Study on Odor-Reducing Effectiveness and Performance Impacts of Deodorizing Materials on Asphalt Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Deodorized Asphalt Binder
2.3. Test Method
2.3.1. Asphalt Binder Flue Gas Collection Method
2.3.2. Gas Chromatography–Mass Spectrometry
- Types of chromatography columns: Agilent222-5532LTM capillary column manufactured by Agilent Technologies (Santa Clara, CA, USA).
- Carrier gas: 99.9% pure helium.
- Flow rate: 2.0 mL/min.
- Shunt ratio: 2:1.
- Inlet temperature: 250 °C.
- Injection volume: 2 µL.
- The initial temperature was 72 °C for 4 min, and then the rate rose to 280 °C at 8 °C/min for 2 min.
- Transmission line temperature: 250 °C.
- Ion source temperature: 230 °C.
- Solvent delay time is 2 min.
- Ionization method: electron bombardment (EI) with an ionization energy of 70 eV.
- Quality scan range (m/z): 30 to 1000 amu.
2.3.3. High-Temperature Performance Test
- Temperature range: 46~82 °C.
- Heating rate: 6 °C/min.
- Frequency: 10 rad/s.
- Strain: 1.5%.
- Diameter of the fixture: 25 mm.
- Spacing of the fixture: 1 mm.
2.3.4. Low-Temperature Performance Test
- Temperatures: −6 °C, −12 °C, and −18 °C.
- Angular frequency range: 0.2~100 rad/s.
- Strain: 0.05%.
- Diameter of the fixture: 4 mm.
- Spacing of the fixture: 2 mm.
3. Results and Discussion
3.1. Composition Analysis of Different Asphalt Binder Flue Gas
3.2. Evaluation of Odor-Reducing Effectiveness
3.2.1. Organic Component Analysis
3.2.2. Inorganic Component Analysis
3.3. Performance Impact Analysis
3.3.1. High-Temperature Performance
3.3.2. Low-Temperature Performance
4. Conclusions and Future Prospects
4.1. Conclusions
- (1)
- The aldehyde groups in the deodorizing materials B and C can react with the asphalt binder flue gas to produce new substances to reduce the volatilization of the irritating odor components. Meanwhile, material B can adsorb free radicals through conjugated double bonds and reduce the pyrolysis, thereby inhibiting the release of organic flue gas with the aldehyde groups. The tert-butyl co-acting material C has the best odor-reducing effectiveness on odorous VOCs, H2S, and CO in 70# pure asphalt binder flue gas, which is up to 66.7%, 49.1%, and 44.0%, respectively. The conjugated double bond co-acting material B has the best odor-reducing effectiveness on odorous VOCs, H2S, and CO in SBS-modified asphalt binder. The results were 78.7%, 52.9%, and 51.0%, respectively, which were better than finished material A.
- (2)
- The two deodorizing materials improved high-temperature deformation resistance of 70# pure asphalt binder and SBS-modified asphalt binder. Deodorizing material C better improves the G*/sinδ of 70# pure asphalt binder at 64 °C by 128.7%, and deodorizing material B better improves the G*/sinδ of SBS-modified asphalt binder at 76 °C by 1.7%.
- (3)
- The two deodorizing materials improved the low-temperature cracking resistance of SBS-modified asphalt binder to a certain extent but have a negative impact on the low-temperature cracking resistance of 70# pure asphalt binder. Deodorizing material B can better improve the m/S value of SBS-modified asphalt binder at −12 °C by 64.1%. The negative impact of deodorizing material C on the low-temperature cracking resistance of 70# pure asphalt binder is relatively small, and the m/S value of 70# pure asphalt binder at −12 °C is reduced by 11.9%, but all meet the specification requirements of an S value not more than 300 MPa and an m value not less than 0.3.
4.2. Future Prospects
- (1)
- The road performance of the two types of asphalt binder before and after adding deodorizing materials requires further investigation.
- (2)
- To mitigate the negative impact on the low-temperature performance of 70# pure asphalt binder, a composite design incorporating deodorizing materials B and C with other functional group materials should be considered.
