A Review of Wildlife–Vehicle Collisions: A Multidisciplinary Path to Sustainable Transportation and Wildlife Protection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Impact of Roadkill on Wildlife
3.1.1. Roadkill Incidences and Trends
3.1.2. The Most Affected Species
3.1.3. Direct Impacts on Wildlife Populations
3.1.4. Endangered Species at Risk
3.1.5. Ecosystem-Wide Consequences
3.1.6. Species-Specific Vulnerability
3.1.7. Secondary Ecological Effects: Scavengers and Disease Transmission
3.1.8. Methodological Problems: Carcass Persistence and Misidentification
3.2. Animal Behavioral Adaptations to Roads
3.3. Spatiotemporal Patterns and Environmental Determinants of Roadkill
3.4. The Impact of Roadkill on Humans
3.4.1. Wildlife–Vehicle Accidents and Human Casualties
3.4.2. Economic Costs
3.4.3. Psychological and Emotional Effects
3.5. Roadkill Mitigation Strategies and Solutions
3.5.1. Measures Focused on Wildlife Protection
3.5.2. Measures Focused on Human Safety
3.5.3. Public Awareness and Driver Education Programs
3.5.4. Technology and Future Innovations
4. Discussion: Research Gaps and Future Directions in Road Ecology
4.1. Data and Methodological Gaps
4.2. Taxonomic and Geographic Biases
4.3. Underestimation of Ecological and Socioeconomic Roadkill Impacts
4.4. Complex Evaluation of Mitigation and Use of Technological Innovations
4.5. Integrating Wildlife Conservation with Road Planning
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WVC | Wildlife–vehicle collision |
KDE | Kernel density estimation |
GPS | Global Positioning System |
AI | Artificial intelligence |
ML | Machine learning |
AV | Autonomous vehicle |
Appendix A
List of Species in the Text, Presented in the Order of Their First Appearance
References
- Stoner, D. The toll of the automobile. Science 1925, 61, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Davis, W.H. The automobile as a destroyer of wild life. Science 1934, 79, 504–505. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.G. Wildlife Mortality on Iowa Highways. Am. Midl. Nat. 1938, 20, 527. [Google Scholar] [CrossRef]
- Haugen, A.O. Highway Mortality of Wildlife in Southern Michigan. J. Mammal. 1944, 25, 177–184. [Google Scholar] [CrossRef]
- McClure, H.E. An Analysis of Animal Victims on Nebraska’s Highways. J. Wildl. Manag. 1951, 15, 410–420. [Google Scholar] [CrossRef]
- Creutz, G. Strassentod. Orn. Monat. 1935, 60, 189–192. [Google Scholar]
- Beadnell, C.M. The toll of animal life exacted by modern civilisation. Proc. Zool. Soc. Lond. 1937, 107, 173–182. [Google Scholar] [CrossRef]
- Drews, C. Road kills of animals by public traffic in Mikumi National Park, Tanzania, with notes on baboon mortality. Afr. J. Ecol. 1995, 33, 89–100. [Google Scholar] [CrossRef]
- Taylor, B.D.; Goldingay, R.L. Roads and wildlife: Impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 2010, 37, 320–331. [Google Scholar] [CrossRef]
- Wang, B.; Yang, X.S.; Li, Z.C.; Geri, L.T. Discussion on road ecology research progress and development planning in China. Adv. Mater. Res. 2012, 524, 2770–2776. [Google Scholar] [CrossRef]
- Göransson, G.; Karlsson, J.; Lindgren, A. Influence of Roads on the Surrounding Nature. 2. Fauna; Swedish National Road and Transport Research Institute: Stockholm, Sweden, 1978; pp. 1–124. [Google Scholar]
- Bruinderink, G.W.T.A.G.; Hazebroek, E. Ungulate Traffic Collisions in Europe. Conserv. Biol. 1996, 10, 1059–1067. [Google Scholar] [CrossRef]
- Seiler, A. The Toll of the Automobile: Wildlife and Roads in Sweden. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2003. [Google Scholar]
- Kroll, G. An Environmental History of Roadkill: Road Ecology and the Making of the Permeable Highway. Environ. Hist. 2015, 20, 4–28. [Google Scholar] [CrossRef]
- Forman, R.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef]
- Coffin, A.W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Schwartz, A.L.W.; Shilling, F.M.; Perkins, S.E. The value of monitoring wildlife roadkill. Eur. J. Wildl. Res. 2020, 66, 18. [Google Scholar] [CrossRef]
- Undermind. AI-Powered Scientific Research Assistant. Available online: https://www.undermind.ai/ (accessed on 20 November 2024).
- Grilo, C.; Borda-de-Água, L.; Beja, P.; Goolsby, E.; Soanes, K.; le Roux, A.; Koroleva, E.; Ferreira, F.Z.; Gagné, S.A.; Wang, Y.; et al. Conservation threats from roadkill in the global road network. Glob. Ecol. Biogeogr. 2021, 30, 2200–2210. [Google Scholar] [CrossRef]
- Grilo, C.; Koroleva, E.; Andrášik, R.; Bíl, M.; González-Suárez, M. Roadkill risk and population vulnerability in European birds and mammals. Front. Ecol. Environ. 2020, 18, 323–328. [Google Scholar] [CrossRef]
- Hothorn, T.; Müller, J.; Held, L.; Möst, L.; Mysterud, A. Temporal patterns of deer–vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accid. Anal. Prev. 2015, 81, 143–152. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Kušta, T.; Bartonička, T. Ungulate-vehicle crashes peak a month earlier than 38 years ago due to global warming. Clim. Change 2023, 176, 84. [Google Scholar] [CrossRef]
- Langbein, J.; Putman, R.; Pokorny, B. Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. In Ungulate Management in Europe: Problems and Practices; Putman, R., Apollonio, M., Andersen, R., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 215–259. [Google Scholar]
- Morelle, K.; Lehaire, F.; Lejeune, P. Spatio-temporal patterns of wildlife–vehicle collisions in a region with a high-density road network. Nat. Conserv. 2013, 5, 4634. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Mammal Roadkills in Lithuanian Urban Areas: A 15-Year Study. Animals 2023, 13, 3272. [Google Scholar] [CrossRef] [PubMed]
- Rendall, A.R.; Webb, V.; Sutherland, D.R.; White, J.G.; Renwick, L.; Cooke, R. Where wildlife and traffic collide: Roadkill rates change through time in a wildlife-tourism hotspot. Glob. Ecol. Conserv. 2021, 27, e01530. [Google Scholar] [CrossRef]
- Brockie, R.E.; Sadleir, R.M.F.S.; Linklater, W.L. Long-term wildlife road-kill counts in New Zealand. N. Z. J. Zool. 2009, 36, 123–134. [Google Scholar] [CrossRef]
- Driessen, M.M. COVID-19 restrictions provide a brief respite from the wildlife roadkill toll. Biol. Conserv. 2021, 256, 109012. [Google Scholar] [CrossRef] [PubMed]
- Pokorny, B.; Cerri, J.; Bužan, E. Wildlife roadkill and COVID-19: A biologically significant, but heterogeneous, reduction. J. Appl. Ecol. 2022, 59, 1291–1301. [Google Scholar] [CrossRef]
- Shilling, F.; Nguyen, T.; Saleh, M.; Kyaw, M.K.; Tapia, K.; Trujillo, G.; Bejarano, M.; Waetjen, D.; Peterson, J.; Kalisz, G.; et al. A reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Conserv. 2021, 256, 109013. [Google Scholar] [CrossRef] [PubMed]
- Łopucki, R.; Kitowski, I.; Perlińska-Teresiak, M.; Klich, D. How Is Wildlife Affected by the COVID-19 Pandemic? Lockdown Effect on the Road Mortality of Hedgehogs. Animals 2021, 11, 868. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Cícha, V.; Arnon, A.; Kruuse, M.; Langbein, J.; Náhlik, A.; Niemi, M.; Pokorny, B.; Colino-Rabanal, V.J.; et al. COVID-19 related travel restrictions prevented numerous wildlife deaths on roads: A comparative analysis of results from 11 countries. Biol. Conserv. 2021, 256, 109076. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Stratford, J.; Kučas, A.; Balčiauskienė, L. Lockdown’s Silver Lining? Different Levels of Roadkill during the COVID-19 Times in Lithuania. Animals 2023, 13, 2918. [Google Scholar] [CrossRef]
- Searle, A.; Turnbull, J.; Lorimer, J. After the anthropause: Lockdown lessons for more-than-human geographies. Geogr. J. 2021, 187, 69–77. [Google Scholar] [CrossRef]
- Snow, N.P.; Zhang, Z.; Finley, A.O.; Rudolph, B.A.; Porter, W.F.; Williams, D.M.; Winterstein, S.R. Regional-based mitigation to reduce wildlife-vehicle collisions. J. Wildl. Manag. 2018, 82, 756–765. [Google Scholar] [CrossRef]
- Putzu, N.; Bonetto, D.; Civallero, V.; Fenoglio, S.; Meneguz, P.G.; Preacco, N.; Tizzani, P. Temporal patterns of ungulate-vehicle collisions in a subalpine Italian region. Ital. J. Zool. 2014, 81, 463–470. [Google Scholar] [CrossRef]
- Valero, E.; Picos, J.; Lagos, L.; Álvarez, X. Road and traffic factors correlated to wildlife–vehicle collisions in Galicia (Spain). Wildl. Res. 2015, 42, 25–34. [Google Scholar] [CrossRef]
- Vrkljan, J.; Hozjan, D.; Barić, D.; Ugarković, D.; Krapinec, K. Temporal patterns of vehicle collisions with roe deer and wild boar in the dinaric area. Croat. J. For. Eng. 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Bíl, M.; Kubeček, J.; Sedoník, J.; Andrášik, R. Srazenazver.cz: A System for Evidence of Animal-Vehicle Collisions along Transportation Networks. Biol. Conserv. 2017, 213, 167–174. [Google Scholar] [CrossRef]
