Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China
Abstract
1. Introduction
- (1)
- Spatiotemporal Evolution of HQ (2000–2020)
- (2)
- Future Land Use Change Simulation (2020–2030)
- (3)
- Future HQ Projection and Policy Recommendations
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Research Methods
2.3.1. HQ Assessment Based on the InVEST Model
2.3.2. HQ Coefficient of Variation
2.3.3. Theil–Sen Median Trend Analysis and the Mann–Kendall Test
2.3.4. Future Trend Analysis
- (1)
- If H > 0.5, the time series has persistence. The closer H is to 1, the stronger the persistence;
- (2)
- If H = 0.5, the time series is random;
- (3)
- If H < 0.5, the time series has anti-persistence. The closer H is to 0, the stronger the anti-persistence.
2.3.5. PLUS Model for Future Land Use Simulation
- (1)
- LEAS and Driving Factors.
- (2)
- Future Simulation of CARS
- The natural development scenario (S1), which assumes that transition probabilities from 2020 to 2035 follow the natural growth trend observed from 2010 to 2020;
- The farmland protection scenario (S2), which reduces the probability of farmland converting to other land types by 50% compared with the natural development scenario, while other land types continue to follow natural development trends;
- The ecological conservation scenario (S3), which, compared with the natural development scenario, reduces the probability of farmland, forest land, grassland, and water bodies converting to built-up land by 30%, 50%, 20%, and 20%, respectively. Additionally, S3 reduces the probability of forest land converting to grassland by 50%, while increasing the probability of water bodies and grassland converting to forest land by 20%. The probability of built-up land converting to forest land is increased by 10%.
3. Results
3.1. Land Use Changes in the YRB
3.2. The Spatiotemporal Characteristics of HQ
3.2.1. HQ Assessment and CV
3.2.2. Theil–Sen Median Trend Analysis and the Mann–Kendall Test
3.3. Simulation Results of LUCC Under Multiple Scenarios in the YRB in 2030
3.4. Future Measurement of HQ
4. Discussion
4.1. The Driving Mechanism of the Temporal Trend of HQ
4.2. Spatial Heterogeneity of HQ and Its Driving Mechanisms
4.3. Synergistic Pathways of Cross-Scale Governance and Ecological Resilience Enhancement
4.4. Research Limitations and Future Research
5. Conclusions
- Spatiotemporal HQ characteristics: The YRB’s average HQ remained stable at 0.599–0.606 during 2000–2020, but the degree of spatial heterogeneity was significant, with a “high in the middle reaches and low in the upper and lower reaches” pattern. The lower reaches had the lowest HQ due to urbanization-related ecological fragmentation. Trend analysis showed that while 76.98% of the area saw no significant HQ change, 15.83% of the area saw a decline, with 3.56% experiencing significant degradation, mainly in construction land expansion areas;
- Future scenario simulation: Under all three 2030 scenarios, the YRB’s HQ is expected to decline. However, S3 limited the decline to 0.33% through controlled development and ecological restoration, outperforming natural development (a 1.07% decline) and farmland protection (a 1.15% decline). The lower reaches will remain ecologically vulnerable and face high-risk degradation even under S3;
- Habitat degradation was primarily driven by urban expansion, cropland encroachment, and climate-induced land cover shifts. The emergence of a “corridor–patch” fragmentation pattern—associated with linear infrastructure and peri-urban sprawl—underscored the spatial complexity of human-induced habitat stress. Moreover, trade-offs between farmland protection and forest loss revealed unintended ecological consequences of sectoral policies;
- The results provide evidence-based support for differentiated policy interventions across the YRB. Recommendations include zoning-based ecological red lines and green infrastructure in urbanized lower reaches, eco-agriculture and incentive mechanisms in the middle reaches, and climate-adaptive conservation networks in the upper plateau. Establishing cross-regional ecological compensation mechanisms is essential to reconcile upstream protection with downstream development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
