Towards an Animal Welfare Impact Category: Weighting Indicators in Pig Farming
Simple Summary
Abstract
1. Introduction
1.1. Background
1.2. Animal Welfare in LCA
2. Materials and Methods
2.1. Indicator Assembling
2.2. Framework Description
3. Results
4. Discussion
4.1. Main Results
4.2. Methodology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
AHP | Analytic Hierarchy Process |
MCDA | Multi-Criteria Decision Analysis |
CR | Critical Ratio |
AFPR | Animal–Feeding Place Ratio |
ADPR | Animal–Drinking Place Ratio |
Appendix A
Main Criterion | Indicator | Explanation | Measurability |
---|---|---|---|
Husbandry conditions | Space per animal | Average area per animal per farming section. | easily measurable factor (m2) |
the legal standard is specified | |||
Access to outdoor areas | Presence of an outlet. | easy to measure (presence yes/no) | |
area not decisive | |||
Floor | Soil conditions per section. | easily measurable factor (type, material) | |
a classification of whether compatibility with the respective development stage of the animals is sought | |||
Litter | Presence of straw. | easily measurable (presence yes/no) | |
the legal standard for sows | |||
enables species-typical behavior | |||
Employment material | Nature of the material, such as a stationary chain or a loose object. Edibility and accessibility. | easily measurable (type, edibility yes/no) | |
differences in materials | |||
legal standard as a minimum assessment | |||
Feed intake | Animal–feeding place ratio (AFPR) | Ratio of usable feeding places to the average number of animals per section of housing. | easily measurable (#:#) |
at the same time, accessibility is a decisive criterion for inclusion | |||
Feeding technology | Eating is facilitated by built-in technology. | easily measurable (type, species) | |
ad libitum, liquid, solid, etc. | |||
possible evaluation according to the species-appropriateness of the feeding method | |||
Animal–drinking place ratio (ADPR) | Ratio of usable drinking places to the average number of animals per section of housing. | easily measurable (#:#) | |
at the same time, accessibility is a decisive criterion for inclusion | |||
Drinking situation | Water absorption is facilitated by installed technology. | easily measurable (type, species) | |
accessibility, cleanliness, species appropriateness | |||
Operation-specific parameters | Animal losses | This factor should be recorded in a posture section. | easily measurable (%) |
sow planner fattening pigs, piglets (born alive, <8 kg), piglet rearing (8–30 kg) | |||
Daily weight gain | This factor is intended to record posture-specific deviations with comparable basic criteria. | easily measurable (weight in kg) | |
define deviations based on feed intake and performance | |||
Lactation period | This factor is intended to determine the duration of the piglets’ intake of the mothers’ milk. | easy to measure (duration in weeks) | |
Single animal observation | Fitness condition | This factor is intended to record the external fitness level of the animals. | difficult to measure (body condition score, subjective) |
classification from 1 to 5 | |||
activity, reactions, weight | |||
External integrity | This factor is intended to reflect semi-annual monitoring. | difficult to measure (subjective) | |
skin (wounds) | |||
Lying behavior | This factor should allow conclusions to be drawn about the well-being associated with each section of the husbandry. | difficult to measure (abnormalities, subjective) | |
show clear abnormalities (cluster vs. total isolation) |
Main Criteria | Indicators | Bartlett et al. [19] | Bonneau et al. [9] | Dolman et al. [47] | Röös et al. [55] | Ruckli et al. [24] | Scherer et al. [17] | Zira et al. [12] |
---|---|---|---|---|---|---|---|---|
Husbandry conditions | Space per animal | x | x | x | x | |||
Floor | x | x | x | |||||
Litter | x | x | x | |||||
Access to outdoor areas | x | x | x | x | x | |||
Employment material | x | x | x | x | ||||