- Al Sayegh Petkovšek, S.; Kotnik, K.; Breznik, K.; Pokorny, B. Wildlife Mortality on the Slovenian Highways: Monthly Patterns, Identification of Hotspots and Effectiveness of Acoustic Deterrents. Urban Ecosyst. 2025, 28, 57. [Google Scholar] [CrossRef]
- Haigh, A.J. Annual patterns of mammalian mortality on Irish roads. Hystrix 2012, 23, 58–66. [Google Scholar] [CrossRef]
- Wembridge, D.E.; Newman, M.R.; Bright, P.W.; Morris, P.A. An Estimate of the Annual Number of Hedgehog (Erinaceus europaeus) Road Casualties in Great Britain. Mammal Commun. 2016, 2, 8–14. [Google Scholar] [CrossRef]
- Orlowski, G.; Nowak, L. Factors Influencing Mammal Roadkills in the Agricultural Landscape of South-Western Poland. Pol. J. Ecol. 2006, 54, 283–294. [Google Scholar]
- Ruiz-Capillas, P.; Mata, C.; Malo, J.E. How Many Rodents Die on the Road? Biological and Methodological Implications from a Small Mammals’ Roadkill Assessment on a Spanish Motorway. Ecol. Res. 2015, 30, 417–427. [Google Scholar] [CrossRef]
- Lala, F.; Chiyo, P.I.; Kanga, E.; Omondi, P.; Ngene, S.; Severud, W.J.; Morris, A.W.; Bump, J. Wildlife Roadkill in the Tsavo Ecosystem, Kenya: Identifying Hotspots, Potential Drivers, and Affected Species. Heliyon 2021, 7, e06364. [Google Scholar] [CrossRef] [PubMed]
- Balčiauskas, L.; Stratford, J.; Balčiauskienė, L.; Kučas, A. Importance of Professional Roadkill Data in Assessing Diversity of Mammal Roadkills. Transp. Res. Part D Transp. Environ. 2020, 87, 102493. [Google Scholar] [CrossRef]
- Moore, L.J.; Petrovan, S.O.; Bates, A.J.; Hicks, H.L.; Baker, P.J.; Perkins, S.E.; Yarnell, R.W. Demographic Effects of Road Mortality on Mammalian Populations: A Systematic Review. Biol. Rev. 2023, 98, 1033–1050. [Google Scholar] [CrossRef]
- Eberhardt, E.; Mitchell, S.; Fahrig, L. Road kill hotspots do not effectively indicate mitigation locations when past road kill has depressed populations. J. Wildl. Manag. 2013, 77, 1353–1359. [Google Scholar] [CrossRef]
- Klich, D.; Perlińska-Teresiak, M.; Bluhm, H.; Kuemmerle, T.; Wojciechowska, M.; Olech, W. Increasing mortality of European bison (Bison bonasus) on roads and railways. Glob. Ecol. Conserv. 2023, 48, e02703. [Google Scholar] [CrossRef]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mamm. Rev. 2021, 51, 95–108. [Google Scholar] [CrossRef]
- Balseiro, A.; Herrero-García, G.; García Marín, J.F.; Balsera, R.; Monasterio, J.M.; Cubero, D.; de Pedro, G.; Oleaga, Á.; García-Rodríguez, A.; Espinoza, I.; et al. New threats in the recovery of large carnivores inhabiting human-modified landscapes: The case of the Cantabrian brown bear (Ursus arctos). Vet. Res. 2024, 55, 24. [Google Scholar] [CrossRef]
- Di Bernardi, C.; Chapron, G.; Kaczensky, P.; Álvares, F.; Andrén, H.; Balys, V.; Blanco, J.C.; Chiriac, S.; Ćirović, D.; Drouet-Hoguet, N.; et al. Continuing recovery of wolves in Europe. PLoS Sustain. Transf. 2025, 4, e0000158. [Google Scholar] [CrossRef]
- Rolandsen, C.M.; Solberg, E.J.; Herfindal, I.; Van Moorter, B.; Sæther, B.-E. Large-scale spatiotemporal variation in road mortality of moose: Is it all about population density? Ecosphere 2011, 2, 113. [Google Scholar] [CrossRef]
- Seiler, A. Trends and spatial patterns in ungulate-vehicle collisions in Sweden. Wildl. Biol. 2004, 10, 301–313. [Google Scholar] [CrossRef]
- Niemi, M.; Rolandsen, C.M.; Neumann, W.; Kukko, T.; Tiilikainen, R.; Pusenius, J.; Solberg, E.J.; Ericsson, G. Temporal patterns of moose-vehicle collisions with and without personal injuries. Accid. Anal. Prev. 2017, 98, 167–173. [Google Scholar] [CrossRef]
- Mysterud, A. Temporal variation in the number of car-killed red deer (Cervus elaphus) in Norway. Wildl. Biol. 2004, 10, 203–211. [Google Scholar] [CrossRef]
- Raymond, S.; Schwartz, A.L.; Thomas, R.J.; Chadwick, E.; Perkins, S.E. Temporal patterns of wildlife roadkill in the UK. PLoS ONE 2021, 16, e0258083. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. The Impact of Roadkill on Cervid Populations in Lithuania. Forests 2023, 14, 1224. [Google Scholar] [CrossRef]
- Niemi, M.; Cunningham, S.C.; Serrouya, R.; Väänänen, V.M.; Mykrä-Pohja, S. Traffic mortality of wild forest reindeer (Rangifer tarandus fennicus) in Finland. Nat. Conserv. 2024, 57, 89–102. [Google Scholar] [CrossRef]
- Brieger, F.; Kämmerle, J.L.; Hagen, R.; Suchant, R. Behavioural reactions to oncoming vehicles as a crucial aspect of wildlife-vehicle collision risk in three common wildlife species. Accid. Anal. Prev. 2022, 168, 106564. [Google Scholar] [CrossRef]
- Korsten, M.; Valdmann, H.; Männil, P.; Soe, E. Wildlife-vehicle collisions in Estonia: Patterns across time, landscape and species. Eston. J. Ecol. 2018, 67, 108758. [Google Scholar] [CrossRef]
- Acevedo, P.; Jiménez-Valverde, A.; Melián, C.J.; Viñuela, J. Patterns in wildlife-vehicle collisions on rural roads in Spain. Glob. Ecol. Conserv. 2015, 4, 504–511. [Google Scholar] [CrossRef]
- Skuban, M.; Finďo, S.; Kajba, M.; Koreň, M.; Chamers, J.; Antal, V. Effects of Roads on Brown Bear Movements and Mortality in Slovakia. Eur. J. Wildl. Res. 2017, 63, 82. [Google Scholar] [CrossRef]
- Psaralexi, M.; Lazarina, M.; Mertzanis, Y.; Michaelidou, D.-E.; Sgardelis, S. Exploring 15 Years of Brown Bear (Ursus arctos)-Vehicle Collisions in Northwestern Greece. Nat. Conserv. 2022, 47, 105–119. [Google Scholar] [CrossRef]
- Proctor, M.F.; Kasworm, W.F.; Teisberg, J.E.; Servheen, C.; Radandt, T.G.; Lamb, C.T.; Kendall, K.C.; Mace, R.D.; Paetkau, D.; Boyce, M.S. American Black Bear Population Fragmentation Detected with Pedigrees in the Transborder Canada–United States Region. Ursus 2020, 31, 1–15. [Google Scholar] [CrossRef]
- Taylor, S.K.; Buergelt, C.D.; Roelke-Parker, M.E.; Homer, B.L.; Rotstein, D.S. Causes of Mortality of Free Ranging Florida Panthers. J. Wildl. Dis. 2002, 38, 107–114. [Google Scholar] [CrossRef]
- Simón, M.A.; Gil-Sánchez, J.M.; Ruiz, G.; Garrote, G.; McCain, E.B.; Fernández, L.; López-Parra, M.; Rojas, E.; Arenas-Rojas, R.; del Rey, T.; et al. Reverse of the Decline of the Endangered Iberian Lynx. Conserv. Biol. 2012, 26, 731–736. [Google Scholar] [CrossRef]
- Gonzalez-Gallina, A.; Hidalgo-Mihart, M.G. A Review of Road-Killed Felids in Mexico. Therya 2018, 9, 147–159. [Google Scholar] [CrossRef]
- Ten, D.C.Y.; Jani, R.; Hashim, N.H.; Saaban, S.; Abu Hashim, A.K.; Abdullah, M.T. Panthera tigris jacksoni Population Crash and Impending Extinction due to Environmental Perturbation and Human-Wildlife Conflict. Animals 2021, 11, 1032. [Google Scholar] [CrossRef]
- Bencin, H.L.; Prange, S.; Rose, C.; Popescu, V.D. Roadkill and Space Use Data Predict Vehicle-Strike Hotspots and Mortality Rates in a Recovering Bobcat (Lynx rufus) Population. Sci. Rep. 2019, 9, 15391. [Google Scholar] [CrossRef]
- Blackburn, A.; Heffelfinger, L.J.; Veals, A.M.; Tewes, M.E.; Young, J.H. Cats, Cars, and Crossings: The Consequences of Road Networks for the Conservation of an Endangered Felid. Glob. Ecol. Conserv. 2021, 27, e01582. [Google Scholar] [CrossRef]
- Bastianelli, M.L.; Premier, J.; Herrmann, M.; Anile, S.; Monterroso, P.; Kuemmerle, T.; Carsten, F.; Dormann, C.F.; Streif, S.; Jerosch, S.; et al. Survival and Cause-Specific Mortality of European Wildcat (Felis silvestris) across Europe. Biol. Conserv. 2021, 261, 109239. [Google Scholar] [CrossRef]
- Pereira, K.C.D.A.F.; França, R.T.; Preuss, J.F. Impact of the BR-282 Highway on the Mortality of Wild Felids in the Extreme West of Santa Catarina, Brazil: Threat to Conservation. Societ. Natur. 2025, 36, e72430. [Google Scholar] [CrossRef]
- Ceia-Hasse, A.; Borda-de-Água, L.; Grilo, C.; Pereira, H.M. Global Exposure of Carnivores to Roads. Glob. Ecol. Biogeogr. 2017, 26, 592–600. [Google Scholar] [CrossRef]
- Williams, S.T.; Collinson, W.; Patterson-Abrolat, C.; Marneweck, D.G.; Swanepoel, L.H. Using Road Patrol Data to Identify Factors Associated with Carnivore Roadkill Counts. PeerJ 2019, 7, e6650. [Google Scholar] [CrossRef] [PubMed]
- Collinson, W.J.; Davies-Mostert, H.T.; Davies-Mostert, W. Effects of Culverts and Roadside Fencing on the Rate of Roadkill of Small Terrestrial Vertebrates in Northern Limpopo, South Africa. Conserv. Evid. 2017, 14, 39. [Google Scholar]
- Swinnen, K.R.; Jacobs, A.; Claus, K.; Ruyts, S.; Vercayie, D.; Lambrechts, J.; Herremans, M. ‘Animals under Wheels’: Wildlife Roadkill Data Collection by Citizen Scientists as a Part of Their Nature Recording Activities. Nat. Conserv. 2022, 47, 121–153. [Google Scholar] [CrossRef]
