Effect of the Chlorella vulgaris Bioencapsulated by Daphnia magna on the Growth and Nutritional Value of the Penaeus vannamei Cultured in a Synbiotic System
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Design
2.3. Experimental Conditions
2.4. Maintenance of C. vulgaris and D. magna Stock Cultures
2.5. Water Quality Monitoring
2.6. Zootechnical Performance Variables of Shrimp
2.7. Analysis of Proteins and Lipids
2.8. Statistical Analysis
3. Results
3.1. Water Quality Monitoring
3.2. Zootechnical Performance Variables of Shrimp
3.3. Protein and Lipid Content
3.4. Correlation, Regression, and PCA Analysis
4. Discussion
4.1. Water Quality
4.2. Zootechnical Performance
4.3. Protein and Lipids Content
4.4. Interaction Between Zootechnical Performance and Nutritional Content
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024. Blue Transformation in Action; FAO: Rome, Italy, 2025; 246p. [Google Scholar] [CrossRef]
- Ahmad, M.T.; Shariff, M.; Yusoff, F.; Goh, Y.M.; Banerjee, S. Applications of microalga Chlorella vulgaris in aquaculture. Rev. Aquac. 2020, 12, 328–346. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Enhancing digestibility of Chlorella vulgaris biomass in monogastric diets: Strategies and insights. Animals 2023, 13, 1017. [Google Scholar] [CrossRef] [PubMed]
- Villarruel-López, A.; Ascencio, F.; Nuño, K. Microalgae, a potential natural functional food source—A review. Pol. J. Food Nutr. Sci. 2017, 67, 251–263. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Mann, J.; Dumas, A. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture 2017, 481, 25–39. [Google Scholar] [CrossRef]
- Dantas, D.M.; Cahú, T.B.; Oliveira, C.Y.B.; Abadie-Guedes, R.; Roberto, N.A.; Santana, W.M.; Gálvez, A.O.; Guedes, R.C.; Bezerra, R.S. Chlorella vulgaris functional alcoholic beverage: Effect on propagation of cortical spreading depression and functional properties. PLoS ONE 2021, 16, e0255996. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.Y.B.; de Abreu, J.L.; de Oliveira, C.D.L.; Lima, P.C.; Gálvez, A.O.; de Macedo Dantas, D.M. Growth of Chlorella vulgaris using wastewater from Nile tilapia (Oreochromis niloticus) farming in a low-salinity biofloc system. Acta Sci. Technol. 2020, 42, e46232. [Google Scholar] [CrossRef]
- Sinha, S.K.; Gupta, A.; Bharalee, R. Production of biodiesel from freshwater microalgae and evaluation of fuel properties based on fatty acid methyl ester profile. Biofuels 2016, 7, 69–78. [Google Scholar] [CrossRef]
- Mtaki, K.; Kyewalyanga, M.S.; Mtolera, M.S.P. Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Ann. Microbiol. 2021, 71, 7. [Google Scholar] [CrossRef]
- Oliveira, C.Y.B.; Jacob, A.; Nader, C.; Oliveira, C.D.L.; Matos, Â.P.; Araújo, E.S.; Shabnam, N.; Ashok, B.; Gálvez, A.O. An overview on microalgae as renewable resources for meeting sustainable development goals. J. Environ. Manag. 2022, 320, 115897. [Google Scholar] [CrossRef]
- Lashkarboluki, M.; Jafaryan, H.; Faramarzi, M.; Aminadeh, A.; Borami, A. Evaluation of resistance in Acipenser percicus larvae fed with bioencepsulated Daphnia magna via Saccharomyces cerevisiae product (Amax) against challenge test. World J. Fish Mar. Sci. 2011, 3, 340–345. Available online: http://idosi.org/wjfms/wjfms3(4)11/14.pdf (accessed on 23 April 2025).