Feed intake | Animal–feeding place ratio | x | x | |||||
Feeding technology | x | x | ||||||
Animal–drinking place ratio | x | x | x | |||||
Watering situation | x | x | x | |||||
Operation-specific parameters | Animal losses | x | x | x | x | |||
Daily weight gain | ||||||||
Lactation period | x | |||||||
Single animal observation | Fitness condition | x | ||||||
External integrity | x | x | x | |||||
Lying behavior | x |
References
- Benton, T.; Bieg, C.; Harwatt, H.; Pudasaini, R.; Wellesley, L. The Royal Institute of International Affairs. In Food System Impacts on Biodiversity Loss: Three Levers for Food System Transformation in Support of Nature; Chatham House: London, UK, 2021. [Google Scholar]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A Thematic Review of Life Cycle Assessment (LCA) Applied to Pig Production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global Greenhouse Gas Emissions from Animal-Based Foods Are Twice Those of Plant-Based Foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- De Luca, A.I.; Iofrida, N.; Leskinen, P.; Stillitano, T.; Falcone, G.; Strano, A.; Gulisano, G. Life Cycle Tools Combined with Multi-Criteria and Participatory Methods for Agricultural Sustainability: Insights from a Systematic and Critical Review. Sci. Total Environ. 2017, 595, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Gislason, S.; Birkved, M.; Maresca, A. A Systematic Literature Review of Life Cycle Assessments on Primary Pig Production: Impacts, Comparisons, and Mitigation Areas. Sustain. Prod. Consum. 2023, 42, 44–62. [Google Scholar] [CrossRef]
- Basset-Mens, C.; van der Werf, H.M.G. Scenario-Based Environmental Assessment of Farming Systems: The Case of Pig Production in France. Agric. Ecosyst. Environ. 2005, 105, 127–144. [Google Scholar] [CrossRef]
- Bonneau, M.; Klauke, T.N.; Gonzàlez, J.; Rydhmer, L.; Ilari-Antoine, E.; Dourmad, J.Y.; de Greef, K.; Houwers, H.W.J.; Cinar, M.U.; Fàbrega, E.; et al. Evaluation of the Sustainability of Contrasted Pig Farming Systems: Integrated Evaluation. Animal 2014, 8, 2058–2068. [Google Scholar] [CrossRef]
- Dourmad, J.Y.; Ryschawy, J.; Trousson, T.; Bonneau, M.; Gonzàlez, J.; Houwers, H.W.J.; Hviid, M.; Zimmer, C.; Nguyen, T.L.T.; Morgensen, L. Evaluating Environmental Impacts of Contrasting Pig Farming Systems with Life Cycle Assessment. Anim. Int. J. Anim. Biosci. 2014, 8, 2027–2037. [Google Scholar] [CrossRef]
- van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards Better Representation of Organic Agriculture in Life Cycle Assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Zira, S.; Rydhmer, L.; Ivarsson, E.; Hoffmann, R.; Röös, E. A Life Cycle Sustainability Assessment of Organic and Conventional Pork Supply Chains in Sweden. Sustain. Prod. Consum. 2021, 28, 21–38. [Google Scholar] [CrossRef]
- Florindo, T.J.; Bom De Medeiros Florindo, G.I.; Ruviaro, C.F.; Pinto, A.T. Multicriteria Decision-Making and Probabilistic Weighing Applied to Sustainable Assessment of Beef Life Cycle. J. Clean. Prod. 2020, 242, 118362. [Google Scholar] [CrossRef]
- Broom, D.M. Animal Welfare: An Aspect of Care, Sustainability, and Food Quality Required by the Public. J. Vet. Med. Educ. 2010, 37, 83–88. [Google Scholar] [CrossRef]
- Webster, J. Animal Welfare: Freedoms, Dominions and A Life Worth Living. Animals 2016, 6, 35. [Google Scholar] [CrossRef]
- FAO; UNEP; WHO; WOAH. One Health Joint Plan of Action (2022–2026): Working Together for the Health of Humans, Animals, Plants and the Environment, 1st ed.; World Health Organization: Rome, Italy, 2022; ISBN 978-92-4-005913-9. [Google Scholar]
- Scherer, L.; Tomasik, B.; Rueda, O.; Pfister, S. Framework for Integrating Animal Welfare into Life Cycle Sustainability Assessment. Int. J. Life Cycle Assess. 2018, 23, 1476–1490. [Google Scholar] [CrossRef]
- Lanzoni, L.; Whatford, L.; Atzori, A.S.; Chincarini, M.; Giammarco, M.; Fusaro, I.; Vignola, G. Review: The Challenge to Integrate Animal Welfare Indicators into the Life Cycle Assessment. Anim. Int. J. Anim. Biosci. 2023, 17, 100794. [Google Scholar] [CrossRef]