- Ferreira, C.M.M.; de Aquino Ribas, A.C.; Casella, J.; Mendes, S.L. Variação espacial de atropelamentos de mamíferos em área de restinga no estado do Espírito Santo, Brasil. Neotrop. Biol. Conserv. 2014, 9, 125–133. [Google Scholar] [CrossRef]
- Pessanha, L.A.; Ferreira, M.S.; Bueno, C.; Leandro, F.D.S.; Gomes, D.F. Danger under wheels: Mammal roadkills in the threatened lowland Atlantic Forest in southeast Brazil. Ihering. Sér. Zool. 2023, 113, e2023007. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biol. Conserv. 2003, 109, 15–26. [Google Scholar] [CrossRef]
- Meza, F.L.; Ramos, E.; Cardona, D. Spatio-temporal patterns of mammal road mortality in Middle Magdalena Valley, Colombia. Oecol. Austr. 2019, 23, 575–588. [Google Scholar] [CrossRef]
- Jamhuri, J.; Edinoor, M.A.; Kamarudin, N.; Lechner, A.M.; Ashton-Butt, A.; Azhar, B. Higher mortality rates for large-and medium-sized mammals on plantation roads compared to highways in Peninsular Malaysia. Ecol. Evol. 2020, 10, 12049–12058. [Google Scholar] [CrossRef]
- Santos, R.; Shimabukuro, A.; Taili, I.; Muriel, R.; Lupinetti-Cunha, A.; Freitas, S.R.; Calabuig, C. Mammalian Roadkill in a Semi-Arid Region of Brazil: Species, Landscape Patterns, Seasonality, and Hotspots. Diversity 2023, 15, 780. [Google Scholar] [CrossRef]
- Bélanger-Smith, K. Evaluating the Effects of Wildlife Exclusion Fencing on Road Mortality for Medium-Sized and Small Mammals Along Quebec’s Route 175. Master’s Thesis, Concordia University, Montreal, OC, Canada, 2014. [Google Scholar]
- Garcês, A.; Pires, I. Biological and Conservation Aspects of Otter Mortality: A Review. Conservation 2024, 4, 307–318. [Google Scholar] [CrossRef]
- Grogan, A.; Green, R.; Rushton, S. The Impacts of Roads on Eurasian Otters (Lutra lutra). IUCN Otter Spec. Group Bull. 2013, 30, 44–57. [Google Scholar]
- Jancke, S.; Giere, P. Patterns of Otter Lutra lutra road mortality in a landscape abundant in lakes. Eur. J. Wildl. Res. 2011, 57, 373–381. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Stratford, J.; Kučas, A.; Balčiauskienė, L. Factors Affecting Roadkills of Semi-Aquatic Mammals. Biology 2022, 11, 748. [Google Scholar] [CrossRef]
- Kinlaw, A. High mortality of Nearctic river otters on a Florida, USA Interstate highway during an extreme drought. IUCN Otter Spec. Group Bull. 2004, 21, 76–88. [Google Scholar]
- Huijser, M.P.; Bergers, P.J.M. The effect of roads and traffic on hedgehog (Erinaceus europaeus) populations. Biol. Conserv. 2000, 95, 111–116. [Google Scholar] [CrossRef]
- Moore, L.J.; Petrovan, S.O.; Baker, P.J.; Bates, A.J.; Hicks, H.L.; Perkins, S.E.; Yarnell, R.W. Impacts and Potential Mitigation of Road Mortality for Hedgehogs in Europe. Animals 2020, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Haigh, A.; O’Riordan, R.M.; Butler, F. Hedgehog Erinaceus europaeus mortality on Irish roads. Wildl. Biol. 2014, 20, 155–160. [Google Scholar] [CrossRef]
- Rautio, A.; Isomursu, M.; Valtonen, A.; Hirvelä-Koski, V.; Kunnasranta, M. Mortality, diseases and diet of European hedgehogs (Erinaceus europaeus) in an urban environment in Finland. Mamm. Res. 2016, 61, 161–169. [Google Scholar] [CrossRef]
- Puig, J.; Sanz, L. Wildlife roadkills and underpass use in Northern Spain. Environ. Eng. Manag. J. 2012, 11, 1141–1147. [Google Scholar] [CrossRef]
- Hell, P.; Plavý, R.; Slamečka, J.; Gašparík, J. Losses of mammals (Mammalia) and birds (Aves) on roads in the Slovak part of the Danube Basin. Eur. J. Wildl. Res. 2005, 51, 35–40. [Google Scholar] [CrossRef]
- Пapxoмeнкo, B. Death of mammals on the roads of northeastern Ukraine. Proc. Theriol. Sch. 2017, 15, 139–149. [Google Scholar] [CrossRef]
- Clements, G.R.; Lynam, A.J.; Gaveau, D.; Yap, W.L.; Lhota, S.; Goosem, M.; Laurance, S.; Laurance, W.F. Where and how are roads endangering mammals in Southeast Asia’s forests? PLoS ONE 2014, 9, e115376. [Google Scholar] [CrossRef]
- Grilo, C.; Coimbra, M.R.; Cerqueira, R.C.; Barbosa, P.; Dornas, R.A.P.; Gonçalves, L.O.; Teixeira, F.Z.; Coelho, I.P.; Schmidt, B.R.; Pacheco, D.L.K.; et al. BRAZIL ROAD-KILL: A data set of wildlife terrestrial vertebrate road-kills. Ecology 2018, 99, 2625. [Google Scholar] [CrossRef]
- Pinto, F.A.S.; Cirino, D.W.; Cerqueira, R.C.; Rosa, C.; Freitas, S.R. How Many Mammals Are Killed on Brazilian Roads? Assessing Impacts and Conservation Implications. Diversity 2022, 14, 835. [Google Scholar] [CrossRef]
- Caires, H.S.; Souza, C.R.; Lobato, D.N.; Fernandes, M.N.; Damasceno, J.S. Roadkilled mammals in the northern Amazon region and comparisons with roadways in other regions of Brazil. Ihering. Sér. Zool. 2019, 109, e2019036. [Google Scholar] [CrossRef]
- Ascensão, F.; Desbiez, A.L. Assessing the impact of roadkill on the persistence of wildlife populations: A case study on the giant anteater. Perspect. Ecol. Conserv. 2022, 20, 272–278. [Google Scholar] [CrossRef]
- Carvalho-Roel, C.F.; Iannini-Custódio, A.E.; Júnior, O.M.; Grilo, C. The spatial, climatic and temporal factors influencing roadkill change according to the taxonomic Level. J. Environ. Manag. 2023, 348, 119221. [Google Scholar] [CrossRef]
- de Freitas, S.R.; de Oliveira, A.N.; Ciocheti, G.; Vieira, M.V.; da Silva Matos, D.M. How landscape patterns influence road-kill of three species of mammals in the Brazilian Savanna. Oecol. Aust. 2014, 18, 35–45. [Google Scholar] [CrossRef]
- Srbek-Araujo, A.C.; Alvarenga, A.D.C.; Bertoldi, A.T. Do we underestimate the impact of roads on arboreal animals? Roadkill as an important threat to Chaetomys subspinosus (Mammalia: Rodentia). Biota Neotropica 2018, 18, e20170511. [Google Scholar] [CrossRef]
- Osaka, M.; Okamura, M. Spatiotemporal patterns of endangered species roadkill: Iriomote cat-vehicle collisions. Bull. Nippon Vel. Life Sci. Univ. 2012, 61, 51–59. [Google Scholar]
- Miyamoto, A.; Tamanaha, S.; Watari, Y. Landscape features of endangered Ryukyu long-furred rat (Diplothrix legata) roadkill sites in Yambaru, Okinawa-jima Island. J. For. Res. 2021, 26, 201–207. [Google Scholar] [CrossRef]
- Seo, C.; Thorne, J.H.; Choi, T.; Kwon, H.; Park, C.H. Disentangling roadkill: The influence of landscape and season on cumulative vertebrate mortality in South Korea. Landsc. Ecol. Eng. 2015, 11, 87–99. [Google Scholar] [CrossRef]
- Hong, S.; Park, H.-B.; Kim, M.; Kim, H.G. History and Future Challenges of Roadkill Research in South Korea. Sustainability 2022, 14, 15564. [Google Scholar] [CrossRef]
- Kang, W.; Choi, T.; Kim, G.; Woo, D. Habitat, connectivity, and roadkill of Korea’s apex predator, the yellow-throated marten. Wildl. Res. 2023, 51, WR21185. [Google Scholar] [CrossRef]
- Mestre, F.; Bastazini, V.A.G.; Ascensão, F. Effects of road density on regional food webs. Conserv. Biol. 2025, e70007. [Google Scholar] [CrossRef]
- Fielding, M.W.; Buettel, J.C.; Brook, B.W.; Stojanovic, D.; Yates, L.A. Roadkill islands: Carnivore extinction shifts seasonal use of roadside carrion by generalist avian scavenger. J. Anim. Ecol. 2021, 90, 2268–2276. [Google Scholar] [CrossRef]
- Ruiz-Capillas, P.; Mata, C.; Fernández, B.; Fernandes, C.; Malo, J.E. Do Roads Alter the Trophic Behavior of the Mesocarnivore Community Living Close to Them? Diversity 2021, 13, 173. [Google Scholar] [CrossRef]
- Cassimiro, I.M.; Ribeiro, M.C.; Assis, J.C. How did the animal come to cross the road? Drawing insights on animal movement from existing roadkill data and expert knowledge. Landscape Ecol. 2023, 38, 2035–2051. [Google Scholar] [CrossRef]
- Lesbarreres, D.; Fahrig, L. Measures to reduce population fragmentation by roads: What has worked and how do we know? Trends Ecol. Evol. 2012, 27, 374–380. [Google Scholar] [CrossRef]
- Blais, B.R.; Shaw, C.J.; Brocka, C.W.; Johnson, S.L.; Lauger, K.K. Anthropogenic, environmental and temporal associations with vertebrate road mortality in a wildland–urban interface of a biodiverse desert ecoregion. R. Soc. Open Sci. 2024, 11, 240439. [Google Scholar] [CrossRef]
- Seo, H.; Choi, C.; Lee, S.; Kim, J. Analysis of ecological connectivity of forest habitats using spatial morphological characteristics and roadkill data. Korean J. Ecol. Environ. 2024, 57, 75–82. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Wierzchowski, J.; Kučas, A.; Balčiauskienė, L. Habitat Suitability Based Models for Ungulate Roadkill Prognosis. Animals 2020, 10, 1345. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, R.C.; Leonard, P.B.; da Silva, L.G.; Bager, A.; Clevenger, A.P.; Jaeger, J.A.; Grilo, C. Potential Movement Corridors and High Road-Kill Likelihood do not Spatially Coincide for Felids in Brazil: Implications for Road Mitigation. Environ. Manag. 2021, 67, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Frangini, L.; Sterrer, U.; Franchini, M.; Pesaro, S.; Rüdisser, J.; Filacorda, S. Stay home, stay safe? High habitat suitability and environmental connectivity increases road mortality in a colonizing mesocarnivore. Landsc. Ecol. 2022, 37, 2343–2361. [Google Scholar] [CrossRef]