- (3)
- It is necessary to combine Fourier-transform infrared (FTIR) spectroscopy tests, four-component analysis experiments, and fluorescence microscopy tests to elucidate the interaction mechanisms between the deodorizing materials and asphalt binders.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, M.; Zhang, R.; Du, X.; Liu, P. A State-of-the-Art Review on the Functionality of Ultra-Thin Overlays towards a Future Low Carbon Road Maintenance. Engineering 2024, 32, 82–98. [Google Scholar] [CrossRef]
- Espinoza, J.; Medina, C.; Calabi-Floody, A.; Sánchez-Alonso, E.; Valdés, G.; Quiroz, A. Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) From Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements. Sustainability 2020, 12, 9546. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Rong, H.; Meng, Y.; Liu, X.; Liu, Y.; Peng, C. Review of fume-generation mechanism, test methods, and fume suppressants of asphalt materials. J. Clean. Prod. 2022, 347, 131240. [Google Scholar] [CrossRef]
- Wang, M.; Li, P.; Nian, T.; Mao, Y. An overview of studies on the hazards, component analysis and suppression of fumes in asphalt and asphalt mixtures. Constr. Build. Mater. 2021, 289, 123185. [Google Scholar] [CrossRef]
- Chang, X.; Long, Y.; Wang, C.; Xiao, Y. Chemical fingerprinting of volatile organic compounds from asphalt binder for quantitative detection. Constr. Build. Mater. 2023, 371, 130766. [Google Scholar] [CrossRef]
- Mundt, K.A.; Dell, L.D.; Crawford, L.; Sax, S.N.; Boffetta, P. Cancer risk associated with exposure to bitumen and bitumen fumes: An updated systematic review and meta-analysis. J. Occup. Environ. Med. 2017, 60, 6–54. [Google Scholar] [CrossRef]
- Kriech, A.J.; Schreiner, C.A.; Osborn, L.V.; Riley, A.J. Assessing cancer hazards of bitumen emissions—A case study for complex petroleum substances. Crit. Rev. Toxicol. 2017, 48, 121–142. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Wu, S.; Lv, Y.; Wan, P.; Gong, X.; Liu, G. Study of synergistic effect of diatomite and modified attapulgite on reducing asphalt volatile organic compounds emission. Constr. Build. Mater. 2023, 400, 132827. [Google Scholar] [CrossRef]
- Li, S.; Liu, Q.; Wang, H.; Wang, J.; He, L.; Wu, S. Effect of kaolin and sepiolite on fume emissions of rubber modified asphalt. Constr. Build. Mater. 2024, 416, 135276. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, B. A novel nanocomposite of Ca(OH)2-incorporated zeolite as an additive to reduce atmospheric emissions of PM and VOCs during asphalt production. Environ. Sci. Nano 2017, 4, 613–624. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, X.; Liu, Y.; Ge, D.; Wang, S.; Ding, Z.; Lv, S. Microbial treatment of waste crumb rubber: Reducing energy consumption and harmful emissions during asphalt production process. J. Clean. Prod. 2024, 464, 142778. [Google Scholar] [CrossRef]
- Guo, T.; Fu, H.; Wang, C.; Chen, H.; Chen, Q.; Wang, Q.; Chen, Y.; Li, Z.; Chen, A. Road Performance and Emission Reduction Effect of Graphene/Tourmaline-Composite-Modified Asphalt. Sustainability 2021, 13, 8932. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Li, Q.; Zhang, W.; Yan, C. The Investigation of Volatile Organic Compounds (VOCs) Emissions in Environmentally Friendly Modified Asphalt. Polymers 2022, 14, 3459. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Y.; Sun, L.; Xu, X.; Zhang, H. Characterization of fume suppression effect and performance of SBS-modified asphalt with deodorant. Processes 2024, 12, 2603. [Google Scholar] [CrossRef]