- Bartlett, H.; Balmford, A.; Holmes, M.A.; Wood, J.L.N. Advancing the Quantitative Characterization of Farm Animal Welfare. Proc. R. Soc. B 2023, 290, 20230120. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, L.; Paolotti, L.; Rosati, A.; Boggia, A.; Castellini, C. Assessing the Sustainability of Different Poultry Production Systems: A Multicriteria Approach. J. Clean. Prod. 2019, 211, 103–114. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Edwards, S.A.; van Limbergen, T.; Kyriazakis, I. The Challenge of Incorporating Animal Welfare in a Social Life Cycle Assessment Model of European Chicken Production. Int. J. Life Cycle Assess. 2019, 24, 1093–1104. [Google Scholar] [CrossRef]
- Ziegler, F.; Nilsson, K.; Levermann, N.; Dorph, M.; Lyberth, B.; Jessen, A.A.; Desportes, G. Local Seal or Imported Meat? Sustainability Evaluation of Food Choices in Greenland, Based on Life Cycle Assessment. Foods 2021, 10, 1194. [Google Scholar] [CrossRef]
- Head, M.; Sevenster, M.; Odegard, I.; Krutwagen, B.; Croezen, H.; Bergsma, G. Life Cycle Impacts of Protein-Rich Foods: Creating Robust yet Extensive Life Cycle Models for Use in a Consumer App. J. Clean. Prod. 2014, 73, 165–174. [Google Scholar] [CrossRef]
- Ruckli, A.K.; Hörtenhuber, S.J.; Ferrari, P.; Guy, J.; Helmerichs, J.; Hoste, R.; Hubbard, C.; Kasperczyk, N.; Leeb, C.; Malak-Rawlikowska, A.; et al. Integrative Sustainability Analysis of European Pig Farms: Development of a Multi-Criteria Assessment Tool. Sustainability 2022, 14, 26. [Google Scholar] [CrossRef]
- Castellini, C.; Boggia, A.; Paolotti, L.; Thoma, G.; Kim, D. Environmental Impacts and Life Cycle Analysis of Organic Meat Production and Processing. In Organic Meat Production and Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 113–136. [Google Scholar]
- Statista Konsum von Fleisch Weltweit Nach Fleischart Bis. 2024. Available online: https://de.statista.com/statistik/daten/studie/296612/umfrage/konsum-von-fleisch-weltweit-nach-fleischart/ (accessed on 11 March 2024).
- Halpern, B.S.; Frazier, M.; Verstaen, J.; Rayner, P.-E.; Clawson, G.; Blanchard, J.L.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Jacobsen, N.S.; et al. The Environmental Footprint of Global Food Production. Nat. Sustain. 2022, 5, 1027–1039. [Google Scholar] [CrossRef]
- FAO Global Statistical Yearbook, FAO Regional Statistical Yearbooks. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 11 March 2024).
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Including Human–Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef] [PubMed]
- Webster, J. Animal Welfare: Limping towards Eden: A Practical Approach to Redressing the Problem of Our Dominion over the Animals; UFAW Animal Welfare Series; Blackwell Pub: Oxford, UK; Ames, IA, USA, 2005; ISBN 0-470-75110-X. [Google Scholar]
- Dalmau, A.; Velarde, A.; Scott, K.; Edwards, S.; Butterworth, A.; Veissier, I.; Keeling, L.; van Overbeke, G.; Bedaux, V. Welfare Quality® Welfare Quality® Assessment Protocol for Pigs (Sows and Piglets, Growing and Finishing Pigs); Welfare Quality® Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Webster, A.J. Farm Animal Welfare: The Five Freedoms and the Free Market. Vet. J. 2001, 161, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Petit, G.; Sablayrolles, C.; Yannou-Le Bris, G. Combining Eco-Social and Environmental Indicators to Assess the Sustainability Performance of a Food Value Chain: A Case Study. J. Clean. Prod. 2018, 191, 135–143. [Google Scholar] [CrossRef]
- van Nieuwamerongen, S.E.; Soede, N.M.; van der Peet-Schwering, C.M.C.; Kemp, B.; Bolhuis, J.E. Gradual Weaning during an Extended Lactation Period Improves Performance and Behavior of Pigs Raised in a Multi-Suckling System. Appl. Anim. Behav. Sci. 2017, 194, 24–35. [Google Scholar] [CrossRef]