- Rasdi, N.W.; Ramlee, A.; Abol-Munafi, A.; Ikhwanuddin, M.; Azani, N.; Yuslan, A.; Suhaimi, H.; Arshad, A. The effect of enriched Cladocera on growth, survivability and body coloration of Siamese fighting fish. J. Environ. Biol. 2020, 41, 1257–1263. [Google Scholar] [CrossRef]
- Joshua, W.J.; Zulperi, Z.; Kamarudin, M.S.; Ikhsan, N.; Chin, Y.K.; Ina-Salwany, M.Y.; Yusoff, F.M. Live-food enriched with Chlorella vulgaris as a potential supplemental diet to enhance performance and immune response of Tor tambroides larvae (Bleeker 1854). Aquaculture 2024, 580, 740276. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J.; Le Vay, L. Artemia replacement in co-feeding regimes for mysis and postlarval stages of Litopenaeus vannamei: Nutritional contribution of inert diets to tissue growth as indicated by natural carbon stable isotopes. Aquaculture 2009, 297, 128–135. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Han, Z.; Hu, G.; Yan, B.; Zhang, Q.; Gao, H. Effect of concentration of DHA nutrient-enhanced Artemia on the growth and physiology of the ridgetail white prawn, Exopalaemon carinicauda (Decapoda, Caridea, Palaemonidae). Crustaceana 2021, 94, 29–43. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Mozanzadeh, M.T.; Qasemi, A.; Oujifard, A.; Nafisi Bahabadi, M. Effects of the addition of Calanopia elliptica, Artemia franciscana, and Brachionus rotundiformis in a nursery biofloc system on water quality, growth, gut morphology, health indices, and transcriptional response of immune and antioxidant-related genes in Penaeus vannamei. Aqua. Int. 2022, 30, 653–676. [Google Scholar] [CrossRef]
- Azra, M.N.; Noor, M.I.M.; Burlakovs, J.; Abdullah, M.F.; Abd Latif, Z.; Yik Sung, Y. Trends and new developments in Artemia research. Animals 2022, 12, 2321. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, R.J.V.; Dos Santos, E.P.; De Almeida Costa, G.K.; Da Silva Campos, C.V.F.; Da Silva, S.M.B.C.; Gálvez, A.O.; Brito, L.O. Effect of different frequencies of the addition of Brachionus plicatilis on the performance of Litopenaeus vannamei in a nursery biofloc system with rice bran (anaerobic and aerobic) as an organic carbon source. Aquaculture 2021, 540, 736669. [Google Scholar] [CrossRef]
- Martínez Soler, M.; Courtois de Vicose, G.; Roo Filgueira, J.; Zambrano Sánchez, J.; Yugcha Oñate, E.; Montachana Chimborazo, M.; Intriago Díaz, W.; Reyes Abad, E.; Afonso López, J.M. Effect of HUFA in enriched Artemia on growth performance, biochemical and fatty acid content, and hepatopancreatic features of Penaeus vannamei Post-larvae from a commercial shrimp hatchery in Santa Elena, Ecuador. Aquac. Nutr. 2023, 23, 7343070. [Google Scholar] [CrossRef]
- De Lima, L.C.M.; Souza-Santos, L.P. The ingestion rate of Litopenaeus vannamei larvae as a function of Tisbe biminiensis copepod concentration. Aquaculture 2007, 271, 411–419. [Google Scholar] [CrossRef]
- Dinesh Kumar, S.; Santhanam, P.; Ananth, S.; Kaviyarasan, M.; Nithya, P.; Dhanalakshmi, B.; Park, M.S.; Kim, M.K. Evaluation of suitability of wastewater-grown microalgae (Picochlorum maculatum) and copepod (Oithona rigida) as live feed for white leg shrimp Litopenaeus vannamei post-larvae. Aquac. Int. 2016, 25, 393–411. [Google Scholar] [CrossRef]
