | 6 | |
Worker | 4 | |
Student | 2 | |
Working years | ≥30 years | 10 |
15–28 years | 8 | |
Working years | 7–15 years | 6 |
3–7 years | 4 | |
≤3 years | 2 | |
Education level | Doctor | 10 |
Master | 8 | |
Bachelor | 6 | |
Higher National Diploma | 4 | |
School level | 2 | |
Age | ≥50 | 8 |
40–49 | 6 | |
30–39 | 4 | |
<30 | 2 | |
Familiarity | Very familiar | 10 |
Quite familiar | 8 | |
Moderately familiar | 4 | |
Basic familiarity | 2 |
Pairwise Linguistic Term | Crisp Number | Corresponding Comparison IT2FNs |
---|---|---|
Completely equal importance (CEI) | 1 | ((1, 1,1, 1, 1, 1), (1, 1, 1, 1, 0.9, 0.9)) |
Weak importance (WI) | 2 | ((1, 2, 2, 3; 1, 1), (1.5, 2, 2, 2.5; 0.9, 0.9)) |
Moderate importance (MI) | 3 | ((2, 3, 3, 4; 1, 1), (2.5, 3, 3, 3.5; 0.9, 0.9)) |
Moderate plus importance (MPI) | 4 | ((3, 4, 4, 5; 1, 1), (3.5, 4, 4, 4.5; 0.9, 0.9)) |
Strong importance (SI) | 5 | ((4, 5, 5, 6; 1, 1), (4.5, 5, 5, 5.5; 0.9, 0.9)) |
Strong plus importance (SPI) | 6 | ((5, 6, 6, 7; 1, 1), (5.5, 6, 6, 6.5; 0.9, 0.9)) |
Very strong importance (VSI) | 7 | ((6, 7, 7, 8; 1, 1), (6.5, 7, 7, 7.5; 0.9, 0.9)) |
Extreme importance (EI) | 8 | ((7, 8, 8, 9; 1, 1), (7.5, 8, 8, 8.5; 0.9, 0.9)) |
Extreme more importance (EMI) | 9 | ((8, 9, 9, 10; 1, 1), (8.5, 9, 9, 9.5; 0.9, 0.9)) |
Accident Severity | Direct Economic Losses (C1) | Casualties (C2) | Equipment Damage (C3) | Level |
---|---|---|---|---|
General accident | Economic ≤ RMB 10 million | Injured: 0 ≤ Person < 10 or death: 0 ≤ Person < 3 | No repair required | I |
Major accident | RMB 10 million ≤ Economic < RMB 50 million | Injured: 10 ≤ Person < 30 or death: 3 ≤ Person < 10 | Shutdown and inspection | II |
Heavy accident | RMB 50 million ≤ Economic < RMB 100 million | Injured: 30 ≤ Person < 100 or death: 10 ≤ Person < 30 | Start backup | III |
Mega accident | Economic ≥ RMB 100 million | Injured: Person ≥ 100 or death: Person ≥ 30 | Prolonged shut-down | IV |
Symbol | Triggering Factors | ||||
---|---|---|---|---|---|
Meaning | Node | Meaning | Node | Meaning | |
D | Design issues | D1 | Failure of the control system | D2 | Design of the receiver |
D3 | Spot control | D4 | Improper insulation design improper of the discontinuous areas | ||
D5 | Improper design of the piping structure | D6 | Excessive design of the measurement points | ||
D7 | Improper design of the piping support | D8 | Oversizing risk of the tank | ||
D9 | Restricted of the thermal expansion | D10 | Stress concentration | ||
D11 | Incomplete standards of the salt tank design | D12 | Improper structural design of the tank foundation | ||
D13 | Tank foundation location issues | D14 | Improper structural design of the heat exchanger | ||
F | Installation issues | F1 | Poor quality of the weld | F2 | Flange of loosening at measurement point |
O | Operation issues | O1 | Incomplete salt drainage in the evening | O2 | Insufficient molten salt flow rate |
O3 | Insufficient preheating in the morning | O4 | Large transient temperature fluctuations | ||
O5 | Fatigue failure | O6 | Delayed heating startup | ||
