A Novel Approach to Manufacturing an Antioxidant Material, GT-Ag@MSN, Using Recycled Silver and Silicon from Scrapped Photovoltaic Panels
Abstract
:1. Introduction
2. Methods and Materials
2.1. Chemicals and Reagents
2.2. Solar Panel Separation and Preparation of MSN
2.3. Production of GT-Ag@MSN
2.4. Antibacterial Experiment
2.5. DPPH Free Radical Scavenging Experiment
2.6. GT-Ag@MSN Reduction Ability
2.7. Characterization
3. Results and Discussion
3.1. Characterization of GT-Ag@MSN
3.2. Antibacterial Performance of GT-Ag@MSN
3.3. DPPH Free Radical Scavenging Assay
3.4. GT-Ag@MSN Reducing Power
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tammaro, M.; Salluzzo, A.; Rimauro, J.; Schiavo, S.; Manzo, S. Experimental Investigation to Evaluate the Potential Environmental Hazards of Photovoltaic Panels. J. Hazard. Mater. 2016, 306, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lai, D.; Wang, G.; Wang, Y. Nondestructive Silicon Wafer Recovery by a Novel Method of Solvothermal Swelling Coupled with Thermal Decomposition. Chem. Eng. J. 2021, 418, 129457. [Google Scholar] [CrossRef]
- Zimmermann, Y.-S.; Schäffer, A.; Corvini, P.F.-X.; Lenz, M. Thin-Film Photovoltaic Cells: Long-Term Metal(Loid) Leaching at Their End-of-Life. Environ. Sci. Technol. 2013, 47, 13151–13159. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Yu, J.; Xu, C.; Wu, Y.; Pan, D.; Senthil, R.A. An Overview of the Comprehensive Utilization of Silicon-Based Solid Waste Related to PV Industry. Resour. Conserv. Recycl. 2021, 169, 105450. [Google Scholar] [CrossRef]
- Domínguez, A.; Geyer, R. Photovoltaic Waste Assessment of Major Photovoltaic Installations in the United States of America. Renew. Energy 2019, 133, 1188–1200. [Google Scholar] [CrossRef]
- Zhou, Y.; Wen, J.; Zheng, Y.; Yang, W.; Zhang, Y.; Cheng, W. Status Quo on Recycling of Waste Crystalline Silicon for Photovoltaic Modules and Its Implications for China’s Photovoltaic Industry. Front. Energy 2024, 18, 685–698. [Google Scholar] [CrossRef]
- Alshameri, A.W.; Owais, M. Antibacterial and Cytotoxic Potency of the Plant-Mediated Synthesis of Metallic Nanoparticles Ag NPs and ZnO NPs: A Review. OpenNano 2022, 8, 100077. [Google Scholar] [CrossRef]
- Munir, T.; Mahmood, A.; Peter, N.; Rafaqat, N.; Imran, M.; Ali, H.E. Structural, Morphological and Optical Properties at Various Concentration of Ag Doped SiO2-NPs via Sol Gel Method for Antibacterial and Anticancer Activities. Surf. Interfaces 2023, 102759. [Google Scholar] [CrossRef]
- Chang, Z.; Karmakar, B.; Lu, H.; Lou, X.; Salem Alkhayyat, S.; Mostafa-Hedeab, G.; El-Saber Batiha, G.; El-kott, A.F.; Elsaid, F.G.; Al-Kahtani, M.A.; et al. Preparation of Gelatin/Ag NPs under Ultrasound Condition: A Potent and Green Bio-Nanocomposite for the Treatment of Pleomorphic Hepatocellular Carcinoma, Morris Hepatoma, and Novikoff Hepatoma. Arab. J. Chem. 2022, 15, 103858. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Akpeji, B.H.; Azeez, S.O.; Ayipo, Y.O.; Abdulsalam, Z.A.; Adebayo, Z.F.; Ajao, A.T.; Zakariyah, A.T.; Elemike, E.E. Biosynthesis of Ag and TiO2 Nanoparticles and the Evaluation of Their Antibacterial Activities. Inorg. Chem. Commun. 2022, 141, 109503. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, L.; Li, Q.; Ai, J.; Liu, H.; Chen, Q. Rapid Hemostasis Accompanied by Antibacterial Action of Calcium Crosslinking Tannic Acid-Coated Mesoporous Silica/Silver Janus Nanoparticles. Mater. Sci. Eng. C 2021, 123, 111958. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.B.; Nayak, Y.; Garg, S.; Nayak, U.Y. Multifunctional Engineered Mesoporous Silica/Inorganic Material Hybrid Nanoparticles: Theranostic Perspectives. Coord. Chem. Rev. 2023, 478, 214977. [Google Scholar] [CrossRef]