- Cao, L.; Yang, C.; Li, A.; Wang, P.; Zhang, Y.; Dong, Z. Flue gas composition of waste rubber modified asphalt (WRMA) and effect of deodorants on hazardous constituents and WRMA. J. Hazard. Mater. 2021, 403, 123814. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, P.; Zhou, T.; Cao, L.; Ding, X.; Zhang, B.; Wei, L. Performance evaluation and multiscale investigation of deodorant on mechanism of rubber modified asphalt. J. Clean. Prod. 2023, 425, 138954. [Google Scholar] [CrossRef]
- Boom, Y.J.; Enfrin, M.; Xuan, D.L.; Grist, S.; Robert, D.; Giustozzi, F. Laboratory evaluation of PAH and VOC emission from plastic-modified asphalt. J. Clean. Prod. 2022, 377, 134489. [Google Scholar] [CrossRef]
- Lv, Y.; Wua, S.; Li, N.; Liu, Q.; Yang, C.; Zou, Y.; Amirkhanian, S. Flue gas suppression and environmental evaluation of deodorizer-modified rubber asphalt based on radar method. Constr. Build. Mater. 2024, 411, 134526. [Google Scholar] [CrossRef]
- Sun, X.; Qin, X.; Liu, Z.; Yin, Y.; Jiang, S.; Wang, X. Applying feasibility analysis and catalytic purifying potential of novel modifying agent used in asphalt pavement materials. Constr. Build. Mater. 2020, 245, 118467. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, T.; Zhao, P.; Luo, G.; Deng, Y. Effect of odour-less additive on asphalt flue gas emission and performance of asphalt and asphalt mixture. Case Stud. Constr. Mater. 2024, 20, e03006. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, P.; Xu, R.; Liang, X.; Xiao, X.; Shi, L.; Lv, J. Influence of smoke suppressant on the smoke inhibition effect and properties of different types of asphalt. Front. Mater. 2023, 10, 1205050. [Google Scholar] [CrossRef]
- Meng, Y.; Fang, G.; Hu, Y.; Qin, Y.; Xu, R.; Yang, F.; Lei, J.; Zhang, C. Study on the effect of different aldehyde modifiers on the fume suppression effect, mechanism and road performance of SBS modified asphalt. Sci. Total Environ. 2024, 912, 169162. [Google Scholar] [CrossRef] [PubMed]
- Boom, Y.J.; Enfrin, M.; Grist, S.; Giustozzi, F. Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. Sci. Total Environ. 2022, 832, 155037. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, T.; Cao, L.; Zhou, J.; Liu, Z.; Dong, Z. Characterization of emissions from rubber modified asphalt and their impact on environmental burden: Insights into composition variability and hazard assessment. J. Hazard. Mater. 2024, 477, 135336. [Google Scholar] [CrossRef]
- Janhäll, S.; Strandberg, B.; Wallqvist, V.; Rissler, J. A new method and first results for comparing emissions of fumes during construction of asphalt surfaces. Constr. Build. Mater. 2024, 422, 135736. [Google Scholar] [CrossRef]
- Sui, C.; Farrar, M.J.; Tuminello, W.H.; Turner, T.F. New Technique for Measuring Low-Temperature Properties of Asphalt Binders with Small Amounts of Material. Transp. Res. Rec. J. Transp. Res. Board 2010, 2179, 23–28. [Google Scholar] [CrossRef]
- Wang, D.; Falchetto, A.C.; Poulikakos, L.; Hofko, B.; Porot, L. RILEM TC 252-CMB report: Rheological modeling of asphalt binder under different short and long-term aging temperatures. Mater. Struct. 2019, 52, 73. [Google Scholar] [CrossRef]
- Hajj, R.; Filonzi, A.; Rahman, S.; Bhasin, A. Considerations for using the 4 mm Plate Geometry in the Dynamic Shear Rheometer for Low Temperature Evaluation of Asphalt Binders. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 649–659. [Google Scholar] [CrossRef]
- Liu, S.T.; Cao, W.D.; Shang, S.J.; Qi, H.S.; Fang, J.G. Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders. Constr. Build. Mater. 2010, 24, 471–478. [Google Scholar] [CrossRef]
Basic Index | Material A | Material B | Material C |
---|---|---|---|
Appearance | Light yellow liquid | Light yellow liquid | Colorless transparent liquid |
Odor | Citrus-scented | Scent of jasmine | Lily-scented |
Density/(g/cm3) | 1.019 | 0.950 | 0.946 |
Flash point/(°C) | 126 | 113 | 100 |
Boiling point/(°C) | 254 | 305 | 278 |
Refractive index | 1.47 | 1.55 | 1.51 |
