The Cost-Effectiveness of Renewable Energy Sources in the European Union’s Ecological Economic Framework
Abstract
1. Introduction
- Assess the structure of electricity generation costs.
- Determine the global weighted average cost of capital (WACC) for onshore wind.
- What are the costs of renewable energy production?
- What is the structure of electricity generation costs?
2. Literature Review
2.1. Ecological Economics
2.2. Competitiveness of RES
3. Materials and Methods
3.1. Data Sources
3.2. Methods
- where:
- LCOE—levelized cost of electricity over the lifetime of an energy asset, expressed in USD/KWh.
- t—time interval, usually one year; t = 0 is the first year of investment.
- T—lifespan of the system.
- —capital expenditures in year t.
- —operating expenses and financial costs in year t.
- —energy output in year t [KWh].
- —discount rate (cost of capital).
- —total fuel expenses in year t.
4. Results
Capital Expenditures in Renewable Energy
- where:
- EQ—market value of equity [€].
- DB—market value of debt [€].
- ROE—annual return on equity.
- RDB—annual return on debt [60].
- Generation III+ water-cooled nuclear reactors (Gen III+ nuclear).
- Biomass power plants (BM).
- Onshore wind farms.
- Offshore wind farms.
- Solar photovoltaic plants (PV) [72].
5. Discussion
- Nations have the right to own, manage, and use natural resources, but also the duty to prevent environmental harm and protect the rights of people.
- Environmental conservation and rehabilitation are integral to all development initiatives.
- Nations have common but differentiated responsibilities for protecting and restoring ecosystem health.
- Non-sustainable patterns of production and consumption should be eliminated, and responsible demographic policies should be promoted.
- Everyone has the right to receive information on environmental matters and participate in the decision-making process.
- Effective environmental laws and standards that meet human development needs should be implemented.
- Nations should collaborate to prevent the spread of hazardous activities and substances to other countries.
- A precautionary approach should be applied to address environmental issues, and countries affected by environmental degradation should receive assistance.
- A real-time notification system for alerting other countries about real or potential environmental emergencies should be established.
- Environmental disputes should be resolved peacefully.
- International environmental law should be observed during armed conflict.
- The natural environment and natural resources should be protected in territories that are oppressed or occupied by hostile forces [114].
6. Conclusions
- Biomass plants have the lowest capital expenditure. Nonetheless, biomass plants are the only renewable energy installations necessitating fuel procurement, and when factoring in fuel costs, onshore (EUR 93.6/MWh) and offshore wind farms (EUR 122.4/MWh) have the lowest generation expenses.
- The anticipated reduction in capital costs for solar PV is projected to go from $810/kW in 2021 to $360/kW in 2050. The power factor is expected to stay consistent at 14% throughout the period under review. Throughout the analysis, at the three time points (2021, 2030, and 2050), the expenses for fuel, CO2, and O&M will stay constant at USD 10/MWh. Meanwhile, the LCOE will drop from USD 50/MWh in 2021 to USD 25/MWh in 2050. The factors that have an impact on solar PV LCOE are financial parameters, nominal WACC, and inflation, with location also having a smaller impact [52].
- The costs for capital investments in onshore wind power will decrease from USD 1590/kW in 2021 to USD 1410/kW in 2050. The power factor is set to rise from 29% to 30%, with fuel, CO2, and O&M expenses remaining at USD 15/MWh each year. The LCOE is set to drop from $55/MWh in 2021 to $45/MWh in 2050.
- Installation costs decreased significantly in onshore and offshore wind farms, with onshore wind seeing a 35% decrease and offshore wind seeing a 41% decrease. The LCOE also dropped by 68% in onshore and 60% in offshore wind farms, while efficiency increased by 44% in onshore and only 3% in offshore projects.
- Solar PV installations are considered to be the cheapest form of electricity generation. Solar installations located on rooftops and battery storage are the most popular solutions in many countries of the European Union (EU) [62].
7. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
APS | Announced Pledges Scenario |
ARE | Energy Market Agency |
BIGCC | Biomass integrated gasification combined cycle, |
CAPEX | Capital expenditures |
CO2 | Carbon dioxide |
DB | Market value of debt |
EE | Ecological economics |
EGD | European Green Deal |
ERE | Environmental resource economics |
EQ | Market value of equity |
EU ETS | EU Emissions Trading System |
FOM | Fixed Operations and Maintenance |
GHG | Greenhouse gases |
GWP | Global warming potential |
IEA | International Energy Association |
IRENA | International Renewable Energy Agency |
JTF | Just Transition Fun |
KW | Kilowatt |
LCA | Life cycle assessment |
LCOE | Levelized cost of electricity |
LCOD | Levelized cost of delivery, |
LCOH | Levelized cost of hydrogen |
LFSCOE | Levelized Full System Costs of Electricity |
MWh | Megawatt-hour |
NDCs | National Defined Contributions |
O&M | Operation and maintenance costs |
RDB | Annual return on debt |
RES | Renewable energy sources |
ROE | Annual return on equity |
SCF | Social Climate Fund |
USD | United States Dollar |
VAT | Value Added Tax |
VOM | Variable Operations and Maintenance |
WACC | Weighted Average Cost of Capital |
References
- Jung, J.; Villaran, M. Optimal planning and design og hybrid renewable energy systems for microgrids. Renew. Sustain. Energy Rev. 2017, 75, 180–191. [Google Scholar] [CrossRef]
- Mowers, M.; Mignone, B.K.; Steinberg, D.C. Quantifying value and representing competitiveness of electricity system technologies in economic models. Appl. Energy 2023, 329, 120132. [Google Scholar] [CrossRef]
- Choi, D.G.; Park, S.Y.; Park, N.-B.; Homg, J.C. Is the concept of ‘grid parity’ defined appropriately to evaluate the cost-competitiveness of renewable energy technologies? Energy Policy 2015, 86, 718–728. [Google Scholar] [CrossRef]
- Gan, P.Y.; Li, Z. Quantitative study on long term global solar photovoltaic market. Renew. Sustain. Energy Rev. 2015, 46, 88–99. [Google Scholar] [CrossRef]
- European Photovoltaic Industry Associations (EPIA). Solar Photovoltaic Competing in the Energy Sector 2011. Available online: http://www.epia.org/publication/epiapublications/connectingthesun.html (accessed on 13 December 2024).