- Che, J.; Su, B.; Tang, B.; Bu, X.; Li, J.; Lin, Y.; Yang, Y.; Ge, X. Apparent digestibility coefficients of animal and plant feed ingredients for juvenile Pseudobagrus ussuriensis. Aquac. Nut. 2017, 23, 1128–1135. [Google Scholar] [CrossRef]
- El-Feky, M.M.; Abo-Taleb, H. Effect of feeding with different types of nutrients on intensive culture of the water flea, Daphnia magna Straus, 1820. Egypt. J. Aquatic Biol. Fish. 2020, 24, 655–666. [Google Scholar] [CrossRef]
- Tseng, D.Y.; Hsieh, S.C.; Wong, Y.C.; Hu, S.Y.; Hsieh, J.M.; Chiu, S.T.; Yeh, S.P.; Liu, C.H. Chitin derived from Daphnia similis and its derivate, chitosan, promote growth performance of Penaeus vannamei. Aquaculture 2021, 531, 735919. [Google Scholar] [CrossRef]
- Cheng, A.C.; Shiu, Y.L.; Chiu, S.T.; Ballantyne, R.; Liu, C.H. Effects of chitin from Daphnia similis and its derivative, chitosan on the immune response and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2021, 119, 329–338. [Google Scholar] [CrossRef]
- Abo-Taleb, H.A.; Ashour, M.; Elokaby, M.A.; Mabrouk, M.M.; El-Feky, M.M.M.; Abdelzaher, O.F.; Gaber, A.; Alsanie, W.F.; Mansour, A.T. Effect of a new feed Daphnia magna (Straus, 1820), as a fish meal substitute on growth, feed utilization, histological status, and economic revenue of grey mullet, Mugil cephalus (Linnaeus 1758). Sustainability 2021, 13, 7093. [Google Scholar] [CrossRef]
- Monakov, A.V. Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academic Science, U.S.S.R. J. Fish. Board Can. 1972, 29, 363–383. [Google Scholar] [CrossRef]
- Torrentera, L.; Tacon, A. La Producción de Alimento Vivo y su Importancia en Acuacultura: Una Diagnosis; GCP/RLA/075/ITA. Documento de Campo 1989, N°. 12; FAO: Rome, Italy, 1989; 90p. [Google Scholar]
- Barrera, T.C.; Andrade, R.L.; Castro, G.; Mejía, J.C.; Sánchez, A.M. Alimento vivo en la acuicultura. ContactoS 2003, 48, 27–33. [Google Scholar]
- Herawati, V.; Nugroho, R.; Hutabarat, J. Nutritional value content, biomass production and growth performance of Daphnia magna cultured with different animal wastes resulted from probiotic bacteria fermentation. IOP Conf. Ser. Earth Environ. Sci. 2017, 55, 012004. [Google Scholar] [CrossRef]
- Da Silva Campos, C.V.F.; Da Silva Farias, R.; Da Silva, S.M.B.C.; Severi, W.; Brito, L.O.; Gálvez, A.O. Production of Daphnia similis Claus, 1876 using wastewater from tilapia cultivation in a biofloc system. Aquac. Int. 2020, 28, 403–419. [Google Scholar] [CrossRef]
- da Silva Campos, C.V.F.; Oliveira, C.Y.B.; dos Santos, E.P.; de Abreu, J.L.; Severi, W.; da Silva, S.M.B.C.; Brito, L.O.; Gálvez, A.O. Chlorella-Daphnia consortium as a promising tool for bioremediation of Nile tilapia farming wastewater. Chem. Ecol. 2022, 38, 873–895. [Google Scholar] [CrossRef]
- Turcihan, G.; Isinibilir, M.; Zeybek, Y.G.; Eryalçin, K.M. Effect of different feeds on reproduction performance, nutritional components and fatty acid composition of cladocer water flea (Daphnia magna). Aquac. Res. 2022, 53, 2420–2430. [Google Scholar] [CrossRef]