O7 | Operating conditions not met for long-term | O8 | Local overtemperature | ||
O9 | Thermal stress | O10 | Frequent start-stop | ||
O11 | overpressure | O12 | Thermal shock | ||
M | Maintenance issues | M1 | Lack of routine maintenance | M2 | Measurement instrument fault |
M3 | Damage of the insulation material | M4 | Failure of the tank foundation heat dissipation system | ||
L | Medium issues | L1 | Molten salt corrosion | L2 | Erosion of the molten salt |
L3 | Impurities of the molten salt | L4 | Degradation of the molten salt | ||
V | Environment issues | V1 | Intermittent cloud cover | V2 | Extreme weather |
V | Environment issues | V3 | Combustible materials of the surrounding area |
Equipment | Precursor Events | |||
---|---|---|---|---|
Node | Meaning | Node | Meaning | |
Receiver | A1 | Freezing of the molten salt | A3 | Cracking of the absorbing tubes |
A2 | Accumulation of the impurities | A4 | Fire hazard | |
Salt piping | P1 | Freezing of the absorbing tubes | P3 | Seals failure |
P2 | Obstructed flow of the molten salt | P4 | Fire hazard | |
Salt tank | T1 | Tank cracking | T3 | Fire hazard |
T2 | Damage of the tank foundation | T4 | Explosion hazard | |
Heat exchanger | E1 | Freezing of the molten salt | E4 | Cracking of heat exchanger tube bundles |
E2 | Accumulation of the impurities | E5 | Explosion hazard | |
E3 | Obstructed flow of the molten salt | E6 | Fire hazard |
Equipment | Accident Scenarios | |||
---|---|---|---|---|
Node | Meaning | Node | Meaning | |
Receiver | AS1 | Blockage of the receiver | AS3 | Fire |
AS2 | Leakage of the receiver | |||
Salt piping | PS1 | Blockage of the salt piping | PS3 | Leakage of the salt piping |
PS2 | Turbulence of the salt piping | PS4 | Fire | |
Salt tank | TS1 | Leakage of the salt tank | TS3 | Fire |
TS2 | Failure of the salt tank foundation | TS4 | Explosion | |
Heat exchanger | ES1 | Blockage of the heat exchanger | ES4 | Explosion |
ES2 | Turbulence of the heat exchanger | ES5 | Fire | |
ES3 | Leakage of the heat exchanger |
Equipment | Response Measures | |||
---|---|---|---|---|
Node | Meaning | Node | Meaning | |
Receiver | AR1 | Response measures | AR11 | Heliostats tracking |
AR12 | Routine cleaning | |||
AR2 | AR21 | Measures of the leakage prevention | ||
AR22 | Emergency shutdown | |||
AR3 | AR31 | Measures of the firefighting | ||
Salt piping | PR1 | Response measures | PR11 | Measures of the heating trace |
PR2 | PR21 | Adjusting valve | ||
PR3 | PR31 | Start backup | ||
PR32 | Measures of the leakage prevention | |||
PR4 | PR41 | Emergency shutdown | ||
PR42 | Measures of the firefighting | |||
Salt tank | TR1 | TR11 | Transfer of molten salt | |
TR12 | Emergency shutdown | |||
TR2 | TR21 | Prevention measures of leakage | ||
TR3 | TR31 | Measures of the freighting | ||
TR32 | Emergency shutdown | |||
TR4 | TR41 | Set up isolation zone | ||
Heat exchanger | ER1 | ER11 | Measures of the heating trace | |
ER12 | Routine cleaning | |||
ER2 | ER21 | Adjusting valve | ||
ER3 | ER31 | Prevention measures of leakage | ||
ER32 | Emergency shutdown | |||
ER4 | ER41 | Set up isolation zone | ||