- Ruhang, X. Characteristics and perspective of China’s PV development route: Based on data of world PV industry 2000–2010. Renew. Sustain. Energy Rev. 2016, 56, 1032–1043. [Google Scholar] [CrossRef]
- Bórawski, P.; Holden, L.; Bełdycka-Bórawska, A. Perspectives of photovoltaic energy market development in the European Union. Energy 2023, 270, 126804. [Google Scholar] [CrossRef]
- Chel, A.; Kaushik, G. Renewable energy technologies for sustainable development of energy efficient building. Alex Eng. J. 2018, 57, 655–669. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, A.; Serrano-Gonzalez, J.; Burgos-Payan, M.; Riquelme-Santos, J. Multi-objective optimalization od a uniformly distributed offshore wind farm considering both economic factors and visual impact. Sustain. Energy Technol. Assess. 2022, 52, 102148. [Google Scholar] [CrossRef]
- Pillai, A.C.; Chick, J.; Khorasanchi, M.; Barbouchi, S.; Johanning, L. Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm. Ocean. Eng. 2017, 139, 287–297. [Google Scholar] [CrossRef]
- Bórawski, P.; Bełdycka-Bórawska, A.; Jankowski, K.J.; Dubis, B.; Dunn, J.W. Development of wind energy market in the European Union. Renew. Energy 2020, 161, 691–700. [Google Scholar] [CrossRef]
- Kupczyk, A.; Mączyńska, J.; Sikora, M.; Tucki, K.; Żelaziński, T. Stan i perspektywy oraz uwarunkowania prawne funkcjonowania sektorów biopaliw transportowych w Polsce. Rocz. Nauk. Ekon. Rol. Rozw. Obsz. Wiej. 2017, 104, 39–55. [Google Scholar]
- Bórawski, P.; Holden, L.; Bórawski, M.B.; Mickiewicz, B. Perspectives of Biodiesel Development in Poland against the Background of the European Union. Energies 2022, 15, 4332. [Google Scholar] [CrossRef]
- Larsson, S.; Fantazzini, D.; Davidsson, S.; Kullander, S.; Höök, M. Reviewing electricity production cost assessments. Renew. Sustain. Energy Rev. 2014, 30, 170–183. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef]
- Bosch, J.; Staffell, I.; Hawkes, A.D. Global levelised cost of electricity from offshore wind. Energy 2019, 189, 116357. [Google Scholar] [CrossRef]
- Lai, C.S.; McCulloch, M.D. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 2017, 190, 191–203. [Google Scholar] [CrossRef]
- Hirth, L.; Steckel, J.C. The role of capital costs in decarbonizing the electricity sector. Environ. Res. Lett. 2016, 11, 11. [Google Scholar] [CrossRef]
- Shen, W.; Chen, X.; Qiu, J.; Hayward, J.A.; Sayeef, S.; Osman, P.; Meng, K.; Dong, Z.Y. A comprehensive review of variable renewable energy levelized cost of electricity. Renew. Sustain. Energy Rev. 2020, 133, 110301. [Google Scholar] [CrossRef]
- Shea, R.P.; Ramgolam, Y.K. Applied levelized cost of electricity for energy technologies in a small island developing state: A case study in Mauritius. Renew. Energy 2019, 132, 1415–1424. [Google Scholar] [CrossRef]
- Idel, R. Levelized Full System Costs of Electricity. Energy 2022, 259, 124905. [Google Scholar] [CrossRef]
- Samadi, S. The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance. Energies 2017, 10, 356. [Google Scholar] [CrossRef]
- Sels, L.; Neuling, U.; Kaltschmitt, M. Capital expenditure and levelized cost of electricity of photovoltaic plants and wind turbines—Development by 2050. Renew. Energy 2022, 185, 525–537. [Google Scholar] [CrossRef]
- Bórawski, P.; Bełdycka-Bórawska, A.; Kapsdorferová, Z.; Rokicki, T.; Parzonko, A.; Holden, L. Perspectives of Electricity Production from Biogas in the European Union. Energies 2024, 17, 1169. [Google Scholar] [CrossRef]
- Bórawski, P.; Bełdycka-Bórawska, A.; Klepacki, B.; Holden, L.; Rokicki, T.; Parzonko, A. Changes in Gross Nuclear Electricity Production in the European Union. Energies 2024, 17, 3554. [Google Scholar] [CrossRef]
- Aoun, A.; Adda, M.; Ilinca, A.; Ghandour, M.; Ibrahim, H. Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions. Energies 2024, 17, 4075. [Google Scholar] [CrossRef]
- Tahir, M.; Hu, S.; Zhu, H. Advanced Levelized Cost Evaluation Method for Electric Vehicle Stations Concurrently Producing Electricity and Hydrogen. Energies 2024, 17, 2682. [Google Scholar] [CrossRef]