- Cahú, T.B.; Santos, S.D.; Mendes, A.; Córdula, C.R.; Chavante, S.F.; Carvalho, L.B.; Nader, H.B.; Bezerra, R.S. Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochem. 2012, 47, 570–577. [Google Scholar] [CrossRef]
- Nemcova, Y.; Kalina, T. Cell wall development, microfibril and pyrenoid structure in type strains of Chlorella vulgaris, C. kessleri, C. sorokiniana compared with C. luteoviridis (Trebouxiophyceae, hlorophyta). Arch. Hydrobiol. Suppl. 2000, 136, 95–106. [Google Scholar]
- de Lima, P.C.M.; da Silva, A.E.M.; da Silva, D.A.; de Oliveira, C.Y.B.; Severi, W.; Brito, L.O.; Olivera Gálvez, A. Use of recirculation and settling chamber in synbiotic multi-trophic culture of Crassostrea sp. with Litopenaeus vannamei. Aquac. Res. 2022, 53, 6626–6640. [Google Scholar] [CrossRef]
- Van Wyk, P. Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. In Farming Marine Shrimp in Recirculating Freshwater Systems; Van Wyk, P., Davis-Hodgkins, M., Laramore, R., Main, K.L., Mountain, J., Scarpa, J., Eds.; Florida Department of Agriculture and Consumer Services, Harbor Branch Oceanic Institute: Fort Pierce, FL, USA, 1999; pp. 125–140. [Google Scholar]
- Aravind, R.; Shyne Anand, P.S.; Vinay, T.N.; Biju, I.F.; Sandeep, K.P.; Raymond, J.A.J.; Rajamanickam, S.; Balasubramanian, C.P.; Vijayan, K.K. Population growth and mass production of brackish water cladoceran Eurycercus beringi sp. nov. under different diet and salinity regime, and its role in P. indicus larval rearing. Reg. Stud. Mar. Sci. 2021, 44, 101777. [Google Scholar] [CrossRef]
- Kanz, T.; Bold, H.C. Physiological Studies, Morphological and Taxonomic Investigations of Nostoc and Anabaena in Culture; Publication N°. 6924; University of Texas: Austin, TX, USA, 1969. [Google Scholar]
- Renstrom, B.; Borch, G.; Skulberg, O.M.; Jensen, S.L. Optical purity of (3S, 3’S)-astaxanthin from Haematococcus pluvialis. Phytochemistry 1981, 20, 2561–2564. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc Technology—A Pratical Guide Book; The world Aquaculture Society: Baton Rouge, LA, USA, 2009; p. 182. [Google Scholar]
- Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis; Grasshoff, K., Ed.; Verlag Chemie Weinhein: New York, NY, USA, 1976; pp. 117–187. [Google Scholar]
- Golterman, H.J.; Clyno, R.S.; Ohnstad, M.A. Methods for Physical and Chemical Analysis of Freshwaters; Blackwell Scientific Publications: Oxford, UK; London, UK, 1978. [Google Scholar]
- Mackereth, F.J.H.; Heron, J.; Talling, J.F. Water Analysis: Some Revised Methods for Limnologists; Blackwell Scientific Publications: Oxford, UK; London, UK, 1978; Volume 36, p. 117. [Google Scholar]
- Felföldy, L.; Szabo, E.; Tothl, L. A biológiai vizminösités. Vizügyi Hidrobiológia; VGI: Budapest, Hungary, 1987; Volume 16, p. 258. [Google Scholar]
- American Public Health Association [APHA]. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Association of Official Analytical Chemists [AOAC]. Official Methods of Analysis, 18th ed.; Horwitz, W., Ed.; AOAC International: Washington, DC, USA, 2012. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 15 January 2022).