YRB | Yangtze River Basin |
HQ | Habitat quality |
PLUS | Patch-Growth Land Use Simulation |
RS | Remote sensing |
GIS | Geographic information system |
InVEST | Integrated Valuation of Ecosystem Services and Trade-offs |
LUCC | land use/cover change |
References
- Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating ecosystem services and landscape ecological risk into adaptive management: Insights from a western mountain-basin area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, M.; Hu, M.; Xia, B. Integrating ecosystem services and landscape connectivity into the optimization of ecological security pattern: A case study of the Pearl River Delta, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 76051–76065. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Pricope, N.G.; Toreti, A.; Morán-Tejeda, E.; Spinoni, J.; Ocampo-Melgar, A.; Archer, E.; Diedhiou, A.; Mesbahzadeh, T.; Ravindranath, N.H.; et al. The United Nations Convention to Combat Desertification Report on Rising Aridity Trends Globally and Associated Biological and Agricultural Implications. Glob. Change Biol. 2024, 30, e70009. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- Fang, C.; Wang, J. A Theoretical Analysis of Interactive Coercing Effects Between Urbanization and Eco-environment. Chin. Geogr. Sci. 2013, 23, 147–162. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Elliott, R.J.; Shanshan, W.U. Industrial activity and the environment in China: An industry-level analysis. China Econ. Rev. 2008, 19, 393–408. [Google Scholar]
- Gavrilov, O.E.; Eremeeva, S.S.; Karaganova, N.G.; Kazakov, A.V.; A Mironov, A. Ecological activity area formation of an industrial enterprise: Applied aspects. IOP conference series. Earth Environ. Sci. 2021, 677, 52059. [Google Scholar]
- Wang, Y. Environmental degradation and environmental threats in China. Environ. Monit. Assess. 2004, 90, 161. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Fernandes, L.F.S.; Junior, R.F.V.; Valera, C.A.; Pissarra, T.C.T. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Convention on Biological Diversity; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 1992. [Google Scholar]
- Allen, C.; Metternicht, G.; Wiedmann, T. Initial progress in implementing the Sustainable Development Goals (SDGs): A review of evidence from countries. Sustain. Sci. 2018, 13, 1453–1467. [Google Scholar] [CrossRef]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Diaz, R.J.; Solan, M.; Valente, R.M. A review of approaches for classifying benthic habitats and evaluating habitat quality. J. Environ. Manag. 2004, 73, 165–181. [Google Scholar] [CrossRef]
- Mortelliti, A.; Amori, G.; Boitani, L. The role of habitat quality in fragmented landscapes: A conceptual overview and prospectus for future research. Oecologia 2010, 163, 535–547. [Google Scholar] [CrossRef]
- Johnson, M.D. Measuring Habitat Quality: A Review. Condor 2007, 109, 489–504. [Google Scholar] [CrossRef]
- Riedler, B.; Lang, S. A spatially explicit patch model of habitat quality, integrating spatio-structural indicators. Ecol. Indic. 2018, 94, 128–141. [Google Scholar] [CrossRef]
- Kneib, T.; Müller, J.; Hothorn, T. Spatial smoothing techniques for the assessment of habitat suitability. Environ. Ecol. Stat. 2008, 15, 343–364. [Google Scholar] [CrossRef]
- Spanhove, T.; Borre, J.V.; Delalieux, S.; Haest, B.; Paelinckx, D. Can remote sensing estimate fine-scale quality indicators of natural habitats? Ecol. Indic. 2012, 18, 403–412. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Luque, S. Habitat quality assessment using Weights-of-Evidence based GIS modelling: The case of Picoides tridactylus as species indicator of the biodiversity value of the Finnish forest. Ecol. Model. 2006, 196, 62–76. [Google Scholar] [CrossRef]
- Zlinszky, A.; Heilmeier, H.; Balzter, H.; Czúcz, B.; Pfeifer, N. Remote Sensing and GIS for Habitat Quality Monitoring: New Approaches and Future Research. Remote Sens. 2015, 7, 7987–7994. [Google Scholar] [CrossRef]