- Zhuang, J.; Yu, Y.; Lu, R. Mesoporous Silica Nanoparticles as Carrier to Overcome Bacterial Drug Resistant Barriers. Int. J. Pharm. 2023, 631, 122529. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.; Yu, X.; Liu, H.; Li, K.; He, Y.; Tian, H.; Kumar, R. Material, Antibacterial and Anticancer Properties of Natural Polyphenols Incorporated Soy Protein Isolate: A Review. Eur. Polym. J. 2021, 152, 110494. [Google Scholar] [CrossRef]
- Riccucci, G.; Cazzola, M.; Ferraris, S.; Gobbo, V.A.; Guaita, M.; Spriano, S. Surface Functionalization of Ti6Al4V with an Extract of Polyphenols from Red Grape Pomace. Mater. Des. 2021, 206, 109776. [Google Scholar] [CrossRef]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. Bioactive (Poly)Phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef]
- Cheng, W.; Wen, J. Now and Future: Development and Perspectives of Using Polyphenol Nanomaterials in Environmental Pollution Control. Coord. Chem. Rev. 2022, 473, 214825. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Li, P.; Wang, G.; Wei, J. Controllable Deposition of Ag Nanoparticles on Various Substrates via Interfacial Polyphenol Reduction Strategy for Antibacterial Application. Colloids Surf. Physicochem. Eng. Asp. 2022, 655, 130287. [Google Scholar] [CrossRef]
- Ebrahim Mohammadzadeh, S.; Faghiri, F.; Ghorbani, F. Green Synthesis of Phenolic Capping Ag NPs by Green Walnut Husk Extract and Its Application for Colorimetric Detection of Cd2+ and Ni2+ Ions in Environmental Samples. Microchem. J. 2022, 179, 107475. [Google Scholar] [CrossRef]
- Hao, R.; Li, D.; Zhang, J.; Jiao, T. Green Synthesis of Iron Nanoparticles Using Green Tea and Its Removal of Hexavalent Chromium. Nanomaterials 2021, 11, 650. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, J.; Hu, X.; Xing, L.; Yan, C. Immobilization of Cr(VI) Contaminated Soil Using Green-Tea Impregnated Attapulgite. J. Clean. Prod. 2021, 278, 123967. [Google Scholar] [CrossRef]
- Hu, X.; Wen, J.; Zhang, H.; Wang, Q.; Yan, C.; Xing, L. Can Epicatechin Gallate Increase Cr(VI) Adsorption and Reduction on ZIF-8? Chem. Eng. J. 2020, 391, 123501. [Google Scholar] [CrossRef]
- Hou, D.-Z.; Ling, P.; Zhu, Y.; Ouyang, Y.-M.; Karmakar, B. White Tea Extract Modified Green Synthesis of Magnetite Supported Ag Nanoparticles: Evaluation of Its Catalytic Activity, Antioxidant and Anti-Colon Cancer Effects. Arab. J. Chem. 2022, 15, 104219. [Google Scholar] [CrossRef]
- Hassabo, A.G.; Reda, E.M.; Ghazal, H.; Othman, H.A. Synthesis of AgNPs and ZnONPs Using Tea Leaves Extract and Their Utilization to Improve Dyeability, Printability and Functionality of Cotton and Wool Fabrics. Inorg. Chem. Commun. 2023, 150, 110525. [Google Scholar] [CrossRef]
- Hossain, S.S.; Bae, C.-J.; Roy, P.K. Recent Progress of Wastes Derived Nano-Silica: Synthesis, Properties, and Applications. J. Clean. Prod. 2022, 377, 134418. [Google Scholar] [CrossRef]
- Fu, P.; Yang, T.; Feng, J.; Yang, H. Synthesis of Mesoporous Silica MCM-41 Using Sodium Silicate Derived from Copper Ore Tailings with an Alkaline Molted-Salt Method. J. Ind. Eng. Chem. 2015, 29, 338–343. [Google Scholar] [CrossRef]
- Yue, Q.; Wen, J.; Zhou, Y.; Zheng, Y. Resource Utilization of Waste Solar Photovoltaic Panels for Preparation of Microporous Silicon Nanoparticles. Waste Manag. 2025, 193, 495–505. [Google Scholar] [CrossRef]
- Wang, O.; Ma, X. Innovating the Recycling of Silicon-Based Solar Panels with an Eco-Friendly Alkaline Leaching Process. Resour. Conserv. Recycl. 2024, 211, 107887. [Google Scholar] [CrossRef]
- Negi, A.; Rana, P.; Kumar vishwakarma, R.; Singh Negi, D. Multi Dye Degradation, Antibacterial, Antidiabetic and Antioxidant Assessment of Silver Nanoparticles (Ag-NPs) Derived via Leaves of Smilax Aspera. Inorg. Chem. Commun. 2022, 143, 109703. [Google Scholar] [CrossRef]