- Fahrig, L.; Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 2009, 14, 21. [Google Scholar] [CrossRef]
- González-Suárez, M.; Ferreira, F.Z.; Grilo, C. Spatial and species-level predictions of road mortality risk using trait data. Glob. Ecol. Biogeogr. 2018, 27, 1093–1105. [Google Scholar] [CrossRef]
- Cook, T.C.; Blumstein, D.T. The omnivore’s dilemma: Diet explains variation in vulnerability to vehicle collision mortality. Biol. Conserv. 2013, 167, 310–315. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Bowman, J.; Brennan, J.; Fahrig, L.; Bert, D.; Bouchard, J.; Charbonneau, N.; Frank, K.; Gruber, B.; von Toschanowitz, K.T. Predicting When Animal Populations Are at Risk from Roads: An Interactive Model of Road Avoidance Behaviour. Ecol. Model. 2005, 185, 329–348. [Google Scholar] [CrossRef]
- Grilo, C.; Sousa, J.; Ascensão, F.; Matos, H.; Leitão, I.; Pinheiro, P.; Costa, M.; Bernardo, J.; Reto, D.; Lourenço, R.; et al. Individual Spatial Responses Towards Roads: Implications for Road Mortality Risk. PLoS ONE 2012, 7, e43811. [Google Scholar] [CrossRef]
- Laurance, W.F.; Croes, B.M.; Tchignoumba, L.; Lahm, S.A.; Alonso, A.; Lee, M.E.; Campbell, P.; Ondzeano, C. Impacts of Roads and Hunting on Central African Rainforest Mammals. Conserv. Biol. 2006, 20, 1251–1261. [Google Scholar] [CrossRef]
- Legagneux, P.; Ducatez, S. European birds adjust their flight initiation distance to road speed limits. Biol. Lett. 2013, 9, 20130417. [Google Scholar] [CrossRef]
- D’Amico, M.; Román, J.; de los Reyes, L.; Revilla, E. Vertebrate road-kill patterns in Mediterranean habitats: Who, when and where. Biol. Conserv. 2015, 191, 234–242. [Google Scholar] [CrossRef]
- Medinas, D.; Marques, J.T.; Mira, A. Assessing road effects on bats: The role of landscape, road features, and bat activity on road-kills. Ecol. Res. 2013, 28, 227–237. [Google Scholar] [CrossRef]
- Huang, J.C.-C.; Chen, W.-J.; Lin, T.-E. Landscape and Species Traits Co-Drive Roadkills of Bats in a Subtropical Island. Diversity 2021, 13, 117. [Google Scholar] [CrossRef]
- Dhiab, O.; D’Amico, M.; Selmi, S. Experimental evidence of increased carcass removal along roads by facultative scavengers. Environ. Monit. Assess. 2023, 195, 216. [Google Scholar] [CrossRef]
- Antworth, R.L.; Pike, D.A.; Stevens, E.E. Hit and Run: Effects of Scavenging on Estimates of Roadkilled Vertebrates. Southeast. Nat. 2005, 4, 647–656. [Google Scholar] [CrossRef]
- Schwartz, A.L.; Williams, H.F.; Chadwick, E.; Thomas, R.J.; Perkins, S.E. Roadkill scavenging behaviour in an urban environment. J. Urban Ecol. 2018, 4, juy006. [Google Scholar] [CrossRef]
- Richini-Pereira, V.B.; Marson, P.M.; Silva, R.C.D.; Langoni, H. Genotyping of Toxoplasma gondii and Sarcocystis spp. in road-killed wild mammals from the central western region of the state of São Paulo, Brazil. Rev. Soc. Bras. Med. Trop. 2016, 49, 602–607. [Google Scholar] [CrossRef]
- Vafae Eslahi, A.; Kia, E.B.; Mobedi, I.; Sharifdini, M.; Badri, M.; Mowlavi, G. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran. Iran. J. Parasitol. 2017, 12, 230–235. [Google Scholar] [PubMed]
- Rohner, S.; Wohlsein, P.; Prenger-Berninghoff, E.; Ewers, C.; Waindok, P.; Strube, C.; Baechlein, C.; Becher, P.; Wilmes, D.; Rickerts, V.; et al. Pathological Findings in Eurasian Otters (Lutra lutra) Found Dead between 2015–2020 in Schleswig-Holstein, Germany. Animals 2022, 12, 59. [Google Scholar] [CrossRef]
- Szekeres, S.; Docters van Leeuwen, A.; Tóth, E.; Majoros, G.; Sprong, H.; Földvári, G. Road-killed mammals provide insight into tick-borne bacterial pathogen communities within urban habitats. Transbound. Emerg. Dis. 2019, 66, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Monsalve-Lara, J.; Drummond, M.; Romero-Alvarez, D.; Velho, P.E.N.F.; Jiménez-García, D.; Marques, R.; Peterson, A.T.; Angerami, R.N.; Silva, D.P.; Donalisio, M.R. Prevalence of Mycobacterium leprae and Mycobacterium lepromatosis in roadkill armadillos in Brazil. Acta Trop. 2024, 258, 107333. [Google Scholar] [CrossRef] [PubMed]
- Calabuig, C.; Dantas, A.; Katzenberger, M.; Souza, H.; Sombra, C.; Megid, J.; Antunes, J.M.A.D.P. Assessment of Rabies and Canine Distemper Viruses in Road-Killed Wildlife Mammals from the Semiarid Region of Northeastern Brazil. Trop. Conserv. Sci. 2019, 12, 1940082919875446. [Google Scholar] [CrossRef]
- Heigl, F.; Zaller, J.G. Factors influencing data quality in citizen science roadkill projects. In Proceedings of the Austrian Citizen Science Conference 2016, Lunz am See, Austria, 18–19 February 2016; pp. 39–43. [Google Scholar]
- Santos, S.M.; Carvalho, F.; Mira, A. How Long Do the Dead Survive on the Road? Carcass Persistence Probability and Implications for Road-Kill Monitoring Surveys. PLoS ONE 2011, 6, e25383. [Google Scholar] [CrossRef]
- Barrientos, R.; Martins, R.C.; Ascensão, F.; D’Amico, M.; Moreira, F.; Borda-de-Água, L. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 2018, 222, 146–153. [Google Scholar] [CrossRef]
- Ratton, P.; Secco, H.; da Rosa, C.A. Carcass permanency time and its implications to the roadkill data. Eur. J. Wildl. Res. 2014, 60, 543–546. [Google Scholar] [CrossRef]
- Bénard, A.; Bonenfant, C.; Lengagne, T. Traffic and weather influence on small wildlife carcass persistence time on roads. Transp. Res. Part D Transp. Environ. 2024, 126, 104012. [Google Scholar] [CrossRef]
- Henry, D.A.; Collinson-Jonker, W.J.; Davies-Mostert, H.T.; Nicholson, S.K.; Roxburgh, L.; Parker, D.M. Optimising the cost of roadkill surveys based on an analysis of carcass persistence. J. Environ. Manag. 2021, 291, 112664. [Google Scholar] [CrossRef]
- Guinard, E.; Billon, L.; Bretaud, J.F.; Chevallier, L.; Sordello, R.; Witté, I. Comparing the effectiveness of two roadkill survey methods on roads. Transp. Res. Part D Transp. Environ. 2023, 121, 103829. [Google Scholar] [CrossRef]
- Abra, F.D.; Garbino, G.S.; Prist, P.R.; Nascimento, F.O.; Lemos, F.G. New occurrences of hoary fox, Lycalopex vetulus (Lund, 1842), and Pantanal cat, Leopardus braccatus (Cope, 1889) (Mammalia, Carnivora), in a Cerrado-Caatinga-Atlantic Forest ecotone in northeastern Brazil. Check List 2020, 16, 1673–1677. [Google Scholar] [CrossRef]
- Abra, F.D.; Huijser, M.P.; Pereira, C.S.; Ferraz, K.M. How reliable are your data? Verifying species identification of road-killed mammals recorded by road maintenance personnel in São Paulo State, Brazil. Biol. Conserv. 2018, 225, 42–52. [Google Scholar] [CrossRef]
- Hill, J.E.; DeVault, T.L.; Belant, J.L. A Review of Ecological Factors Promoting Road Use by Mammals. Mammal Rev. 2021, 51, 214–227. [Google Scholar] [CrossRef]
- Beyer, H.L.; Gurarie, E.; Börger, L.; Panzacchi, M.; Basille, M.; Herfindal, I.; Van Moorter, B.; Lele, S.R.; Matthiopoulos, J. ‘You shall not pass!’: Quantifying barrier permeability and proximity avoidance by animals. J. Anim. Ecol. 2016, 85, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Grilo, C.; Molina-Vacas, G.; Fernández-Aguilar, X.; Rodriguez-Ruiz, J.; Ramiro, V.; Porto-Peter, F.; Ascensão, F.; Román, J.; Revilla, E. Species-specific movement traits and specialization determine the spatial responses of small mammals towards roads. Landsc. Urban Plan. 2018, 169, 199–207. [Google Scholar] [CrossRef]
- Bastianelli, M.L.; von Hoermann, C.; Kirchner, K.; Signer, J.; Dupke, C.; Henrich, M.; Wielgus, E.; Fiderer, C.; Belotti, E.; Bufka, L.; et al. Risk response towards roads is consistent across multiple species in a temperate forest ecosystem. Oikos 2024, 2024, e10433. [Google Scholar] [CrossRef]
- D’Amico, M.; Périquet, S.; Román, J.; Revilla, E. Road avoidance responses determine the impact of heterogeneous road networks at a regional scale. J. Appl. Ecol. 2016, 53, 181–190. [Google Scholar] [CrossRef]
- Leblond, M.; Dussault, C.; Ouellet, J.P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 2013, 289, 32–40. [Google Scholar] [CrossRef]
- Ditchkoff, S.S.; Saalfeld, S.T.; Gibson, C.J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 2006, 9, 5–12. [Google Scholar] [CrossRef]
- Kent, E.; Schwartz, A.L.; Perkins, S.E. Life in the Fast Lane: Roadkill risk along an urban-rural gradient. J. Urban Ecol. 2021, 7, juaa039. [Google Scholar] [CrossRef]
- Oddone Aquino, A.G.H.E.; Nkomo, S.L. Spatio-Temporal Patterns and Consequences of Road Kills: A Review. Animals 2021, 11, 799. [Google Scholar] [CrossRef]
- Cáceres, N.C. Biological characteristics influence mammal road kill in an Atlantic Forest–Cerrado Interface in south-western Brazil. Ital. J. Zool. 2011, 78, 379–389. [Google Scholar] [CrossRef]