- Melgar-Melgar, R.E.; Hall, C.A.S. Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems. Ecol. Econ. 2020, 169, 106567. [Google Scholar] [CrossRef]
- Costanza, R.; Howarth, R.B.; Kubiszewski, I.; Liu, S.; Ma, C.; Plumecoc, A.G.; Stern, D.I. Influential publications in ecological economics revisited. Ecol. Econ. 2016, 123, 68–76. [Google Scholar] [CrossRef]
- Anderson, B.; M’Gonigl, M. Does ecological economics have a future?: Contradiction and reinvention in the age of climate change. Ecol. Econ. 2012, 84, 37–48. [Google Scholar] [CrossRef]
- Perkins, P.E. Feminist Ecological Economics and Sustainability. J. Bioeconomics 2007, 9, 227–244. [Google Scholar] [CrossRef]
- Turner, R.K.; Perrings, C.; Folke, C. Ecological economics: Paradigm or perspective. In Economy and Ecosystems in Change: Analytical and Historical Approaches; van den Bergh, J.C.J.M., van der Straaten, J., Eds.; Edward Elgar: Cheltenham, UK, 1997. [Google Scholar]
- Ayres, R.U. Industrial metabolism: Work in progress. In Theory and Implementation of Economic Models for Sustainable Development; van den Bergh, J.C.J.M., Hofkes, M.W., Eds.; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Anser, M.K.; Shabbir, M.S.; Tabash, M.I.; Ali Shah, S.H.; Ahmad, M.; Yao-Ping Peng, M.; Lopez, L.B. Do renewable energy sources improve clean environmental-economic growth? Empirical investigation from South Asian economies. Energy Explor. Exploit. 2021, 39, 1491–1514. [Google Scholar] [CrossRef]
- Niekurzak, M. The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions. Energies 2021, 14, 7525. [Google Scholar] [CrossRef]
- Huang, B.; Xing, K.; Pullen, S.; Liao, L.; Huang, K. Ecological—Economic assessment of renewable energy deployment in sustainable built environment. Renew. Energy 2020, 161, 1328–1340. [Google Scholar] [CrossRef]
- Van den Bergh, J.C.J.M. Ecological economics: Themes, approaches, and differences with environmental economics. Reg Environ. Change 2001, 2, 13–23. [Google Scholar] [CrossRef]
- Atkinson, G.; Dietz, S.; Neumayer, E.; Agarwala, M. Handbook of Sustainable Development; Edward Elgar Publishing: Glos, UK, 2014. [Google Scholar] [CrossRef]
- Armatas, C.A.; Borrie, W.T. A pragmatist ecological economics—Normative foundations and a framework for actionable knowledge. Ecol. Econ. 2025, 227, 108422. [Google Scholar] [CrossRef]
- Zegar, J.S. Podstawowe Zagadnienia Rozwoju Zrównoważonego; WSBiF w Bielsku-Białej: Bielsko-Biała, Poland, 2007. [Google Scholar]
- Matuszczak, A. Koncepcja zrównoważonego rozwoju w obszarze ekonomicznym, środowiskowym i społecznym. Rocz. Ekon. Kuj.-Pomor. Szkoły Wyższej W Bydg. 2009, 2, 125–141. [Google Scholar]
- Cheba, K.; Brelik, A.; Szopik-Depczyńska, K.; Oleszczyk, N.; Ioppolo, G. Mapping sustainability: A comparative analysis proposal across EU countries and regions. J. Environ. Manag. 2024, 362, 121236. [Google Scholar] [CrossRef]
- Janik, A.; Łączny, J.M.; Ryszko, A. Ekonomiczne Podstawy Ochrony Środowiska; Wydawnictwo Politechniki Śląskiej Gliwice: Gliwice, Poland, 2009; 30p. [Google Scholar]
- Joshi, A.P.; Joshi, S.; Purohit, H. Unveiling the green paradigm: Introducing gross environment product (GEP)-The frontier in ecological growth. Ecol. Indic. 2023, 156, 111192. [Google Scholar] [CrossRef]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Fiedor, B. Podstawy Ekonomii Środowiska i Zasobów Naturalnych; Fiedor, B., Ed.; C.H. Beck: Warszawa, Poland, 2002; pp. 4–5. [Google Scholar]
- Venkatachalam, L. Environmental economics and ecological economics: Where they can converge? Ecol. Econ. 2007, 61, 550–558. [Google Scholar] [CrossRef]
- Kiliko, J.; Atandi, B.; Awino, Z. Strategic planning in turbulent environment: A Conceptual View. DBA Afr. Manag. Rev. 2012, 3, 1. [Google Scholar]
- Czaja, S.; Fiedor, B. W Poszukiwaniu Nowego Paradygmatu Ekonomii. Teoria Ekonomii a Problematyka Ekologiczna; Prace Naukowe AE we Wrocławiu, 1009; AE Wrocław: Wrocław, Poland, 2003. [Google Scholar]