- Emerenciano, M.G.C.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda-Baeza, A. Biofloc technology (BFT): A tool for water quality management in aquaculture. In Water Quality; Tutu, H., Grover, B.P., Eds.; InTech: Rijeka, Croatia, 2017; Volume 5, pp. 92–109. [Google Scholar] [CrossRef]
- Boyd, C.E. Phosphorus. In Water Quality; Springer International Publishing AG: Cham, Switzerland, 2015; pp. 243–261. [Google Scholar]
- Furtado, P.S.; Poersch, L.H.; Wasielesky, W., Jr. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture 2011, 321, 130–135. [Google Scholar] [CrossRef]
- Furtado, P.S.; Poersch, L.H.; Wasielesky, W., Jr. The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquac. Int. 2015, 23, 345–358. [Google Scholar] [CrossRef]
- Das, S.; Tiwari, V.; Venkateshwarlu, G.; Reddy, A.; Parhi, J.; Sharma, P.; Chettri, J.K. Growth, survival and fatty acid composition of Macrobrachium rosenbergii (de Man, 1879) post larvae fed HUFA-enriched Moina micrura. Aquaculture 2007, 269, 464–475. [Google Scholar] [CrossRef]
- Rasdi, N.W.; Abdullah, M.I.; Azman, S.; Karim, M.; Syukri, F.; Hagiwara, A. The effects of enriched Moina on the growth, survival, and proximate analysis of marine shrimp (Penaeus monodon). J. Sustain. Sci. Manag. 2021, 16, 56–70. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mallick, P.H. Cladocera as a substitute for Artemia as live feed in aquaculture practices: A review. Sustain. Agri Food Environ. Res.-Discontin. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Khatoon, H.; Banerjee, S.; Yusoff, F.M.; Shariff, M. Use of microalgal-enriched Diaphanosoma celebensis Stingelin, 1900 for rearing Litopenaeus vannamei (Boone, 1931) postlarvae. Aquac. Nutr. 2012, 19, 163–171. [Google Scholar] [CrossRef]
- Hoff, F.H.; Snell, T.W. Plankton Culture Manual, 6th ed.; Florida Aqua Farms, Inc.: Dade City, FL, USA, 2004. [Google Scholar]
- Niu, J.; Liu, Y.J.; Lin, H.Z.; Mai, K.S.; Yang, H.J.; Liang, G.Y.; Tian, L.X. Effects of dietary chitosan on growth, survival and stress tolerance of postlarval shrimp, Litopenaeus vannamei. Aquac. Nutr. 2011, 17, e406–e412. [Google Scholar] [CrossRef]
- Mohan, K.; Rajan, D.K.; Ganesan, A.R.; Divya, D.; Johansen, J.; Zhang, S. Chitin, chitosan and chitooligosaccharides as potential growth promoters and immunostimulants in aquaculture: A comprehensive review. Int. J. Biol. Macromol. 2023, 251, 126285. [Google Scholar] [CrossRef]
- Gors, M.; Schumann, R.; Hepperle, D. Quality analysis of ecommercial Chlorella products used as dietary supplement inhuman nutrition. J. Appl. Phycol. 2009, 22, 265–276. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Regenstein, J.M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 2016, 48, 40–50. [Google Scholar] [CrossRef]
- Cauchie, H.M.; Jaspar-Versali, M.F.; Hoffmann, L.; Thomé, J.P. Potential of using Daphnia magna (crustacea) developing in an aerated waste stabilization pond as a commercial source of chitin. Aquaculture 2002, 205, 103–117. [Google Scholar] [CrossRef]
- Joshua, W.J.; Kamarudin, M.S.; Ikhsan, N.; Yusoff, F.; Zulperi, Z. Development of enriched Artemia and Moina in larviculture of fish and crustaceans: A review. Lat. Am. J. Aquat. Res. 2022, 50, 144–157. [Google Scholar] [CrossRef]