- Gao, Y.; Dou, H.; Ma, Y.; Tian, G.; Weragoda, D.M.; Li, S.; Yang, X.; Zhang, Z.; Fan, G.; Chen, B. Antibacterial Performance Effects of Ag NPs in Situ Loaded in MOFs Nano-Supports Prepared by Post-Synthesis Exchange Method. J. Environ. Chem. Eng. 2024, 12, 112133. [Google Scholar] [CrossRef]
- Manickam, V.; Mani, G.; Muthuvel, R.; Pushparaj, H.; Jayabalan, J.; Pandit, S.S.; Elumalai, S.; Kaliappan, K.; Tae, J.H. Green Fabrication of Silver Nanoparticles and It’s in Vitro Anti-Bacterial, Anti-Biofilm, Free Radical Scavenging and Mushroom Tyrosinase Efficacy Evaluation. Inorg. Chem. Commun. 2024, 162, 112199. [Google Scholar] [CrossRef]
- Ye, L.; Li, H.; Xiang, J.; Chen, J.; Zhang, X.; Zheng, S.; Liao, W. Synthesis of Ag@SiO2 Core-Shell Nanoparticles for Antibacterial Application in Water-Based Acrylic Polymer Coatings. Surf. Interfaces 2024, 51, 104490. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef]
- Li, D.; Le, Y.; Hou, X.-Y.; Chen, J.-F.; Shen, Z.-G. Colored Nanoparticles Dispersions as Electronic Inks for Electrophoretic Display. Synth. Met. 2011, 161, 1270–1275. [Google Scholar] [CrossRef]
- Bukhary, H.A.; Zaman, U.; ur Rehman, K.; Alissa, M.; Rizg, W.Y.; Khan, D.; Almehizia, A.A.; Naglah, A.M.; Al-Wasidi, A.S.; Alharbi, A.S.; et al. Acid Protease Functionalized Novel Silver Nanoparticles (APTs-AgNPs): A New Approach towards Photocatalytic and Biological Applications. Int. J. Biol. Macromol. 2023, 242, 124809. [Google Scholar] [CrossRef]
- Chinnasamy, R.; Chinnaperumal, K.; Venkatesan, M.; Jogikalmat, K.; Cherian, T.; Willie, P.; Malafaia, G. Eco-Friendly Synthesis of Ag-NPs Using Endostemon Viscosus (Lamiaceae): Antibacterial, Antioxidant, Larvicidal, Photocatalytic Dye Degradation Activity and Toxicity in Zebrafish Embryos. Environ. Res. 2023, 218, 114946. [Google Scholar] [CrossRef]
- Ganesan, T.; Muthukrishnan, S.; Albeshr, M.F.; Selvankumar, T.; Pradeepkumar, S.; Indumathi, K.P.; Anto, B. Aerva Lanata Flower Extract Mediated Green Synthesis of Silver Nanoparticles: Their Characterization, in Vitro Antioxidants and Antimicrobial Investigations. Polym. Adv. Technol. 2024, 35, 1–9. [Google Scholar] [CrossRef]
- Khan, A.H.; Hassan, S.; Aamir, M.; Khan, M.W.; Haq, F.; Hayat, J.; Rizwan, M.; Ullah, A.; Ullah, I.; Zengin, G.; et al. Exploring the Therapeutic Properties of Alga-Based Silver Nanoparticles: Anticancer, Antibacterial, and Free Radical Scavenging Capabilities. Chem. Biodivers. 2023, 20, e202301068. [Google Scholar] [CrossRef]
- Dhanalakshmi, M.; Losetty, V. Synthesis of Sustainable Silver Nanoparticles Using Plant Extract and Their Antimicrobial, Anticancer, and Photocatalytic Dye Degradation Efficiency Analysis. Process Biochem. 2024, 144, 64–78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Yue, Q.; Qi, Z.; Gong, Z.; Ba, Y. A Novel Approach to Manufacturing an Antioxidant Material, GT-Ag@MSN, Using Recycled Silver and Silicon from Scrapped Photovoltaic Panels. Sustainability 2025, 17, 4557. https://doi.org/10.3390/su17104557
Wen J, Yue Q, Qi Z, Gong Z, Ba Y. A Novel Approach to Manufacturing an Antioxidant Material, GT-Ag@MSN, Using Recycled Silver and Silicon from Scrapped Photovoltaic Panels. Sustainability. 2025; 17(10):4557. https://doi.org/10.3390/su17104557
Chicago/Turabian StyleWen, Jia, Qing Yue, Zhifei Qi, Zhixuan Gong, and Yujiao Ba. 2025. "A Novel Approach to Manufacturing an Antioxidant Material, GT-Ag@MSN, Using Recycled Silver and Silicon from Scrapped Photovoltaic Panels" Sustainability 17, no. 10: 4557. https://doi.org/10.3390/su17104557
APA StyleWen, J., Yue, Q., Qi, Z., Gong, Z., & Ba, Y. (2025). A Novel Approach to Manufacturing an Antioxidant Material, GT-Ag@MSN, Using Recycled Silver and Silicon from Scrapped Photovoltaic Panels. Sustainability, 17(10), 4557. https://doi.org/10.3390/su17104557