- Henrys, P.A.; Jarvis, S.G. Integration of ground survey and remote sensing derived data: Producing robust indicators of habitat extent and condition. Ecol. Evol. 2019, 9, 8104–8112. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cheng, W. Effects of Land Use/Cover on Regional Habitat Quality under Different Geomorphic Types Based on InVEST Model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess. 2020, 192, 487. [Google Scholar] [CrossRef]
- Mondal, I.; Naskar, P.K.; Alsulamy, S.; Jose, F.; Hossain, S.A.; Mohammad, L.; De, T.K.; Khedher, K.M.; Salem, M.A.; Benzougagh, B.; et al. Habitat quality and degradation change analysis for the Sundarbans mangrove forest using invest habitat quality model and machine learning. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Piri Sahragard, H.; Ajorlo, M.; Karami, P. Modeling habitat suitability of range plant species using random forest method in arid mountainous rangelands. J. Mt. Sci. 2018, 15, 2159–2171. [Google Scholar] [CrossRef]
- Wang, H.; Bai, X.; Zhou, M.; Ma, Y.; Yuan, W.; Guo, W. Response to hydrometeorological changes and evaluation of habitat quality in the Dongting Lake basin, China. J. Water Clim. Change 2024, 15, 4536–4560. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Gou, A. Habitat quality evolution characteristics and multi-scenario prediction in Shenzhen based on PLUS and InVEST models. Front. Environ. Sci. 2023, 11, 1146347. [Google Scholar] [CrossRef]
- He, J.; Huang, J.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Slagter, B.; Tsendbazar, N.-E.; Vollrath, A.; Reiche, J. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [Google Scholar] [CrossRef]
- Seabrook, L.; McAlpine, C.; Rhodes, J.; Baxter, G.; Bradley, A.; Lunney, D. Determining range edges: Habitat quality, climate or climate extremes? Divers. Distrib. 2014, 20, 95–106. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, E.; Dong, N.; Tian, G.; Kim, G.; Song, P.; Ge, S.; Liu, S. Driving Mechanism of Habitat Quality at Different Grid-Scales in a Metropolitan City. Forests 2022, 13, 248. [Google Scholar] [CrossRef]
- Jiang, Y.; He, J.; Zhai, D.; Hu, C.; Yu, L. Analysis of the evolution of watershed habitat quality and its drivers under the influence of the human footprint. Front. Environ. Sci. 2024, 12, 1431295. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X. Spatio-temporal variations of habitat quality and its driving factors in the Yangtze River Delta region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Nabikandi, B.V.; Rastkhadiv, A.; Feizizadeh, B.; Gharibi, S.; Gomes, E. A scenario-based framework for evaluating the effectiveness of nature-based solutions in enhancing habitat quality. GeoJournal 2025, 90, 55. [Google Scholar] [CrossRef]
- Struecker, B.; Milanovich, J. Predicted Suitable Habitat Declines for Midwestern United States Amphibians Under Future Climate and Land-Use Change Scenarios. Herpetol. Conserv. Biol. 2017, 12, 635–654. [Google Scholar]
- Shi, L.; Moser, S. Transformative climate adaptation in the United States: Trends and prospects. Science 2021, 372, eabc8054. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Wu, X.; Shen, Z.; Liu, R.; Ding, X. Land Use/Cover Dynamics in Response to Changes in Environmental and Socio-Political Forces in the Upper Reaches of Yangtze River, China. Sensors 2008, 8, 8104–8122. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001–2019. Ecol. Inform. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, H.; Deng, S.; Zhou, X.; Nie, S. Spatiotemporal Variation of Ecosystem Services Value and its Response to Land Use Change in the Yangtze River Basin, China. Int. J. Environ. Res. 2024, 18, 17. [Google Scholar] [CrossRef]
- Jia, L.; Yu, K.; Li, Z.; Li, P.; Cong, P.; Li, B. Spatiotemporal pattern of landscape ecological risk in the Yangtze River Basin and its influence on NPP. Front. For. Glob. Change 2024, 6, 1335116. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Yangtze River Water Resources Commission, Ministry of Water Resources, Yangtze River Basin. 2024. Available online: https://www.britannica.com/place/Yangtze-River (accessed on 1 January 2025).