- Ascensão, F.; Desbiez, A.L.; Medici, E.P.; Bager, A. Spatial patterns of road mortality of medium–large mammals in Mato Grosso do Sul, Brazil. Wildl. Res. 2017, 44, 135–146. [Google Scholar] [CrossRef]
- Coelho, A.V.P.; Coelho, I.P.; Teixeira, F.T.; Kindel, A. Siriema: Road Mortality Software; User’s Manual 2; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2014. [Google Scholar] [CrossRef]
- Favilli, F.; Bíl, M.; Sedoník, J.; Andrášik, R.; Kasal, P.; Agreiter, A.; Streifeneder, T. Application of KDE+ software to identify collective risk hotspots of ungulate-vehicle collisions in South Tyrol, Northern Italy. Eur. J. Wildl. Res. 2018, 64, 59. [Google Scholar] [CrossRef]
- Özcan, A.U.; Kutlutürk, M.M.; Kuter, S. Modelling of road-kill hotspots in steppe landscape in Turkey. Landsc. Ecol. Eng. 2022, 18, 441–449. [Google Scholar] [CrossRef]
- Laube, P.; Ratnaweera, N.; Wróbel, A.; Kaelin, I.; Stephani, A.; Reifler-Baechtiger, M.; Graf, R.F.; Suter, S. Analysing and predicting wildlife–vehicle collision hotspots for the Swiss road network. Landsc. Ecol. 2023, 38, 1765–1783. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Roadkill-Data-Based Identification and Ranking of Mammal Habitats. Land 2021, 10, 477. [Google Scholar] [CrossRef]
- Monge-Nájera, J. Road Kills in Tropical Ecosystems: A review with recommendations for mitigation and for new research. Rev. Biol. Trop. 2018, 66, 722–738. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S. Identification of Emerging Roadkill Hotspots on Korean Expressways Using Space–Time Cubes. Int. J. Environ. Res. Public Health 2023, 20, 4896. [Google Scholar] [CrossRef]
- Santos, E.; Cordova, M.; Rosa, C.; Rodrigues, D. Hotspots and Season Related to Wildlife Roadkill in the Amazonia–Cerrado Transition. Diversity 2022, 14, 657. [Google Scholar] [CrossRef]
- de C Alvarenga, A.; Entringer Jr, H.; Srbek-Araujo, A.C. Influence of landscape and seasonality on roadkill of wild vertebrates in the surroundings of a protected area of the high-altitude Atlantic Forest. Discover Conserv. 2024, 1, 16. [Google Scholar] [CrossRef]
- Bíl, M.; Kubeček, J.; Andrášik, R. Ungulate-vehicle collision risk and traffic volume on roads. Eur. J. Wildl. Res. 2020, 66, 59. [Google Scholar] [CrossRef]
- Arca-Rubio, J.; Moreno-Rueda, G.; Ortega, Z. The distribution of vertebrate roadkill varies by season, surrounding environment, and animal class. Eur. J. Wildl. Res. 2023, 69, 42. [Google Scholar] [CrossRef]
- Farmer, R.G.; Brooks, R.J. Integrated risk factors for vertebrate roadkill in southern Ontario. J. Wildl. Manag. 2012, 76, 1215–1224. [Google Scholar] [CrossRef]
- Kreling, S.E.; Gaynor, K.M.; Coon, C.A. Roadkill distribution at the wildland-urban interface. J. Wildl. Manag. 2019, 83, 1427–1436. [Google Scholar] [CrossRef]
- Perez-Guerra, J.; Gonzalez-Velez, J.; Murillo-Escobar, J.; Jaramillo-Fayad, J.C. Prediction of areas with high risk of roadkill wildlife applying maximum entropy approach and environmental features: East Antioquia, Colombia. Landsc. Ecol. Eng. 2024, 20, 75–88. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Han, Y.; Shi, G.; Zhang, L.; Wang, Z.; Cao, G.; Zhou, H.; Kong, Y.; Piao, Z.; et al. Temporal patterns and factors influencing vertebrate roadkill in China. Transp. Res. Interdiscip. Perspect. 2022, 15, 100662. [Google Scholar] [CrossRef]
- Islam, O.; Matsuyama, R.; Min, K.D. Deforestation and predator species richness as potential environmental drivers for roadkill of wild water deer in South Korea. Front. Vet. Sci. 2025, 12, 1483563. [Google Scholar] [CrossRef]
- Lunney, D.; Predavec, M.; Sonawane, I.; Moon, C.; Rhodes, J.R. Factors that drive koala roadkill: An analysis across multiple scales in New South Wales, Australia. Aust. Mammal. 2022, 44, 328–337. [Google Scholar] [CrossRef]
- Carmona, G.; Virgós, E.; Burgos, T.; Barrientos, R. Factors determining roadkills in a mammal carnivore are road-type specific. Mamm. Biol. 2024, 104, 175–183. [Google Scholar] [CrossRef]
- Barrientos, R.; de Dios Miranda, J. Can we explain regional abundance and road-kill patterns with variables derived from local-scale road-kill models? Evaluating transferability with the European polecat. Divers. Distrib. 2012, 18, 635–647. [Google Scholar] [CrossRef]
- Wierzchowski, J.; Kučas, A.; Balčiauskas, L. Application of Least-Cost Movement Modeling in Planning Wildlife Mitigation Measures Along Transport Corridors: Case Study of Forests and Moose in Lithuania. Forests 2019, 10, 831. [Google Scholar] [CrossRef]
- Balčiauskas, L. Roe Deer, Lithuania’s Smallest and Most Abundant Cervid. Forests 2024, 15, 767. [Google Scholar] [CrossRef]
- Balčiauskas, L. The Influence of Roadkill on Protected Species and Other Wildlife in Lithuania. In Proceedings of the 2011 International Conference on Ecology and Transportation (ICOET 2011), Seattle, WA, USA, 21–25 June 2011; pp. 597–601. [Google Scholar]
- Balčiauskas, L.; Stratford, J.; Balčiauskienė, L.; Kučas, A. Roadkills as a Method to Monitor Raccoon Dog Populations. Animals 2021, 11, 3147. [Google Scholar] [CrossRef]
- Langley, R.L.; Higgins, S.A.; Herrin, K.B. Risk Factors Associated with Fatal Animal-Vehicle Collisions in the United States, 1995–2004. Wildl. Environ. Med. 2006, 17, 229–239. [Google Scholar] [CrossRef]
- Khattak, A.J. Human Fatalities in Animal-Related Highway Crashes. Transp. Res. Rec. 2003, 1840, 158–166. [Google Scholar] [CrossRef]
- Conover, M.R. Numbers of human fatalities, injuries, and illnesses in the United States due to wildlife. Hum.-Wildl. Interact. 2019, 13, 264–276. [Google Scholar]
- Bíl, M.; Andrášik, R.; Bílová, M. Wildlife-vehicle collisions: The disproportionate risk of injury faced by motorcyclists. Injury 2024, 55, 111301. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Trends and Characteristics of Human Casualties in Wildlife–Vehicle Accidents in Lithuania, 2002–2022. Animals 2024, 14, 1452. [Google Scholar] [CrossRef]
- Mohanty, C.R.; Radhakrishnan, R.V.; Jain, M.; Sasmal, P.K.; Hansda, U.; Vuppala, S.K.; Doki, S.K. A Study of the Pattern of Injuries Sustained from Road Traffic Accidents Caused by Impact with Stray Animals. J. Emerg. Trauma Shock 2021, 14, 23–27. [Google Scholar] [CrossRef]
- Navas-Suárez, P.E.; Diaz-Delgado, J.; Caiaffa, M.G.; da Silva, M.C.; Yogui, D.R.; Alves, M.H.; Cereda, J.F.; da Silva, M.P.; Cremer, M.J.; Ascensão, F.; et al. Characterization of Traumatic Injuries Due to Motor Vehicle Collisions in Neotropical Wild Mammals. J. Comp. Pathol. 2022, 197, 1–18. [Google Scholar] [CrossRef]
- Yuan, Q.; Xu, X.; Yang, Z.; Shi, D.; Qi, S.; Zhang, Y. Investigating crash-related injuries between animal-related and motor vehicle in Rural China: Bayesian random parameter probit model considering endogenous variables. Cogent Eng. 2023, 10, 2220506. [Google Scholar] [CrossRef]
- Williams, A.F.; Wells, J.K. Characteristics of Vehicle-Animal Crashes in Which Vehicle Occupants Are Killed. Traffic Inj. Prev. 2005, 6, 56–59. [Google Scholar] [CrossRef]
- Al Shimemeri, A.; Arabi, Y. A Review of large animal vehicle accidents with special focus on Arabian camels. J. Emerg. Med. Trauma Acute Care 2013, 2012, 21. [Google Scholar] [CrossRef]
- Zhang, Z.; Gong, Y.; Yang, X. Secondary Crashes Identification and Modeling along Highways in Utah. Transp. Res. Rec. 2024, 2678, 613–624. [Google Scholar] [CrossRef]
- Allen, R.E.; McCullough, D.R. Deer-Car Accidents in Southern Michigan. J. Wildl. Manag. 1976, 40, 317–325. [Google Scholar] [CrossRef]
- Abra, F.D.; Granziera, B.M.; Huijser, M.P.; Ferraz, K.M.P.M.D.B.; Haddad, C.M.; Paolino, R.M. Pay or Prevent? Human Safety, Costs to Society and Legal Perspectives on Animal-Vehicle Collisions in São Paulo State, Brazil. PLoS ONE 2019, 14, e0215152. [Google Scholar] [CrossRef]
- Bissonette, J.A.; Kassar, C.A.; Cook, L.J. Assessment of costs associated with deer–vehicle collisions: Human death and injury, vehicle damage, and deer loss. Hum.-Wildl. Confl. 2008, 2, 17–27. [Google Scholar]
- Jägerbrand, A.K.; Gren, I.-M. Consequences of Increases in Wild Boar-Vehicle Accidents 2003–2016 in Sweden on Personal Injuries and Costs. Safety 2018, 4, 53. [Google Scholar] [CrossRef]
- Huijser, M.P.; Duffield, J.W.; Neher, C.; Clevenger, A.P.; McGuire, T. (Eds.) Final Report 2022: Update and Expansion of the WVC Mitigation Measures and Their Cost-Benefit Model; Transportation Pooled Fund Study, TPF-5(358); Nevada Department of Transportation: Carson City, NV, USA, 2022. Available online: https://scholarworks.montana.edu/items/dc074b74-9f86-4bbc-b3aa-29e2353fbcbe (accessed on 2 April 2025).