Parameter | F | 5DF | 10DF |
---|---|---|---|
Temperature (°C) | 28.42 ± 1.06 | 28.49 ± 1.10 | 28.57 ± 1.13 |
pH | 8.50 ± 0.10 | 8.52 ± 0.09 | 8.52 ± 0.08 |
Salinity (g L−1) | 30.43 ± 2.09 | 29.37 ± 2.55 | 29.56 ± 2.52 |
DO (mg L−1) | 7.26 ± 0.88 | 7.66 ± 0.98 | 7.58 ± 0.91 |
SS (ml L−1) | 1.96 ± 1.58 | 3.64 ± 2.55 | 4.97 ± 2.45 |
Alkalinity (mg CaCO3 L−1) | 152 ± 23.71 | 161 ± 18.33 | 165 ± 14.26 |
TAN (mg L−1) | 0.96 ± 0.47 | 0.73 ± 0.28 | 0.80 ± 0.26 |
NO2−-N (mg L−1) | 0.06 ± 0.04 | 0.09 ± 0.07 | 0.08 ± 0.05 |
NO3−-N (mg L−1) | 0.65 ± 0.24 | 0.45 ± 0.26 | 0.51± 0.15 |
PO4−3 (mg L−1) | 5.89 ± 0.60 b | 6.56 ± 0.54 ab | 6.72 ± 0.68 a |
Parameter | F | 5DF | 10DF |
---|---|---|---|
Final biomass (g) | 14.53 ± 0.65 a | 16.67 ± 1.81 ab | 18.05 ± 1.44 b |
Final weight (g) | 0.575 ± 0.033 a | 0.623 ± 0.071 a | 0.750 ± 0.065 b |
Weight gain (g) | 0.564 ± 0.033 b | 0.612 ± 0.071 ab | 0.709 ± 0.088 a |
Biomass gain (g) | 14.2 ± 0.65 b | 16.34 ± 1.81 ab | 17.72 ± 1.44 a |
FCR | 1.57 ± 0.19 a | 1.44 ± 0.32 ab | 1.01 ± 0.14 b |
SGR (% day−1) | 11.43 ± 0.12 a | 12.24 ± 0.37 ab | 12.47 ± 0.64 b |
Survival rate (%) | 84.44 ± 6.28 a | 89.33 ± 0.94 a | 80.25 ± 3.09 a |
Productivity (kg m−3) | 1.45 ± 0.06 a | 1.66 ± 0.18 ab | 1.80 ± 0.14 b |
FE (%) | 64.03 ± 7.50 a | 71.95 ± 10.97 a | 99.97 ± 14.54 b |
PER | 0.78 ± 0.03 a | 0.81 ± 0.09 a | 0.88 ± 0.07a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, J.L.d.; Campos, C.V.F.d.S.; Lima, P.C.M.d.; Brandão, B.d.C.S.; Mota, G.C.P.; Moraes, L.B.S.d.; Oliveira, C.Y.B.; Andrade, T.P.d.; Gálvez, A.O. Effect of the Chlorella vulgaris Bioencapsulated by Daphnia magna on the Growth and Nutritional Value of the Penaeus vannamei Cultured in a Synbiotic System. Sustainability 2025, 17, 4674. https://doi.org/10.3390/su17104674
Abreu JLd, Campos CVFdS, Lima PCMd, Brandão BdCS, Mota GCP, Moraes LBSd, Oliveira CYB, Andrade TPd, Gálvez AO. Effect of the Chlorella vulgaris Bioencapsulated by Daphnia magna on the Growth and Nutritional Value of the Penaeus vannamei Cultured in a Synbiotic System. Sustainability. 2025; 17(10):4674. https://doi.org/10.3390/su17104674
Chicago/Turabian StyleAbreu, Jéssika Lima de, Clarissa Vilela Figueiredo da Silva Campos, Priscilla Celes Maciel de Lima, Barbara de Cassia Soares Brandão, Géssica Cavalcanti Pereira Mota, Laenne Barbara Silva de Moraes, Carlos Yure B. Oliveira, Thales Passos de Andrade, and Alfredo Olivera Gálvez. 2025. "Effect of the Chlorella vulgaris Bioencapsulated by Daphnia magna on the Growth and Nutritional Value of the Penaeus vannamei Cultured in a Synbiotic System" Sustainability 17, no. 10: 4674. https://doi.org/10.3390/su17104674
APA StyleAbreu, J. L. d., Campos, C. V. F. d. S., Lima, P. C. M. d., Brandão, B. d. C. S., Mota, G. C. P., Moraes, L. B. S. d., Oliveira, C. Y. B., Andrade, T. P. d., & Gálvez, A. O. (2025). Effect of the Chlorella vulgaris Bioencapsulated by Daphnia magna on the Growth and Nutritional Value of the Penaeus vannamei Cultured in a Synbiotic System. Sustainability, 17(10), 4674. https://doi.org/10.3390/su17104674