- Ma, L.; Liu, X. Strategies for Environmental Protection and Optimization of Ecological Business Economic Growth from the Perspective of Sustainable Development. Sustainability 2023, 15, 2758. [Google Scholar] [CrossRef]
- Geng, Q.; Lo, K. Global ecological civilization: An analysis of macro-level policies of the Belt and Road Initiative. Reserch Glob. 2023, 7, 100141. [Google Scholar] [CrossRef]
- Debrunner, G.; Hartman, T. Strategic use of land policy instruments for affordable housing—Coping with social challenges under scarce land conditions in Swiss cities. Land Use Policy 2020, 99, 104993. [Google Scholar] [CrossRef]
- Javanmardi, E.; Liu, S.; Xie, N. Exploring the Challenges to Sustainable Development from the Perspective of Grey Systems Theory. Systems 2023, 11, 70. [Google Scholar] [CrossRef]
- Pieńkowski, D. Ekonomia Ekologiczna A Ekonomika Środowiska i zasobów naturalnych. epistemologiczne „napięcia”. Optim.—Stud. Ekon. 2008, 2, 76–78. [Google Scholar]
- Sulich, A.; Kozar, J. Green competences: A review and future research in the context of green human resource management. Econ. Dev. 2024, 89, 713. [Google Scholar] [CrossRef]
- Williams, N.J.; Jaramillo, P.; Taneja, J.; Ustun, T.S. Enabling private sector investment in microgrid-based rural electrification in developing countries: A review. Renew. Sustain. Energy Rev. 2015, 52, 1268–1281. [Google Scholar] [CrossRef]
- Suproń, B.; Łącka, I.; Roman Śmietański, R. Effects of social and economic development on CO2 emission in the countries of the Visegrad group. Res. Sq. Preprint. 2024. [Google Scholar] [CrossRef]
- Suproń, B.; Łącka, I. Research on the Relationship between CO2 Emissions, Road Transport, Economic Growth and Energy Consumption on the Example of the Visegrad Group Countries. Energies 2023, 16, 1340. [Google Scholar] [CrossRef]
- Beloborov, S.S. The influence of res development on the competitiveness of the centralized power supply for industrial consumer in the German power system and on the changes in operating modes of the gas network. Power Technol. Eng. 2021, 54, 848–857. [Google Scholar] [CrossRef]
- Aflaki, S.; Netessine, S. Strategic investment in renewable energy sources: The effect of supply intermittency. Manuf. Serv. Oper. Manag. 2017, 19, 489–507. [Google Scholar] [CrossRef]
- Faiella, I.; Mistretta, A. Energy Costs and Competitiveness in Europe; Printing and Publishing Division of the Bank of Italy: Rome, Italy, 2020. [Google Scholar]
- Timilsina, G.R. Are renewable energy technologies cost competitive for electricity generation? Renew. Energy 2021, 180, 658–672. [Google Scholar] [CrossRef]
- Ligus, M. An analysis of competitiveness and potential of renewable energy technologies in Poland. Energy Environ. 2015, 26, 1247–1256. [Google Scholar] [CrossRef]
- Dudin, M.N.; Zasko, V.N.; Dontsova, O.I.; Osokina, I.V.; Berman, A.M. Renewable energy sources as an instrument to support the competitiveness of agro-industrial enterprises and reduce their costs. Int. J. Energy Econ. Policy 2018, 8, 162–167. [Google Scholar]
- Markowski, Ł.; Kotliński, K. Energy prices and the structure of inflation in European Union countries. AoP. Int. J. Manag. Econ. 2025, 61, 1–12. [Google Scholar]
- Arent, D.; Pless, J.; Mai, T.; Wiser, R.; Hand, M.; Baldwin, S.; Heath, G.; Macknick, J.; Bazilian, M.; Schlosser, A.; et al. Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply. Appl. Energy 2014, 123, 368–377. [Google Scholar] [CrossRef]
- Abotah, R.; Daim, T.U. Towards building a multi perspective policy development framework for transition into renewable energy. Sustain. Energy Technol. Assess. 2017, 21, 67–88. [Google Scholar] [CrossRef]
- Wilburn, D. Wind Energy in the United States and Materials Required for the Land-Based Wind Turbine Industry from 2010 Through 2030; Scientific Investigations Report 2011-5036; U.S. Geological Survey: Reston, VA, USA, 2011.
- International Energy Outlook (IEO); U.S. Energy Information Administration: Washington, DC, USA, 2017; 9p.