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, P.; Liu, Y. Spatiotemporal evolution effects of habitat quality with the conservation policies in the Upper Yangtze River, China. Sci. Rep. 2025, 15, 5972. [Google Scholar] [CrossRef]
- Yang, F.; Yang, L.; Fang, Q.; Yao, X. Impact of landscape pattern on habitat quality in the Yangtze River Economic Belt from 2000 to 2030. Ecol. Indic. 2024, 166, 112480. [Google Scholar] [CrossRef]
- Alharbi, S.; Raun, W.R.; Arnall, D.B.; Zhang, H. Prediction of maize (Zea mays L.) population using normalized-difference vegetative index (NDVI) and coefficient of variation (CV). J. Plant Nutr. 2019, 42, 673–679. [Google Scholar] [CrossRef]
- Gallardo, A. Spatial Variability of Soil Properties in a Floodplain Forest in Northwest Spain. Ecosystems 2003, 6, 564–576. [Google Scholar] [CrossRef]
- Diop, L.; Bodian, A.; Diallo, D. Spatiotemporal Trend Analysis of the Mean Annual Rainfall in Senegal. Eur. Sci. J. 2016, 12, 231. [Google Scholar] [CrossRef]
- Amwata, D.A.; Muia, V.K.; Opere, A.O.; Ndunda, E. Rainfall and Temperature Trend Analysis using Mann-Kendall and Sen’s Slope Estimator Test in Makueni County, Kenya. J. Mater. Environ. Sci. 2024, 15, 349–367. [Google Scholar]
- Neeti, N.; Eastman, J.R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Chronopoulou, A.; Viens, F.G. Hurst Index Estimation for Self-Similar Processes with Long-Memory. In Hurst Index Estimation for Self-Similar Processes with Long-Memory; Duan, J., Luo, S., Wang, C., Duan, J., Luo, S., Wang, C., Eds.; World Scientific: Singapore, 2010; pp. 91–117. [Google Scholar]
- Rehman, S. Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos Solitons Fractals 2009, 39, 499–509. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Chen, H.; Yang, Q.; Su, K.; Zhang, H.; Lu, D.; Xiang, H.; Zhou, L. Identification and Optimization of Production-Living-Ecological Space in an Ecological Foundation Area in the Upper Reaches of the Yangtze River: A Case Study of Jiangjin District of Chongqing, China. Land 2021, 10, 863. [Google Scholar] [CrossRef]
Type | Data | Data Source | Resolution | Year |
---|---|---|---|---|
Socioeconomic data | Population | Worldpop (https://hub.worldpop.org/) (accessed on 15 June 2024) | 1 km × 1 km | 2000 |
GDP | Chinese Academy of Sciences Institute of Geographic Sciences and Natural Resources Research Data Center (https://www.resdc.cn/) (accessed on 15 June 2024) | 1 km × 1 km | 2000 | |
Accessibility data | Distance to railway | OpenStreetMap (https://www.openstreetmap.org/) (accessed on 15 June 2024) | vector data | 2000–2020 |
Distance to expressway | vector data | 2000–2020 | ||
Distance to arterial road | vector data | 2000–2020 | ||
Distance to secondary road | vector data | 2000–2020 | ||
Distance to city center | vector data | 2000–2020 | ||
Natural environmental factors | Distance to river | OpenStreetMap (https://www.openstreetmap.org/) (accessed on 15 June 2024) | vector data | 2000–2020 |
NDVI | National Ecological Science Data Center (https://www.nesdc.org.cn/) (accessed on 15 June 2024) | 500 m × 500 m | 2000 | |