ER5 | ER51 | Measures of the firefighting |
No. | Job Title | Working Years | Education Level | Familiarity | Weighted Values | Weighting Factor |
---|---|---|---|---|---|---|
E1 | Senior executive | 15–28 | PhD | Quite familiar | 36 | 0.273 |
E2 | Professor | 10–15 | PhD | Very familiar | 36 | 0.273 |
E3 | Engineer | 3–7 | PhD | Moderately familiar | 26 | 0.197 |
E4 | Worker | <3 | Bachelor | Very familiar | 20 | 0.152 |
E5 | Student | <3 | Master | Moderately familiar | 14 | 0.106 |
Node | Expert | Judgment | IT2FNs |
---|---|---|---|
AO4 | E1 | M | ((0.3, 0.5, 0.5, 0.7; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.9, 0.9)) |
E2 | MH | ((0.5, 0.7, 0.7, 0.9; 1, 1), (0.6, 0.7, 0.7, 0.8; 0.9, 0.9)) | |
E3 | MH | ((0.5, 0.7, 0.7, 0.9; 1, 1), (0.6, 0.7, 0.7, 0.8; 0.9, 0.9)) | |
E4 | M | ((0.3, 0.5, 0.5, 0.7; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.9, 0.9)) | |
E5 | M | ((0.3, 0.5, 0.5, 0.7; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.9, 0.9)) |
Expert | Linguistic Vector | Criterion | |||
---|---|---|---|---|---|
AO1 | AO2 | AO3 | AO4 | ||
E1 | Best (AO1)-to-others | CEI | VSI | SI | MPI |
Others-to-worst (AO2) | VSI | CEI | MI | MPI | |
E2 | Best (AO1)-to-others | CEI | MI | SPI | MPI |
Others-to-worst (AO2) | SPI | CEI | WI | MI | |
E3 | Best (AO1)-to-others | CEI | MI | WI | MPI |
Others-to-worst (AO4) | MPI | WI | MI | CEI | |
E4 | Best (AO3)-to-others | WI | SPI | CEI | MI |
Others-to-worst (AO2) | SI | CEI | SPI | MPI | |
E5 | Best (AO1)-to-others | CEI | VSI | WI | SI |
Others-to-worst (AO2) | VSI | CEI | MPI | MI |
s = y | s = n | |
---|---|---|
P (AO-1 = y|comp = s) P (AO-1 = n|comp = s) | 0.8736 | 0.296 |
0.1274 | 0.705 |
s = y | s = n | |
---|---|---|
P (AO-1 = y|comp = s) P (AO-1 = n|comp = s) | 0.7136 | 1.5789 |
0.2864 | 0.8211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wu, W.; Li, X.; Li, Y.; Gong, X.; Zhang, S.; Ma, R.; Liu, X.; Zou, M. A Hybrid Approach Combining Scenario Deduction and Type-2 Fuzzy Set-Based Bayesian Network for Failure Risk Assessment in Solar Tower Power Plants. Sustainability 2025, 17, 4774. https://doi.org/10.3390/su17114774
Li T, Wu W, Li X, Li Y, Gong X, Zhang S, Ma R, Liu X, Zou M. A Hybrid Approach Combining Scenario Deduction and Type-2 Fuzzy Set-Based Bayesian Network for Failure Risk Assessment in Solar Tower Power Plants. Sustainability. 2025; 17(11):4774. https://doi.org/10.3390/su17114774
Chicago/Turabian StyleLi, Tao, Wei Wu, Xiufeng Li, Yongquan Li, Xueru Gong, Shuai Zhang, Ruijiao Ma, Xiaowei Liu, and Meng Zou. 2025. "A Hybrid Approach Combining Scenario Deduction and Type-2 Fuzzy Set-Based Bayesian Network for Failure Risk Assessment in Solar Tower Power Plants" Sustainability 17, no. 11: 4774. https://doi.org/10.3390/su17114774
APA StyleLi, T., Wu, W., Li, X., Li, Y., Gong, X., Zhang, S., Ma, R., Liu, X., & Zou, M. (2025). A Hybrid Approach Combining Scenario Deduction and Type-2 Fuzzy Set-Based Bayesian Network for Failure Risk Assessment in Solar Tower Power Plants. Sustainability, 17(11), 4774. https://doi.org/10.3390/su17114774