- Ford, A.T.; Dorsey, B.; Lee, T.S.; Clevenger, A.P. A Before-after-control-impact study of wildlife fencing along a highway in the Canadian Rocky Mountains. Front. Conserv. Sci. 2022, 3, 935420. [Google Scholar] [CrossRef]
- Sugiarto, W. Impact of Wildlife Crossing Structures on Wildlife–Vehicle Collisions. Transp. Res. Rec. 2023, 2677, 670–685. [Google Scholar] [CrossRef]
- MacKay, C. Through the Shadows of Roadkill. Humanimalia 2019, 11, 128–140. [Google Scholar] [CrossRef]
- Pynn, T.P.; Pynn, B.R. Moose and Other Large Animal Wildlife Vehicle Collisions: Implications for Prevention and Emergency Care. J. Emerg. Nurs. 2004, 30, 542–547. [Google Scholar] [CrossRef]
- Leurs, E.; Kirkpatrick, J.; Hardy, A. Emotional geographies of roadkill: Stained experiences of tourism in Tasmania. Geogr. Res. 2024, 62, 541–552. [Google Scholar] [CrossRef]
- Conway, S.; Rea, R.V.; Hesse, G.; MacPhail, C.; von der Gonna, A.; Spooner, D. Exploratory analysis of physical and emotional impacts and use of healthcare services following moose and deer vehicle collisions in north-central British Columbia. J. Transp. Health 2022, 24, 101333. [Google Scholar] [CrossRef]
- Crawford, B.A.; Andrews, K.M. Drivers’attitudes toward wildlife—Vehicle collisions with reptiles and other taxa. Anim. Conserv. 2016, 19, 444–450. [Google Scholar] [CrossRef]
- Bíl, M.; Grilo, C.; Kubeček, J.; Sedoník, J.; Andrášik, R.; Cícha, V.; Favilli, F.; Stauder, J.; Schwingshackl, F.; Michael, K.; et al. Wildlife Vehicle Collisions: Road Ecology, Monitoring and Mitigation, Citizen Science, Pedagogical and Socioeconomic Aspects. Report Prepared for the Objectives of the ERASMUS+ “EnVeROS” Intellectual Output 1. Available online: http://www.enveros.eu/ (accessed on 22 March 2025).
- Rytwinski, T.; Soanes, K.; Jaeger, J.A.; Fahrig, L.; Findlay, C.S.; Houlahan, J.; van der Ree, R.; van der Grift, E.A. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis. PLoS ONE 2016, 11, e0166941. [Google Scholar] [CrossRef]
- Lester, D. Effective wildlife roadkill mitigation. J. Traffic Transp. Eng. 2015, 3, 42–51. [Google Scholar] [CrossRef]
- Huijser, M.P.; Begley, J.S. Implementing wildlife fences along highways at the appropriate spatial scale: A Case study of reducing road mortality of Florida Key deer. Nat. Conserv. 2022, 47, 283–302. [Google Scholar] [CrossRef]
- Kučas, A.; Balčiauskas, L. Impact of Road Fencing on Ungulate–Vehicle Collisions and Hotspot Patterns. Land 2021, 10, 338. [Google Scholar] [CrossRef]
- Conan, A.; Fleitz, J.; Garnier, L.; Le Brishoual, M.; Handrich, Y.; Jumeau, J. Effectiveness of wire netting fences to prevent animal access to road infrastructures: An experimental study on small mammals and amphibians. Nat. Conserv. 2022, 47, 271–281. [Google Scholar] [CrossRef]
- Huijser, M.P.; Fairbank, E.R.; Camel-Means, W.; Graham, J.; Watson, V.; Basting, P.; Becker, D. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biol. Conserv. 2016, 197, 61–68. [Google Scholar] [CrossRef]
- Ascensão, F.; Clevenger, A.; Santos-Reis, M.; Urbano, P.; Jackson, N. Wildlife–vehicle collision mitigation: Is partial fencing the answer? An agent-based model approach. Ecol. Model. 2013, 257, 36–43. [Google Scholar] [CrossRef]
- Huijser, M.P.; Getty, S.C. Electrified Barriers Installed on Top of Wildlife Guards to Help Keep Large Wild Mammals out of a Fenced Road Corridor; Western Transportation Institute, Montana State University: Bozeman, MT, USA, 2023. [Google Scholar]
- Jaeger, J.A.; Spanowicz, A.G.; Bowman, J.; Clevenger, A.P. Clôtures et passages fauniques pour les petits et moyens mammifères le long de la route 175 au Québec: Quelle est Leur Efficacité? Le Nat. Canadien 2019, 143, 69–80. [Google Scholar] [CrossRef]
- Smith, D.; King, R.; Allen, B.L. Impacts of exclusion fencing on target and non-target fauna: A global review. Biol. Rev. 2020, 95, 1590–1606. [Google Scholar] [CrossRef]
- Donaldson, B.M.; Elliott, K.E. Enhancing existing isolated underpasses with fencing reduces wildlife crashes and connects habitat. Hum.-Wildl. Interact. 2021, 15, 148–161. [Google Scholar]
- Caldwell, M.R.; Klip, J.M.K. Wildlife Interactions within Highway Underpasses. J. Wildl. Manag. 2020, 84, 227–236. [Google Scholar] [CrossRef]
- Abra, F.D.; da Costa Canena, A.; Garbino, G.S.T.; Medici, E.P. Use of unfenced highway underpasses by lowland tapirs and other medium and large mammals in central-western Brazil. Perspect. Ecol. Conserv. 2020, 18, 247–256. [Google Scholar] [CrossRef]
- Terner, E.R. Mammal use of underpasses to cross Route 606 in Guacimal, Costa Rica. Neotrop. Biol. Conserv. 2023, 18, 107–117. [Google Scholar] [CrossRef]
- Simpson, N.O.; Stewart, K.M.; Schroeder, C.; Cox, M.; Huebner, K.; Wasley, T. Overpasses and underpasses: Effectiveness. J. Wildl. Manag. 2016, 80, 1370–1378. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Olsson, M.; Seiler, A. Ungulate use of non-wildlife underpasses. J. Environ. Manag. 2020, 273, 111095. [Google Scholar] [CrossRef]
- Elfström, M.; Olsson, M. Do wild ungulates utilize at-grade fauna passages as effectively as fauna overpasses or underpasses? Front. Conserv. Sci. 2025, 6, 1546782. [Google Scholar] [CrossRef]
- Gagnon, J.W.; Dodd, N.L.; Ogren, K.S.; Schweinsburg, R.E. Factors Associated with use of wildlife underpasses and importance of long-term monitoring. J. Wildl. Manag. 2011, 75, 1477–1487. [Google Scholar] [CrossRef]
- Soanes, K.; Rytwinski, T.; Fahrig, L.; Huijser, M.P.; Jaeger, J.A.; Teixeira, F.Z.; van der Ree, R.; van Der Grift, E.A. Do wildlife crossing structures mitigate the barrier effect of roads on animal movement? A global assessment. J. Appl. Ecol. 2024, 61, 417–430. [Google Scholar] [CrossRef]
- Brennan, L.; Chow, E.; Lamb, C. Wildlife overpass structure size, distribution, effectiveness, and adherence to expert design recommendations. PeerJ 2022, 10, e14371. [Google Scholar] [CrossRef]
- Denneboom, D.; Bar-Massada, A.; Shwartz, A. Factors affecting usage of crossing structures by wildlife—A systematic review and meta-analysis. Sci. Total Environ. 2021, 777, 146061. [Google Scholar] [CrossRef]
- Kušta, T.; Keken, Z.; Ježek, M.; Kůta, Z. Effectiveness and costs of odor repellents in wildlife–vehicle collisions: A case study in Central Bohemia, Czech Republic. Transp. Res. Part D Transp. Environ. 2015, 38, 1–5. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Bartonička, T.; Křivánková, Z.; Sedoník, J. An evaluation of odor repellent effectiveness in prevention of wildlife-vehicle collisions. J. Environ. Manag. 2018, 205, 209–214. [Google Scholar] [CrossRef]
- Bíl, M.; Sedoník, J.; Andrášik, R.; Kušta, T.; Keken, Z. Olfactory repellents decrease the number of ungulate-vehicle collisions on roads: Results of a two-year carcass study. J. Environ. Manag. 2024, 365, 121561. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Jasiulionis, M. Reducing the Incidence of Mammals on Public Highways Using Chemical Repellent. Balt. J. Road Bridge Eng. 2012, 7, 92–97. [Google Scholar] [CrossRef]
- Putman, R.J.; Langbein, J.; Staines, B.W. Deer and Road Traffic Accidents: A Review of Mitigation Measures: Costs and Cost-Effectiveness. Report to the Deer Commission for Scotland; Contract RP 23A: 2004. Available online: https://www.biofund.org.mz/wp-content/uploads/2018/11/F1210.Putman2004-Deer-And-Road-Traffic-Accidents.pdf (accessed on 10 January 2025).