- Ahrens, F.; Pollmüller, T.; Sünkel, Y.; Bussemas, R.; Weißmann, F.; Erhard, M.H. Prolonged Suckling Period in Organic Piglet Production—Effects on Some Performance and Health Aspects. In Cultivating the Future Based on Science, Volume 2—Livestock, Socio-Economy and Cross Disciplinary Research in Organic Agriculture, Proceedings of the Second Scientific Conference of the International Society of Organic Agriculture Research (ISOFAR), Modena, Italy, 18 June 2008; International Society of Organic Agricultural Research (ISOFAR): Bonn, Germany, 2008; pp. 142–145. [Google Scholar]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, Y.; Li, H.; Dai, M. A Comparative Study of the Numerical Scales and the Prioritization Methods in AHP. Eur. J. Oper. Res. 2008, 186, 229–242. [Google Scholar] [CrossRef]
- Finan, J.S.; Hurley, W.J. Transitive Calibration of the AHP Verbal Scale. Eur. J. Oper. Res. 1999, 112, 367–372. [Google Scholar] [CrossRef]
- Ishizaka, A.; Balkenborg, D.; Kaplan, T. Influence of Aggregation and Measurement Scale on Ranking a Compromise Alternative in AHP. J. Oper. Res. Soc. 2011, 62, 700–710. [Google Scholar] [CrossRef]
- Ji, P.; Jiang, R. Scale Transitivity in the AHP. J. Oper. Res. Soc. 2003, 54, 896–905. [Google Scholar] [CrossRef]
- Lootsma, F.A. Scale Sensitivity in the Multiplicative AHP and SMART. J. Multi-Criteria Decis. Anal. 1993, 2, 87–110. [Google Scholar] [CrossRef]
- Salo, A.A.; Hämäläinen, R.P. On the Measurement of Preferences in the Analytic Hierarchy Process. J. Multi-Criteria Decis. Anal. 1997, 6, 309–319. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Saaty, T.L. Group Decision Making and the AHP. In The Analytic Hierarchy Process; Springer: Berlin/Heidelberg, Germany, 1989; pp. 59–67. [Google Scholar]
- ISO 14044 Standard; Environmental Management–Life Cycle Assessment–Requirements and Guidelines. ISO Beuth Verlag GmbH: Berlin, Germany, 2018.
- haltungsform.de Mindestanforderungen Für Programme, Die Kriterien Für Betriebe Mit Schweinemast Festlegen. Available online: https://www.haltungsform.de/im-ueberblick/ (accessed on 23 May 2024).
- Dolman, M.A.; Vrolijk, H.C.J.; Boer, I.J.M. Exploring Variation in Economic, Environmental and Societal Performance among Dutch Fattening Pig Farms. Livest. Sci. 2012, 149, 143–154. [Google Scholar] [CrossRef]
- Doyle, R.E.; Groat, J.; Wynn, P.C.; Holyoake, P.K. Physiological and Nonphysiological Indicators of Body Condition Score in Weaner Pigs. J. Anim. Sci. 2015, 93, 1887–1895. [Google Scholar] [CrossRef]
- Pietrosemoli, S.; Tang, C. Animal Welfare and Production Challenges Associated with Pasture Pig Systems: A Review. Agriculture 2020, 10, 34. [Google Scholar] [CrossRef]
- Zira, S.; Röös, E.; Ivarsson, E.; Hoffmann, R.; Rydhmer, L. Social Life Cycle Assessment of Swedish Organic and Conventional Pork Production. Int. J. Life Cycle Assess. 2020, 25, 1957–1975. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A Review of Fuzzy AHP Methods for Decision-Making with Subjective Judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Cinelli, M.; Burgherr, P.; Kadziński, M.; Słowiński, R. Proper and Improper Uses of MCDA Methods in Energy Systems Analysis. Decis. Support Syst. 2022, 163, 113848. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Beckmann, M., Künzi, H.P., Hwang, C.-L., Yoon, K., Eds.; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. ISBN 978-3-540-10558-9. [Google Scholar]
- Landry, M.; Nadeau, R. L’Aide à La Décision: Nature, Instruments et Perspectives D’avenir; Sciences de l’administration; Presses de l’Université Laval: Québec, QC, Canada, 1986; Volume 2, ISBN 978-2-7637-7084-0. [Google Scholar]
- Röös, E.; Ekelund, L.; Tjärnemo, H. Communicating the Environmental Impact of Meat Production: Challenges in the Development of a Swedish Meat Guide. J. Clean. Prod. 2014, 73, 154–164. [Google Scholar] [CrossRef]
- Boggia, A.; Paolotti, L.; Antegiovanni, P.; Fagioli, F.F.; Rocchi, L. Managing Ammonia Emissions Using No-Litter Flooring System for Broilers: Environmental and Economic Analysis. Environ. Sci. Policy 2019, 101, 331–340. [Google Scholar] [CrossRef]