- Hassda, Q.; Akgburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results Eng. 2023, 20, 101621. [Google Scholar]
- Sobczyk, W.; Baran, T. Konkurencyjność technologii odnawialnych źródeł energii. Eduk.—Tech.—Inform. 2016, 1, 144–146. [Google Scholar] [CrossRef]
- ARE (Agencja Rynku Energii). Aktualizacja Analizy Porównawczej Kosztów Wytwarzania Energii Elektrycznej w Elektrowniach Jądrowych, Węglowych i Gazowych Oraz Odnawialnych Źródłach Energii; Wykonano na zamówienie Ministerstwa Energii Umowa nr 123/II/P/15004/4390/16/DEJ z dnia 21 November 2016; ARE (Agencja Rynku Energii): Warszawa, Poland, 2016. [Google Scholar]
- Dobrowolski, Z.; Drozdowski, G.; Panait, M. The weighted average cost of capital and its universality in crisis times: Evidence from the energy sector. Energies 2022, 15, 6655. [Google Scholar] [CrossRef]
- Kim, D.; Sung, S.; Banobi, E.T.; Jung, W. Sensitivity Analysis of Financial Feasibility Factors in Nuclear Power Plant Projects. In Proceedings of the Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Republic of Korea, 23–24 May 2019. [Google Scholar]
- Kirkpatrick, A.J.; Bennear, L.S. Promoting clean energy investment: An empirical analysis of property assessed clean energy. J. Environ. Econ. Manag. 2014, 68, 357–375. [Google Scholar] [CrossRef]
- Steffen, B. The importance of project finance for renewable energy projects. Energy Econ. 2018, 69, 280–294. [Google Scholar] [CrossRef]
- Steffen, B.; Matsuo, T.; Steinemann, D.; Schmidt, T.S. Opening new markets for clean energy: The role of project developers in the global diffusion of renewable energy technologies. Bus. Polit. 2018, 20, 553–587. [Google Scholar] [CrossRef]
- Egli, F.; Steffen, B.; Schmidt, T.S. A dynamic analysis of financing conditions for renewable energy technologies. Nat. Energy 2018, 3, 1084–1092. [Google Scholar] [CrossRef]
- Geddes, A.; Schmidt, T.S.; Steffen, B. The multiple roles of state investment banks in low-carbon energy finance: An analysis of Australia, the UK and Germany. Energy Policy 2018, 115, 158–170. [Google Scholar] [CrossRef]
- Roth, A.; Brückman, R.; Dukan, M.; Kitzing, L. Renewable Energy Financing Conditions in Europe: Survey and Impact Analysis; AURES Project; AURES: Chir, Algeria, 2021. [Google Scholar]
- Godyń, I.; Dubel, A. Evolution of Hydropower Support Schemes in Poland and Their Assessment Using the LCOE Method. Energies 2021, 14, 8473. [Google Scholar] [CrossRef]
- May, N.G.; Neuhoff, K. Financing Power: Impacts of Energy Policies in Changing Regulatory Environments; DIW Berlin Discuss. Pap. No. 1684; DIW Berlin: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Krupa, J.; Poudineh, R.; Harvey, L.D.D. Renewable electricity finance in the resource rich countries of the Middle East and North Africa: A case study on the Gulf cooperation council. Energy 2019, 166, 1047–1062. [Google Scholar] [CrossRef]
- Shrimali, G.; Nelson, D.; Goel, S.; Konda, C.; Kumar, R. Renewable deployment in India: Financing costs and implications for policy. Energy Policy 2013, 62, 28–43. [Google Scholar] [CrossRef]
- EU Commission. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; EU Commission: Brussels, Belgium, 2018.
- Blum, N.U.; Wakeling, R.S.; Schmidt, T.S. Rural electrification through village grids—Assessing the cost competitiveness of isolated renewable energy technologies in Indonesia. Renew. Sustain. Energy Rev. 2013, 22, 482–496. [Google Scholar] [CrossRef]
- Vartiainen, E.; Masson, G.; Breyer, C.; Moser, D. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelized cost of electricity. Prog. Photovolt. Res. Appl. 2020, 28, 439–453. [Google Scholar] [CrossRef]
- Piskier, T. A method of estimation of the caloric value of the biomass. Part I—Biomass energy potential. J. Mech. Energy Eng. 2017, 1, 189–194. [Google Scholar]
- Strupczewski, A. Wpływ energetyki jądrowej i odnawialnych źródeł energii na koszty w systemie energetycznym Polski. PTJ 2014, 57, 1. [Google Scholar]
- Popczyk, J.; Bodzek, K. Struktura Polskiego Bilansu Wytwórczego 2050 na Mono rynku Energii Elektrycznej OZE. (Zawężanie Obszaru Poszukiwań (Etap 3). BŹEP 2017. Available online: https://ppte2050.pl/platforman/bzppte/static/uploads/Struktura%20polskiego%20bilansu%20energetycznego%202050%20na%20mono%20rynku%20...%20OZE.%20Popczyk%20J,%20Bodzek%20K..pdf (accessed on 17 May 2025).
- Wyszomierski, R.; Bórawski, P.; Holden, L.; Bełdycka-Bórawska, A.; Rokicki, T.; Parzonko, A. The Trade of Woody Biomass in the Context of Environmental Economics in Poland. Energies 2024, 17, 4822. [Google Scholar] [CrossRef]
- Wyszomierski, R.; Bórawski, P.; Holden, L.; Bełdycka-Bórawska, A.; Rokicki, T.; Parzonko, A. Competitive Potential of Stable Biomass in Poland Compared to the European Union in the Aspect of Sustainability. Resources 2025, 14, 19. [Google Scholar] [CrossRef]
- Biomass for Power Generation. Renewable Energy Technologies: Cost Analysis Series. IRENA Raport. 2012. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/RE_Technologies_Cost_Analysis-BIOMASS.pdf (accessed on 2 March 2025).