- Woodard, T.N.; Reed, D.F.; Pojar, T.M. Effectiveness of Swareflex Wildlife Warning Reflectors in Reducing Deer-Vehicle Accidents; Internal Report; Colorado Division of Wildlife: Denver, CO, USA, 1973; pp. 1–5. [Google Scholar]
- Brieger, F.; Hagen, R.; Kröschel, M.; Hartig, F.; Petersen, I.; Ortmann, S.; Suchant, R. Do roe deer react to wildlife warning reflectors? A test combining a controlled experiment with field observations. Eur. J. Wildl. Res. 2017, 63, 72. [Google Scholar] [CrossRef]
- Benten, A.; Balkenhol, N.; Vor, T.; Ammer, A. Wildlife warning reflectors do not alter the behavior of ungulates to reduce the risk of wildlife-vehicle collisions. Eur. J. Wildl. Res. 2019, 65, 76. [Google Scholar] [CrossRef]
- Huijser, M.P.; Ament, R.J.; Bell, M.; Clevenger, A.P.; Fairbank, E.R.; Gunson, K.E.; McGuire, T. Animal Vehicle Collision Reduction and Habitat Connectivity—Literature Review; Report 701-18-803 TO 1 to the Nevada Department of Transportation: Carson City, NV, USA, 2021. [Google Scholar]
- Galantinho, A.; Santos, S.; Eufrázio, S.; Silva, C.; Carvalho, F.; Alpizar-Jara, R.; Mira, A. Effects of roads on small-mammal movements: Opportunities and risks of vegetation management on roadsides. J. Environ. Manag. 2022, 316, 115272. [Google Scholar] [CrossRef] [PubMed]
- Rea, R.V. Modifying roadside vegetation management practices to reduce vehicular collisions with moose (Alces alces). Wildl. Biol. 2003, 9, 81–91. [Google Scholar] [CrossRef]
- Putman, R.J.; Langbein, J.; Watson, P.; Green, P.; Cahill, S. The Management of Urban Populations of Ungulates. In Behaviour and Management of European Ungulates; Putman, R.J., Apollonio, M., Eds.; Whittles Publishing: Caithness, UK, 2014; Chapter 7; pp. 148–177. [Google Scholar]
- Saint-Andrieux, C.; Calenge, C.; Bonenfant, C. Comparison of environmental, biological and anthropogenic causes of wildlife–vehicle collisions among three large herbivore species. Popul. Ecol. 2020, 62, 64–79. [Google Scholar] [CrossRef]
- Delisle, Z.J.; Reeling, C.J.; Caudell, J.N.; McCallen, E.B.; Swihart, R.K. Targeted recreational hunting can reduce animal-vehicle collisions and generate substantial revenue for wildlife management agencies. Sci. Total Environ. 2024, 935, 173460. [Google Scholar] [CrossRef]
- Paton, D.G.; Ciuti, S.; Quinn, M.; Boyce, M.S. Hunting exacerbates the response to human disturbance in large herbivores while migrating through a road network. Ecosphere 2017, 8, e01841. [Google Scholar] [CrossRef]
- Scheifele, P.M.; Browning, D.G.; Collins-Scheifele, L.M. Analysis and effectiveness of deer whistles for motor vehicles: Frequencies, levels, and animal threshold responses. Acoust. Res. Lett. Online 2003, 4, 71–76. [Google Scholar] [CrossRef]
- Hedlund, J.H.; Curtis, P.D.; Curtis, G.; Williams, A.F. Methods to Reduce Traffic Crashes Involving Deer: What Works and What Does Not. Traffic Inj. Prev. 2004, 5, 122–131. [Google Scholar] [CrossRef]
- Mastro, L.L.; Conover, M.R.; Frey, S.N. Deer–vehicle collision prevention techniques. Hum.-Wildl. Confl. 2008, 2, 80–92. [Google Scholar]
- Valitzski, S.A.; D’Angelo, G.J.; Gallagher, G.R.; Osborn, D.A.; Miller, K.V.; Warren, R.J. Deer Responses to Sounds from a Vehicle-Mounted Sound-Production System. J. Wildl. Manag. 2009, 73, 1072–1076. [Google Scholar] [CrossRef]
- Pojar, T.M.; Prosence, R.A.; Reed, D.F.; Woodard, T.N. Effectiveness of a Lighted, Animated Deer Crossing Sign. J. Wildl. Manag. 1975, 39, 87–91. [Google Scholar] [CrossRef]
- Sullivan, T.L.; Williams, A.F.; Messmer, T.A.; Hellinga, L.A.; Kyrychenko, S.Y. Effectiveness of temporary warning signs in reducing deer-vehicle collisions during mule deer migrations. Wildl. Soc. Bull. 2004, 32, 907–915. [Google Scholar] [CrossRef]
- Bond, A.R.F.; Jones, D.N. Wildlife Warning Signs: Public Assessment of Components, Placement and Designs to Optimise Driver Response. Animals 2013, 3, 1142–1161. [Google Scholar] [CrossRef]
- Donaldson, B.M.; Kweon, Y.-J. Effectiveness of Seasonal Deer Advisories on Changeable Message Signs as a Deer Crash Mitigation Tool. Transp. Res. Rec. 2019, 2673, 548–557. [Google Scholar] [CrossRef]
- Riginos, C.; Fairbank, E.; Hansen, E.; Kolek, J.; Huijser, M.P. Reduced speed limit is ineffective for mitigating the effects of roads on ungulates. Conserv. Sci. Pract. 2022, 4, e618. [Google Scholar] [CrossRef]
- Found, R.; Boyce, M.S. Warning signs mitigate deer–vehicle collisions in an Urban area. Wildl. Soc. Bull. 2011, 35, 291–295. [Google Scholar] [CrossRef]
- Denneboom, D.; Bar-Massada, A.; Shwartz, A. Wildlife mortality risk posed by high and low traffic roads. Conserv. Biol. 2024, 38, e14159. [Google Scholar] [CrossRef]
- Pereira, A.D.; Yabu, M.H.S.; Geller, I.V.; Lehn, C.R.; Vidotto-Magnoni, A.P.; Bogoni, J.A.; Orsi, M.L. Don’t Speed Up, Speed Kills: Mammal Roadkills on Highway Sections of PR-445 in the South of Brazil. Oecol. Australis 2021, 25, 34–46. [Google Scholar] [CrossRef]
- Kioko, J.; Kiffner, C.; Phillips, P.; Patterson-Abrolat, C.; Collinson, W.; Katers, S. Driver Knowledge and Attitudes on Animal Vehicle Collisions in Northern Tanzania. Trop. Conserv. Sci. 2015, 8, 352–366. [Google Scholar] [CrossRef]
- Borza, S.; Godó, L.; Valkó, O.; Végvári, Z.; Deák, B. Better safe than sorry—Understanding the attitude and habits of drivers can help mitigate animal-vehicle collisions. J. Environ. Manag. 2023, 339, 117917. [Google Scholar] [CrossRef]
- Dasoler, B.T.; Gonçalves, L.O. Traffic education campaigns and animal-vehicle collisions in Brazil. Anais da Acad. Bras. Ciências 2023, 95, e20220404. [Google Scholar] [CrossRef]
- Ramp, D.; Wilson, V.K.; Croft, D.B. Contradiction and Complacency Shape Attitudes towards the Toll of Roads on Wildlife. Animals 2016, 6, 40. [Google Scholar] [CrossRef]
- Riley, S.J.; Marcoux, A. Deer-Vehicle Collisions: An Understanding of Accident Characteristics and Drivers’ Attitudes, Awareness and Involvement; Report No. RC-1475; Michigan Dept. of Transportation, Construction and Technology Division: Lansing, MI, USA, 2006; pp. 1–92.
- Mosler-Berger, C.; Romer, J. Wildwarnsystem CALSTROM. Wildbiologie 2003, 3, 1–2. [Google Scholar]
- Gagnon, J.W.; Dodd, N.L.; Sprague, S.C.; Ogren, K.S.; Loberger, C.D.; Schweinsburg, R.E. Animal-activated highway crosswalk: Long-term impact on elk-vehicle collisions, vehicle speeds, and motorist braking response. Hum. Dimens. Wildl. 2019, 24, 132–147. [Google Scholar] [CrossRef]
- Muurinen, I.; Ristola, T. Elk Accidents Can Be Reduced by Using Transport Telematics. Finncontact 1999, 7, 7–8. [Google Scholar]
- Gordon, K.M.; McKinstry, M.C.; Anderson, S.H. Motorist response to a deer-sensing warning system. Wildl. Soc. Bull. 2004, 32, 565–573. [Google Scholar] [CrossRef]
- Grace, M.K.; Smith, D.J.; Noss, R.F. Reducing the threat of wildlife-vehicle collisions during peak tourism periods using a Roadside Animal Detection System. Accid. Anal. Prev. 2017, 109, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Hardy, A.; Lee, S.; Al-Kaisy, A.F. Effectiveness of Animal Advisory Messages on Dynamic Message Signs as a Speed Reduction Tool. Transp. Res. Rec. 2006, 1973, 64–72. [Google Scholar] [CrossRef]
- AniMot. Die Intelligente Zukunft in der Wildunfallprävention. Available online: https://animot.eu/ (accessed on 16 March 2025).
- Putman, R.J.; Langbein, J. Deer Vehicle Collisions—A Review of Mitigation Measures and Their Effectiveness. NatureScot Research Report 1354. 2024. Available online: https://www.nature.scot/doc/naturescot-research-report-1354-deer-vehicle-collisions-review-mitigation-measures-and-their (accessed on 25 March 2025).