- Dolman, M.A.; Sonneveld, M.P.W.; Mollenhorst, H.; Boer, I.J.M. Benchmarking the Economic, Environmental and Societal Performance of Dutch Dairy Farms Aiming at Internal Recycling of Nutrients. J. Clean. Prod. 2014, 73, 245–252. [Google Scholar] [CrossRef]
- Geß, A.; Viola, I.; Miretti, S.; Macchi, E.; Perona, G.; Battaglini, L.; Baratta, M. A New Ap-proach to LCA Evaluation of Lamb Meat Production in Two Different Breeding Systems in Northern Italy. Front. Vet. Sci. 2020, 7, 651. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Köpke, U. Comparing Intensive, Extensified and Organic Grassland Farming in Southern Germany by Process Life Cycle Assessment. Agric. Ecosyst. Environ. 2001, 83, 43–53. [Google Scholar] [CrossRef]
- Mas, K.; Pardo, G.; Galán, E.; Del Prado, A. Assessing Dairy Farm Sustainability Using Whole-Farm Modelling and Life Cycle Analysis. Adv. Anim. Biosci. 2016, 7, 259–260. [Google Scholar] [CrossRef]
- Mollenhorst, H.; Berentsen, P.B.M.; Boer, I.J.M. On-Farm Quantification of Sustainability Indicators: An Application to Egg Production Systems. Br. Poult. Sci. 2006, 47, 405–417. [Google Scholar] [CrossRef]
- Müller-Lindenlauf, M.; Deittert, C.; Köpke, U. Assessment of Environmental Effects, Animal Welfare and Milk Quality among Organic Dairy Farms. Livest. Sci. 2010, 128, 140–148. [Google Scholar] [CrossRef]
- Rocchi, L.; Cartoni Mancinelli, A.; Paolotti, L.; Mattioli, S.; Boggia, A.; Papi, F.; Castellini, C. Sustainability of Rearing System Using Multicriteria Analysis: Application in Commercial Poultry Production. Anim. Open Access J. 2021, 11, 3483. [Google Scholar] [CrossRef]
- Turner, I.; Heidari, D.; Widowski, T.; Pelletier, N. Development of a Life Cycle Impact As-sessment Methodology for Animal Welfare with an Application in the Poultry Industry. Sustain. Prod. Consum. 2023, 40, 30–47. [Google Scholar] [CrossRef]
- van Asselt, E.D.; Capuano, E.; van der Fels-Klerx, H.J. Sustainability of Milk Production in the Netherlands—A Comparison between Raw Organic, Pasteurised Organic and Conventional Milk. Int. Dairy J. 2015, 47, 19–26. [Google Scholar] [CrossRef]
- van Asselt, E.D.; van Bussel, L.G.J.; van Horne, P.; van der Voet, H.; van der Heijden, G.W.A.M.; van der Fels-Klerx, H.J. Assessing the Sustainability of Egg Production Systems in The Netherlands. Poult. Sci. 2015, 94, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Zucali, M.; Battelli, G.; Battini, M.; Bava, L.; Decimo, M.; Mattiello, S.; Povolo, M.; Brasca, M. Multi-Dimensional Assessment and Scoring System for Dairy Farms. Ital. J. Anim. Sci. 2016, 15, 492–503. [Google Scholar] [CrossRef]
- Liu, F.; Peng, Y.; Zhang, W.; Pedrycz, W. On Consistency in AHP and Fuzzy AHP. J. Syst. Sci. Inf. 2017, 5, 128–147. [Google Scholar] [CrossRef]
- Cho, F. Ahpsurvey: Analytic Hierarchy Process for Survey Data 2019. Available online: https://cran.r-project.org/web/packages/ahpsurvey/index.html (accessed on 9 April 2025).
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
Indicator: Space per Animal (50–110 kg) | Measurement by Characteristic (Minimum Indoor Area) |
---|---|
1 | 0.75 m2 |
2 | 0.825 m2 |
3 | 1.05 m2 |
4 | 1.5 m2 |
5 | <110 kg: 1.3 m2; 1 m2 (outside) >110 kg: 1.5 m2; 1.2 m2 (outside) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treml, N.; Naber, E.; Schultmann, F. Towards an Animal Welfare Impact Category: Weighting Indicators in Pig Farming. Sustainability 2025, 17, 4677. https://doi.org/10.3390/su17104677
Treml N, Naber E, Schultmann F. Towards an Animal Welfare Impact Category: Weighting Indicators in Pig Farming. Sustainability. 2025; 17(10):4677. https://doi.org/10.3390/su17104677
Chicago/Turabian StyleTreml, Nina, Elias Naber, and Frank Schultmann. 2025. "Towards an Animal Welfare Impact Category: Weighting Indicators in Pig Farming" Sustainability 17, no. 10: 4677. https://doi.org/10.3390/su17104677
APA StyleTreml, N., Naber, E., & Schultmann, F. (2025). Towards an Animal Welfare Impact Category: Weighting Indicators in Pig Farming. Sustainability, 17(10), 4677. https://doi.org/10.3390/su17104677