- Mahmoud, E.; Alkhalaf, S.; Hemeida, M.; Senjyu, T.; Ahmed, M.; Hemeida, A.M.; Abdel-Rahim, O. Impact of uncertainties in wind and solar Energy to the optimal operation of DG based on MCS. Ain Shams Eng. J. 2024, 15, 102893. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, Q.; Dui, H.; Chen, R.; Wang, S. Reliability model and maintenance cost optimization of wind-photovoltaic hybrid power systems. Reliab. Eng. Syst. Saf. 2025, 255, 110673. [Google Scholar] [CrossRef]
- Ruggles, T.H.; Virgüez, E.; Reich, N.; Dowling, J.; Bloomfield, H.; Antonini, E.G.A.; Davis, S.J.; Lewis, N.S. Planning reliable wind- and solar-based electricity systems. Adv. Appl. Energy 2024, 15, 100185. [Google Scholar] [CrossRef]
- Anand, R.; Balaji, V. Power Flow Analysis of Simulink IEEE 57 Bus Test System Model using PSAT. Indian J. Sci. Technol. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Tran, V.-K.; Zhang, H.-S.; Nguyen, V.-N. Optimal Placement of Phasor Measurement Unit for Observation Reliability Enhancement. J. Electr. Eng. Technol. 2017, 12, 996–1006. [Google Scholar] [CrossRef]
- Abadi, I.; Penangsang, O.; Praseto, R.L. A Study of Harmonics In PV-Wind Turbine Microgrid System. Int. J. Appl. Eng. Res. 2015, 10, 23621–23629. [Google Scholar]
- Hemeida, M.G.; Hemeida, A.M.; Senjyu, T.; Osheba, D. Renewable Energy Resources Technologies and Life Cycle Assessment: Review. Energies 2022, 15, 9417. [Google Scholar] [CrossRef]
- Portillo, F.; Alcayde, A.; Garcia, R.M.; Fernandez-Ros, M.; Gazquez, J.A.; Novas, N. Life Cycle Assessment in Renewable Energy. Sol. Wind Perspect. Environ. 2024, 11, 147. [Google Scholar] [CrossRef]
- Peng, J.; Lu, L.; Yang, H. Review on Life Cycle Assessment of Energy Payback and Greenhouse Gas Emission of Solar Photovoltaic Systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, W.; Xie, K.; Lv, G.; Chen, Z.; Wu, J.; Yu, J. Life Cycle Assessment of Grid-Connected Power Generation from Metallurgical Route Multi-Crystalline Silicon Photovoltaic System in China. Appl. Energy 2017, 185, 68–81. [Google Scholar] [CrossRef]
- Atilgan, B.; Azapagic, A. Renewable electricity in Turkey: Life cycle environmental impacts. Renew. Energy 2016, 89, 649–657. [Google Scholar] [CrossRef]
- Zang, G.; Zhang, J.; Jia, J.; Lora, E.S.; Ratner, A. Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles. Renew. Energy 2020, 149, 336–346. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Lovarelli, D.; Moreira, M.T.; Feijoo, G.; Bacenetti, J. Life Cycle Assessment of Renewable Energy Production from Biomass; Springer: Berlin/Heidelberg, Germany, 2018; pp. 81–98. [Google Scholar]
- Worldsteel. Worldsteel Life Cycle Inventory Study for Steel Industry Products. World Steel Association. 2010. Available online: www.worldsteel.org (accessed on 25 March 2025).
- Garrett, P.; Rønde, K. Life cycle assessment of wind power: Comprehensive results from a state-of-the-art approach. Int. J. Life Cycle Assess 2013, 18, 37–48. [Google Scholar] [CrossRef]
- Bhat, I.K.; Prakash, R. LCA of renewable energy for electricity generation systems—A review. Renew. Sustain. Energy Rev. 2009, 13, 1067–1073. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2021; IRENA: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Bush, S.; Kasdorp, R.; Koolen, D.; Mercier, A.; Spooner, M. The Development of Renewable Energy in the Electricity Market; Discussion Paper 187; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Graczyk, A. Rozwój odnawialnych źródeł energii w polskiej polityce regionalnej. Barom. Reg. 2017, 15, 55. [Google Scholar] [CrossRef]
- Aaen, S.B.; Kerndrup, S.; Lyhne, I. Beyond public acceptance of energy infrastructure: How citizens make sense and form reactions by enacting networks of entities in infrastructure development. Energy Policy 2015, 96, 576–586. [Google Scholar] [CrossRef]
- Azarova, V.; Cohen, J.; Friedl, C.; Reichl, J. Designing local renewable energy communities to increase social acceptance: Evidence from a choice experiment in Austria, Germany, Italy, and Switzerland. Energy Policy 2019, 132, 1176–1183. [Google Scholar] [CrossRef]
- Takeshita, T.; Yamaji, K. Potential contribution of coal to the future global energy system. Environ. Econ. Policy Stud. 2006, 8, 55–87. [Google Scholar] [CrossRef]
- Karta Ziemi. Deklaracja Podstawowych Zasad i Wartości Etycznych, Postrzeganych Przez Twórców Jako Przydatne w Budowaniu Sprawiedliwego, Zrównoważonego i Pokojowego Globalnego Społeczeństwa XXI Wieku. Available online: https://earthcharter.org/wp-content/assets/virtual-library2/images/uploads/echarter_polish.pdf (accessed on 14 May 2025).