- Wanvik, P.O. Effects of road lighting: An analysis based on Dutch accident statistics 1987–2006. Accid. Anal. Prev. 2009, 41, 123–128. [Google Scholar] [CrossRef]
- Cunningham, C.X.; Nuñez, T.A.; Hentati, Y.; Sullender, B.; Breen, C.; Ganz, T.R.; Kreling, S.E.S.; Shively, K.A.; Reese, E.; Miles, J.; et al. Permanent daylight saving time would reduce deer-vehicle collisions. Curr. Biol. 2022, 32, 4982–4988. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials (AASHTO). Roadway Lighting Design Guide, 7th ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2018; pp. 1–89. [Google Scholar]
- Englefield, B.; Candy, S.G.; Starling, M.; McGreevy, P.D. A Trial of a Solar-Powered, Cooperative Sensor/Actuator, Opto-Acoustical, Virtual Road-Fence to Mitigate Roadkill in Tasmania, Australia. Animals 2019, 9, 752. [Google Scholar] [CrossRef]
- Reeves, J.; Burnett, S.; Brunton, E. Virtual fencing as a wildlife-vehicle collision mitigation measure: Technical function, wildlife response and considerations for installation in an urban environment. Aust. Zool. 2022, 42, 56–70. [Google Scholar] [CrossRef]
- Shilling, F.; Perkins, S.E.; Collinson, W. Wildlife/Roadkill Observation and Reporting Systems. In Handbook of Road Ecology, 1st ed.; van der Ree, R., Smith, D.J., Grilo, C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 492–501. [Google Scholar]
- Druta, C.; Alden, A.S. Preventing animal-vehicle crashes using a smart detection technology and warning system. Transp. Res. Rec. 2020, 2674, 680–689. [Google Scholar] [CrossRef]
- Munian, Y.; Martinez-Molina, A.; Miserlis, D.; Hernandez, H.; Alamaniotis, M. Intelligent System Utilizing HOG and CNN for Thermal Image-Based Detection of Wild Animals in Nocturnal Periods for Vehicle Safety. Appl. Artif. Intell. 2022, 36, 2031825. [Google Scholar] [CrossRef]
- Park, N.; Park, J.; Lee, C. Conditional Generative Adversarial Network-Based roadway crash risk prediction considering heterogeneity with dynamic data. J. Saf. Res. 2025, 92, 217–229. [Google Scholar] [CrossRef]
- Pagany, R.; Valdes, J.; Dorner, W. Risk Prediction of Wildlife-Vehicle Collisions Comparing Machine Learning Methods and Data Use. In Proceedings of the 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany, 16–18 September 2020; pp. 436–440. [Google Scholar] [CrossRef]
- Gonzalez-Velez, J.C.; Torres-Madronero, M.C.; Murillo-Escobar, J.; Jaramillo-Fayad, J.C. An artificial intelligent framework for prediction of wildlife vehicle collision hotspots based on geographic information systems and multispectral imagery. Ecol. Inform. 2021, 63, 101291. [Google Scholar] [CrossRef]
- Bell, M.; Wang, Y.; Ament, R. Risk mapping of wildlife–vehicle collisions across the state of Montana, USA: A machine-learning approach for imbalanced data along rural roads. Transp. Saf. Environ. 2024, 6, tdad043. [Google Scholar] [CrossRef]
- Nandutu, I.; Atemkeng, M.; Okouma, P. Intelligent Systems Using Sensors and/or Machine Learning to Mitigate Wildlife–Vehicle Collisions: A Review, Challenges, and New Perspectives. Sensors 2022, 22, 2478. [Google Scholar] [CrossRef]
- Forslund, D.; Bjarkefur, J. Night Vision Animal Detection. In Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014; pp. 737–742. [Google Scholar]
- Adams, E. Volvo’s Car’s Now Spot Moose and Hit the Brakes for You. Available online: https://www.wired.com/2017/01/volvos-cars-now-spot-moose-hit-brakes/ (accessed on 15 March 2025).
- Jotanovic, G.; Jausevac, G.; Perakovic, D.; Dobrilovic, D.; Stojanov, Z.; Brtka, V. Modeling a LoRAWAN Network for Vehicle Wildlife Collision Avoidance System on Rural Roads. Mobile Netw. Appl. 2024, 29, 991–999. [Google Scholar] [CrossRef]
- Goudarzi, P.; Hassanzadeh, B. Collision Risk in Autonomous Vehicles: Classification, Challenges, and Open Research Areas. Vehicles 2024, 6, 157–190. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Ding, S. A matched case-control analysis of autonomous vs human-driven vehicle accidents. Nat. Commun. 2024, 15, 4931. [Google Scholar] [CrossRef] [PubMed]
- Salvini, P.; Kunze, L.; Jirotka, M. On self-driving cars and its (broken?) promises. A case study analysis of the German Act on Autonomous Driving. Technol. Soc. 2024, 78, 102628. [Google Scholar] [CrossRef]
- Miller, T.; Durlik, I.; Kostecka, E.; Borkowski, P.; Łobodzińska, A. A Critical AI View on Autonomous Vehicle Navigation: The Growing Danger. Electronics 2024, 13, 3660. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Z.; Huang, M.; Zhang, X. RapidPD: Rapid Human and Pet Presence Detection System for Smart Vehicles via Wi-Fi. IEEE Trans. Aerosp. Electron. Syst. 2025. [Google Scholar] [CrossRef]
- Abaddi, S. Q-Omni: A Quantum computing and GPT-4o solution for Camel-Vehicle Collisions. Int. J. Transp. Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Silva, I.; Calabrese, J.M. Emerging Opportunities for Wildlife Conservation with Sustainable Autonomous Transportation. Front. Ecol. Environ. 2024, 22, e2697. [Google Scholar] [CrossRef]
- Singer, P.; Tse, Y.F. AI Ethics: The Case for Including Animals. AI Ethics 2023, 3, 539–551. [Google Scholar] [CrossRef]
- Grilo, C.; Neves, T.; Bates, J.; le Roux, A.; Medrano-Vizcaíno, P.; Quaranta, M.; Silva, I.; Soanes, K.; Wang, Y.; Data Collection Consortium. Global roadkill data: A dataset on terrestrial vertebrate mortality caused by collision with vehicles. Sci. Data 2025, 12, 505. [Google Scholar] [CrossRef]
- Praill, L.C.; Eppley, T.M.; Shanee, S.; Cunneyworth, P.M.K.; Abra, F.D.; Allgas, N.; Al-Razi, H.; Campera, M.; Cheyne, S.M.; Collinson, W.; et al. Road Infrastructure and Primate Conservation: Introducing the Global Primate Roadkill Database. Animals 2023, 13, 1692. [Google Scholar] [CrossRef]
- Heigl, F.; Teufelbauer, N.; Resch, S.; Schweiger, S.; Stückler, S.; Dörler, D. A dataset of road-killed vertebrates collected via citizen science from 2014–2020. Sci. Data 2022, 9, 504. [Google Scholar] [CrossRef]
- Medrano-Vizcaíno, P.; Brito-Zapata, D.; Rueda-Vera, A.; Jarrín-V, P.; García-Carrasco, J.-M.; Medina, D.; Aguilar, J.; Acosta-Buenaño, N.; González-Suárez, M. First national assessment of wildlife mortality in Ecuador: An effort from citizens and academia to collect roadkill data at country scale. Ecol. Evol. 2023, 13, e9916. [Google Scholar] [CrossRef] [PubMed]
- Shilling, F.M.; Waetjen, D.P. Wildlife-vehicle collision hotspots at US highway extents: Scale and data source effects. Nat. Conserv. 2015, 11, 41–60. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. Roadkill Patterns on Workdays, Weekends and Long Weekends: Anticipating the Implications of a Four-Day Work Week. Diversity 2024, 16, 84. [Google Scholar] [CrossRef]
- Liu, T.-M. Using Snake Roadkill Patterns to Indicate Effects of Climate Change on Snakes in Taiwan. Sustainability 2025, 17, 1580. [Google Scholar] [CrossRef]
- Lister, N.M.; Brocki, M.; Ament, R. Integrated adaptive design for wildlife movement under climate change. Front. Ecol. Environ. 2015, 13, 493–502. [Google Scholar] [CrossRef]
- Daniels, S.; Martensen, H.; Schoeters, A.; Van den Berghe, W.; Papadimitriou, E.; Ziakopoulos, A.; Kaiser, S.; Aigner-Breuss, E.; Soteropoulos, A.; Wijnen, W.; et al. A systematic cost-benefit analysis of 29 road safety measures. Accid. Anal. Prev. 2019, 133, 105292. [Google Scholar] [CrossRef]
- Yamashita, T.J.; Livingston, T.D.; Ryer, K.W.; Young, J.H., Jr.; Kline, R.J. Assessing changes in clusters of wildlife road mortalities after the construction of wildlife mitigation structures. Ecol. Evol. 2021, 11, 13305–13320. [Google Scholar] [CrossRef]
Name | OA | Coverage | N | Source |
---|---|---|---|---|
Global Roadkill Data | Y | ARBM; G; 1974–2024 | 208,570 | [291] |
Brazil Road-kill | Y | ARBM; R; 1988–2017 | 21,512 | [98] |
Srazenazver.cz | Y | MB; C; 2014–2025 | 168,026 | [39] |
Global Primate Roadkill Database | P | M; G; 1987–2023 | 2862 | [292] |
SPOTTERON Roadkill | Y | ARBM; G; 2014–2020 | 15,198 | [293] |
REMFA Equador roadkill | Y | ARBM; C; 2008–2022 | 5010 | [294] |
Animals under wheels | Y | ARBM; C; 1960–2020 | 89,276 | [77] |
CROS and MAWRW | Y | ARBM; R; 2009–2014 | 33,700 | [295] |
Lithuanian roadkill | N | M(ARB); C; 2002–2022 | 50,681 | [296] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balčiauskas, L.; Kučas, A.; Balčiauskienė, L. A Review of Wildlife–Vehicle Collisions: A Multidisciplinary Path to Sustainable Transportation and Wildlife Protection. Sustainability 2025, 17, 4644. https://doi.org/10.3390/su17104644
Balčiauskas L, Kučas A, Balčiauskienė L. A Review of Wildlife–Vehicle Collisions: A Multidisciplinary Path to Sustainable Transportation and Wildlife Protection. Sustainability. 2025; 17(10):4644. https://doi.org/10.3390/su17104644
Chicago/Turabian StyleBalčiauskas, Linas, Andrius Kučas, and Laima Balčiauskienė. 2025. "A Review of Wildlife–Vehicle Collisions: A Multidisciplinary Path to Sustainable Transportation and Wildlife Protection" Sustainability 17, no. 10: 4644. https://doi.org/10.3390/su17104644
APA StyleBalčiauskas, L., Kučas, A., & Balčiauskienė, L. (2025). A Review of Wildlife–Vehicle Collisions: A Multidisciplinary Path to Sustainable Transportation and Wildlife Protection. Sustainability, 17(10), 4644. https://doi.org/10.3390/su17104644