Annual average precipitation | National Tibetan Plateau Scientific Data Center (http://data.tpdc.ac.cn/zh-hans/) (accessed on 15 June 2024) | 1 km × 1 km | 2000 | |
Annual average temperature | 1 km × 1 km | 2000 | ||
Slope | Geospatial Data Cloud (http://www.gscloud.cn/sources/accessdata/310?pid=1) (accessed on 15 June 2024) | 30 m × 30 m | — | |
DEM | 30 m × 30 m | — | ||
LUCC | Data on Land Use/Cover Change from the Chinese Academy of Sciences | 30 m × 30 m | 2000–2020 | |
NPP | NTSG (http://www.ntsg.umt.edu) (accessed on 15 June 2024) | 500 m × 500 m | 2001–2020 |
Land Use Type | Habitat Suitability | Relative Sensitivity to Threat Sources | |||
---|---|---|---|---|---|
Cultivated Land | Construction Land | Unused Land | Roads | ||
Cultivated land | 0.5 | 0 | 0.8 | 0.4 | 0.2 |
Woodland | 1 | 0.7 | 0.75 | 0.2 | 0.3 |
Grassland | 0.5 | 0.4 | 0.6 | 0.6 | 0.3 |
Water | 0.9 | 0.7 | 0.4 | 0.2 | 0.4 |
Construction land | 0 | 0 | 0 | 0.1 | 0 |
Unused land | 0.1 | 0.1 | 0.4 | 0 | 0.1 |
Threat Source | Maximum Stress Distance Unit: km | Weight | Spatial Decay Type |
---|---|---|---|
Cultivated land | 8 | 0.7 | Linear |
Construction land | 4 | 0.6 | Exponential |
Unused land | 6 | 0.5 | Linear |
Roads | 6 | 0.6 | Linear |
Land Use Type | 2000 Area (km2) | 2020 Area (km2) | Net Change (km2) | Proportional Change (%) |
---|---|---|---|---|
Cultivated land | 504,395.16 | 481,183.88 | −23,211.28 | −1.27 |
Woodland | 734,976.44 | 744,809.76 | +9833.32 | +0.54 |
Grassland | 432,341.64 | 426,530.52 | −5811.12 | −0.32 |
Water | 53,152.00 | 58,084.64 | +4932.64 | +0.27 |
Construction land | 29,011.64 | 54,241.88 | +25,230.24 | +1.39 |
Unused land | 68,609.08 | 57,635.28 | −10,973.80 | −0.60 |
Scenarios | Cultivated Land | Woodland | Grassland | Water Bodies | Construction Land | Unused Land |
---|---|---|---|---|---|---|
S1 | 4,736,912.8 | 7,430,196.8 | 4,246,815.2 | 591,190.4 | 647,185.6 | 572,558.8 |
S2 | 4,921,717.6 | 7,346,715.6 | 4,217,962.4 | 578,510.4 | 587,722.8 | 572,230.8 |
S3 | 4,772,000.8 | 7,531,954.8 | 4,162,352.4 | 591,135.6 | 594,928 | 572,488 |
Year | YRB | Upper Reaches | Middle Reaches | Lower Reaches | |
---|---|---|---|---|---|
2020 | 0.5991 | 0.5896 | 0.6357 | 0.4782 | |
2030 | S1 | 0.5927 | 0.5845 | 0.6292 | 0.4627 |
S2 | 0.5922 | 0.5825 | 0.6289 | 0.4727 | |
S3 | 0.5971 | 0.5869 | 0.6351 | 0.4755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, J.; Wu, W.; Tang, D. Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China. Sustainability 2025, 17, 4699. https://doi.org/10.3390/su17104699
Zhang Y, Yang J, Wu W, Tang D. Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China. Sustainability. 2025; 17(10):4699. https://doi.org/10.3390/su17104699
Chicago/Turabian StyleZhang, Yuzhou, Jianxin Yang, Weilong Wu, and Diwei Tang. 2025. "Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China" Sustainability 17, no. 10: 4699. https://doi.org/10.3390/su17104699
APA StyleZhang, Y., Yang, J., Wu, W., & Tang, D. (2025). Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China. Sustainability, 17(10), 4699. https://doi.org/10.3390/su17104699