- Farber, A.; Gillet, R.L.; Szafarz, A.A. General Formula for the WACC. Int. J. Bus. 2006, 11, 212–218. [Google Scholar]
- Schyska, B.U.; Kies, A. How regional differences in cost of capital influence the optimal design of power systems. Appl. Energy 2020, 262, 114523. [Google Scholar] [CrossRef]
- Noothout, P.; Jager, D.D.; Tesniėre, L.; van Rooijen, S.; Karypidis, N.; Brückmann, R.; Breitschopf, B.; Angelopoulos, D.; Doukas, H.; Konstantinavičiūtė, I.; et al. The Impacy of Risks in Renewable Energy Investments and the Role of Smart Policies. Final Report. Ecofys. Utrech. 2016. Available online: https://www.google.com/search?q=Noothout%2C+P.%2C+Jager%2C+D.D.%2C+Tesni%C4%97re%2C+L.%2C+van+Rooijen%2C+S.%2C+Karypidis%2C+N.%2C+Br%C3%BCckmann%2C+R.+Diacore.+the+impacy+of+risks+in+renewable+energy+investments+and+the+role+of+smart+policies.+Final+report.+Ecofys.+Utrech%2C+2016.&rlz=1C1ASVC_plPL926PL926&oq=Noothout%2C+P.%2C+Jager%2C+D.D.%2C+Tesni%C4%97re%2C+L.%2C+van+Rooijen%2C+S.%2C+Karypidis%2C+N.%2C+Br%C3%BCckmann%2C+R.+Diacore.+the+impacy+of+risks+in+renewable+energy+investments+and+the+role+of+smart+policies.+Final+report.+Ecofys.+Utrech%2C+2016.&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCTMxNDdqMGoxNagCCLACAQ&sourceid=chrome&ie=UTF-8 (accessed on 4 December 2024).
- Povacz, L.; Bhandari, R. Analysis of the levelized cost of renewable hydrogen in Austria. Sustainability 2023, 15, 4547. [Google Scholar] [CrossRef]
- Kaabinejadian, A.; Pozarlik, A.; Acar, C. A systematic review of predictive, optimization, and smart control strategies for hydrogen-based building heating systems. Appl. Energy 2025, 379, 124994. [Google Scholar] [CrossRef]
- Clemens, T.; Hunyadi-Gall, M.; Lunzer, A.; Arekhov, V.; Datler, M.; Gauer, A. Wind–Photovoltaic– Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage. Energies 2024, 17, 5696. [Google Scholar] [CrossRef]
- Archour, Y.; Berrada, A.; Arechkik, A.; El Mrabet, R. Techno-economic assessment of hydrogen production from three different solar photovoltaic technologies. Int. J. Hydrogen Energy 2023, 48, 32261–32276. [Google Scholar] [CrossRef]
- Ademollo, A.; Calabrese, M.; Carcasci, C. An up-to-date perspective of levelized cost of hydrogen for PV-based grid-connected power-to-hydrogen plants across all Italy. Appl. Energy 2025, 379, 124958. [Google Scholar] [CrossRef]
- Łącka, I.; Suproń, B.; Szczepaniak, I. Does Climate Change and Energy Consumption Affect the Food Security of European Union Countries? Empirical Evidence from a Panel Study. Energies 2024, 17, 3237. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; Available online: https://epic.awi.de/id/eprint/37530/ (accessed on 18 June 2024).
- Celuba, J.; Górka, P.; Barbusiński, K.; Kościeniak, H.; Księżyk-Sikora, A. Zagadnienia Ochrony Środowiska; Wydawnictwo Politechniki Śląskiej Gliwice: Gliwice, Poland, 2000. [Google Scholar]
- Angelopoulos, D.; Brückmann, F.; Konstantinavičiúte Noothout, P.; Psarras, J.; Tesniėre, L.; Breitschopf, B. Rosks and cost of capital for onshore wind Energy investments in EU countries. Energy Environ. 2016, 27, 82–104. [Google Scholar] [CrossRef]
- Steffen, B. Estimating the cost of capital for renewable Energy projects. Energy Econ. 2020, 88, 104783. [Google Scholar] [CrossRef]
- Bórawski, P.; Bełdycka-Bórawska, A.; Szymańska, E.J.; Jankowski, K.J.; Dubis, B.; Dunn, J.W. Development of renewable energy sources market and biofuels in the European Union. J. Clean. Prod. 2019, 228, 467–484. [Google Scholar] [CrossRef]
- Januan, J.; Ellis, N. Perspectives on biodiesel as a sustainable fuel. Renew. Sustain. Energy Rev. 2010, 14, 1312–1320. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, C.; Vittayapadung, S.; Shen, X.; Dong, M. Opportunities and challenges for biodiesel fuel. Appl. Energy 2011, 88, 1020–1031. [Google Scholar] [CrossRef]
- Kligerman, D.C.; Bouwer, E.J. Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renew. Sustain. Energy Rav. 2015, 52, 1834–1846. [Google Scholar] [CrossRef]
- Bockey, D. The significance and perspectives of biodiesel production—And European and global review. Oilseed Fats Crops Liq. 2019, 26, 40. [Google Scholar]
- Weitemeyer, S.; Kleinhans, D.; Vogt, T.; Agert, C. Integration of Renewable Energy Sources in future power systems: The role of storage. Renew Energy 2015, 75, 14–20. [Google Scholar] [CrossRef]
- Andresen Gorm, B.; Rodriguez Rolando, A.; Becker, S.; Greiner, M. The potential for arbitrage of wind and solar surplus power in Denmark. Energy 2014, 76, 49–58. [Google Scholar] [CrossRef]
- Canadian Energy Research Institute. Electricity Storage Systems: Applications and Business Cases; Canadian Energy Research Institute: Calgary, AB, Canada, 2019; 91p. [Google Scholar]
- EASE/EERA. European Energy Storage Technology Development Roadmap Towards 2030. Available online: https://ease-storage.eu/wp-content/uploads/2015/10/EASE-EERA-recommendations-Roadmap-LR.pdf (accessed on 25 March 2025).