Asphalt Binder Type | Penetration Degree/(0.1 mm) | Extensibility/cm | Softening Point/°C |
---|---|---|---|
70# pure asphalt binder | 70.1 | >100 (15 °C) | 47.5 |
SBS-modified asphalt binder | 67.3 | 38.7 (5 °C) | 62 |
Test Item | Range |
---|---|
CO | 0~1000 ppm |
CH4 | 0~100% LEL |
H2S | 0~100 ppm |
O2 | 0~30 vol% |
CO2 | 0~5000 ppm |
NH3 | 0~1000 ppm |
Component Class | Flue Gas Composition | 70# Pure Asphalt Binder | SBS-Modified Asphalt Binder |
---|---|---|---|
Alkanes | Octane, 2,3-dimethyl- | - | 8.64 |
Heptane, 2,5,5-trimethyl- | 4.36 | 7.29 | |
Undecane | 12.09 | 25.94 | |
Dodecane | 6.05 | 9.27 | |
Undecane, 2,6-dimethyl- | 4.25 | 8.31 | |
Tridecane | 7.33 | 16.67 | |
Tetradecane | 2.56 | 4.23 | |
2,6,10-Trimethyltridecane | 4.10 | 8.67 | |
Pentadecane | 11.35 | 20.41 | |
Hexadecane | 8.91 | 11.72 | |
Heptadecane | 10.33 | 23.37 | |
Octadecane | 4.26 | 10.97 | |
Pentadecane, 2,6,10,14-tetramethyl- | 4.57 | 10.25 | |
Heneicosane | 24.14 | 31.73 | |
Docosane | 36.37 | 42.21 | |
Tetracosane | - | 5.37 | |
Octacosane | - | 7.64 | |
Hexatriacontane | - | 4.27 | |
Tetratetracontane | - | 6.41 | |
Olefins | 1-Decene | 5.37 | 6.52 |
7-Tetradecene | 5.92 | - | |
1-Undecene | 4.06 | 5.57 | |
1-Dodecene | 4.13 | 4.46 | |
1-Tridecene | 2.74 | - | |
17-Pentatriacontene | - | 6.00 | |
Benzenes | Benzene, (1-methylethyl)- | - | 8.20 |
Mesitylene | 5.53 | 6.55 | |
Benzene, 1,2,3,4-tetramethyl- | 9.92 | 10.10 | |
.alpha.-Methylstyrene | - | 8.67 | |
Benzene, 1,1’-(1,3-propanediyl)bis- | - | 5.37 | |
Aldehyde | 1-Nonanal | 5.89 | 7.24 |
Decanal | 2.56 | 4.66 | |
Phenols | Phenol, 2-(1,1-dimethylethyl)-4-methyl- | - | 3.18 |
Butylated Hydroxytoluene | - | 4.94 | |
Alcohols | n-Pentadecanol | - | 7.03 |
1-Hexadecanol | 3.43 | - | |
1-Dodecanol, 3,7,11-trimethyl- | 4.27 | - | |
Esters | Acetic acid, chloro-, hexadecyl ester | 7.09 | - |
Dibutyl phthalate | 3.46 | - | |
Hexadecanoic acid, methyl ester | - | 4.96 | |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | - | 6.62 |
Flue Gas Composition | Odor Type | Chemical Structure Formula |
---|---|---|
1-Decene | Slightly pungent | |
7-Tetradecene | ||
1-Undecene | ||
1-Dodecene | ||
1-Tridecene | ||
17-Pentatriacontene | ||
Benzene, (1-methylethyl)- | Pungent aroma | |
Mesitylene | ||
Benzene, 1,2,3,4-tetramethyl- | ||
.alpha.-Methylstyrene | ||
Benzene, 1,1’-(1,3-propanediyl)bis- | ||
1-Nonanal | Sweet orange | |
Decanal | citrusy | |
Phenol, 2-(1,1-dimethylethyl)-4-methyl- | Pungent aroma | |
Butylated Hydroxytoluene | ||
n-Pentadecanol | Slightly pungent | |
1-Hexadecanol | Rose | |
1-Dodecanol, 3,7,11-trimethyl- | Grease | |
Acetic acid, chloro-, hexadecyl ester | Pungent | |
Dibutyl phthalate | Pungent aroma | |
Hexadecanoic acid, methyl ester | Waxy | |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | Wood |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Wei, L.; Fu, Y.; Guan, M. Study on Odor-Reducing Effectiveness and Performance Impacts of Deodorizing Materials on Asphalt Binders. Sustainability 2025, 17, 4491. https://doi.org/10.3390/su17104491
Guo M, Wei L, Fu Y, Guan M. Study on Odor-Reducing Effectiveness and Performance Impacts of Deodorizing Materials on Asphalt Binders. Sustainability. 2025; 17(10):4491. https://doi.org/10.3390/su17104491
Chicago/Turabian StyleGuo, Meng, Lewen Wei, Ye Fu, and Mingyang Guan. 2025. "Study on Odor-Reducing Effectiveness and Performance Impacts of Deodorizing Materials on Asphalt Binders" Sustainability 17, no. 10: 4491. https://doi.org/10.3390/su17104491
APA StyleGuo, M., Wei, L., Fu, Y., & Guan, M. (2025). Study on Odor-Reducing Effectiveness and Performance Impacts of Deodorizing Materials on Asphalt Binders. Sustainability, 17(10), 4491. https://doi.org/10.3390/su17104491