- Alem Kebede, A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Proposal for a Regulation of the European Parliament And of the Council. European Commission. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020PC0022 (accessed on 16 May 2025).
- Moesker, K.; Pesch, U. The just transition fund—Did the European Union learn from Europe’s past transition experiences? Energy Res. Soc. Sci. 2022, 91, 102750. [Google Scholar] [CrossRef]
- Kyriazi, A.; Miró, J. Towards a socially fair green transition in the EU? An analysis of the Just Transition Fund using the Multiple Streams Framework. Comp. Eur. Polit. 2023, 21, 112–132. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal; COM (2019)640; European Commission: Brussels, Belgium, 2019.
- European Commission. Sustainable Europe Investment Plan; COM (2020)21; European Commission: Brussels, Belgium, 2020.
- European Commission. Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality; COM (2021)550; European Commission: Brussels, Belgium, 2021.
Plant | Full-Load Hours/Year |
---|---|
Biomass (cogeneration) | 7000 |
Biogas (cogeneration) | 7875 |
Onshore wind | 2067 |
Offshore wind | 3400 |
Solar PV | 928 |
Hydraulic | 4660 |
EU | Capital Expenditures (USD/kW) | Power Factor (%) | Fuel, CO2, O&M (USD/MWh) | LCOE (USD/MWh) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2030 | 2050 | 2021 | 2030 | 2050 | 2021 | 2030 | 2050 | 2021 | 2030 | 2050 | |
Solar PV | 810 | 510 | 360 | 14 | 14 | 14 | 10 | 10 | 10 | 50 | 35 | 25 |
Onshore wind | 1590 | 1490 | 1410 | 29 | 30 | 30 | 15 | 15 | 15 | 55 | 50 | 45 |
Offshore wind | 3040 | 1920 | 1320 | 51 | 56 | 59 | 15 | 10 | 5 | 60 | 35 | 25 |
Renewables | Total Installation Cost | Energy Efficiency | Levelized Cost of Electricity (LCOE) | ||||||
---|---|---|---|---|---|---|---|---|---|
(USD/kW) | (%) | (2021 USD/MWh) | |||||||
2010 | 2021 | Change | 2010 | 2021 | Change | 2010 | 2021 | Change | |
Biomass | 2714 | 2353 | −13% | 72% | 68% | −6% | 78 | 67 | −14% |
Geothermal | 2714 | 3991 | 47% | 87% | 77% | −11% | 50 | 68 | 34% |
Hydraulic | 1315 | 2135 | 62% | 44% | 45% | 2% | 39 | 48 | 24% |
Solar PV | 4808 | 857 | −82% | 14% | 17% | 25% | 417 | 48 | −88% |
Onshore wind | 2042 | 1325 | −35% | 27% | 39% | 44% | 102 | 33 | −68% |
Offshore wind | 4876 | 2858 | −41% | 38% | 39% | 3% | 188 | 75 | −60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszomierski, R.; Bórawski, P.; Bełdycka-Bórawska, A.; Brelik, A.; Wysokiński, M.; Wiluk, M. The Cost-Effectiveness of Renewable Energy Sources in the European Union’s Ecological Economic Framework. Sustainability 2025, 17, 4715. https://doi.org/10.3390/su17104715
Wyszomierski R, Bórawski P, Bełdycka-Bórawska A, Brelik A, Wysokiński M, Wiluk M. The Cost-Effectiveness of Renewable Energy Sources in the European Union’s Ecological Economic Framework. Sustainability. 2025; 17(10):4715. https://doi.org/10.3390/su17104715
Chicago/Turabian StyleWyszomierski, Rafał, Piotr Bórawski, Aneta Bełdycka-Bórawska, Agnieszka Brelik, Marcin Wysokiński, and Magdalena Wiluk. 2025. "The Cost-Effectiveness of Renewable Energy Sources in the European Union’s Ecological Economic Framework" Sustainability 17, no. 10: 4715. https://doi.org/10.3390/su17104715
APA StyleWyszomierski, R., Bórawski, P., Bełdycka-Bórawska, A., Brelik, A., Wysokiński, M., & Wiluk, M. (2025). The Cost-Effectiveness of Renewable Energy Sources in the European Union’s Ecological Economic Framework. Sustainability, 17(10), 4715. https://doi.org/10.3390/su17104715