Heavy Metal Levels in Green Areas of the Urban Soil Environment of Larissa City (Central Greece): Health and Sustainable Living Risk Assessment for Adults and Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Definition—Soil Sampling
2.2. Soil Physicochemical Analyses
2.3. Health Risk Assessment
2.4. Statistical—Geostatistical Analyses
3. Results
3.1. Soil Physicochemical Parameters—Levels of Heavy Metals
3.2. GIS Tools—Geostatistical Analyses
3.3. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, W.; Jin, Y.; Zeng, G. Introduction of Heavy Metals Contamination in the Water and Soil: A Review on Source, Toxicity and Remediation Methods. Green Chem. Lett. Rev. 2024, 17, 2404235. [Google Scholar] [CrossRef]
- Goncharov, G.; Soktoev, B.; Farkhutdinov, I.; Matveenko, I. Heavy Metals in Urban Soil: Contamination Levels, Spatial Distribution and Human Health Risk Assessment (the Case of Ufa City, Russia). Environ. Res. 2024, 257, 119216. [Google Scholar] [CrossRef]
- Argyraki, A.; Kelepertzis, E. Urban Soil Geochemistry in Athens, Greece: The Importance of Local Geology in Controlling the Distribution of Potentially Harmful Trace Elements. Sci. Total Environ. 2014, 482–483, 366–377. [Google Scholar] [CrossRef]
- Golia, E.E.; Bethanis, J.; Xagoraris, C.; Tziourrou, P. Potentially Toxic Elements in Urban and Peri-Urban Soils—A Critical Meta-Analysis of Their Sources, Availability, Interactions, and Spatial Distribution. J. Ecol. Eng. 2024, 25, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Ghazaryan, K.; Agrawal, S.; Margaryan, G.; Harutyunyan, A.; Rajput, P.; Movsesyan, H.; Rajput, V.D.; Singh, R.K.; Minkina, T.; Elshikh, M.S.; et al. Soil Pollution: An Agricultural and Environmental Problem with Nanotechnological Remediation Opportunities and Challenges. Discov. Sustain. 2024, 5, 453. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A Review of Heavy Metal Contaminations in Urban Soils, Urban Road Dusts and Agricultural Soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Pecina, V.; Brtnický, M.; Baltazár, T.; Juřička, D.; Kynický, J.; Vašinová Galiová, M. Human Health and Ecological Risk Assessment of Trace Elements in Urban Soils of 101 Cities in China: A Meta-Analysis. Chemosphere 2021, 267, 129215. [Google Scholar] [CrossRef]
- Binner, H.; Sullivan, T.; Jansen, M.A.K.; McNamara, M.E. Metals in Urban Soils of Europe: A Systematic Review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Singh, I.; Jadhao, P.S.; Kumar, A.R. Occurrence, Fractionation, and Human Health Risk Assessment of Potentially Toxic Metals in Urban Soils of Different Land Use Types. Water Air Soil Pollut. 2025, 236, 183. [Google Scholar] [CrossRef]
- Adewumi, A.J.; Ogundele, O.D. Hidden Hazards in Urban Soils: A Meta-Analysis Review of Global Heavy Metal Contamination (2010–2022), Sources and Its Ecological and Health Consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Kalivas, D.; Panagopoulou, G. Concentrations and Availability Indicators of Soil Heavy Metals; the Case of Children’s Playgrounds in the City of Athens (Greece). Water Air Soil Pollut. 2010, 212, 51–63. [Google Scholar] [CrossRef]
- Argyraki, A.; Kelepertzis, E.; Botsou, F.; Paraskevopoulou, V.; Katsikis, I.; Trigoni, M. Environmental Availability of Trace Elements (Pb, Cd, Zn, Cu) in Soil from Urban, Suburban, Rural and Mining Areas of Attica, Hellas. J. Geochem. Explor. 2018, 187, 201–213. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Gerontidis, S.; Sarris, E. Elevated Heavy Metal Concentrations in Top Soils of an Aegean Island Town (Greece): Total and Available Forms, Origin and Distribution. Environ. Monit. Assess. 2009, 151, 105–116. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Appl. Sci. 2021, 11, 5404. [Google Scholar] [CrossRef]
- Golia, E.E.; Emmanouil, C.; Charizani, A.; Koropouli, A.; Kungolos, A. Assessment of Cu and Zn Contamination and Associated Human Health Risks in Urban Soils from Public Green Spaces in the City of Thessaloniki, Northern Greece. EuroMediterr. J. Environ. Integr. 2023, 8, 517–525. [Google Scholar] [CrossRef]
- Bourliva, A.; Kantiranis, N.; Papadopoulou, L.; Aidona, E.; Christophoridis, C.; Kollias, P.; Evgenakis, M.; Fytianos, K. Seasonal and Spatial Variations of Magnetic Susceptibility and Potentially Toxic Elements (PTEs) in Road Dusts of Thessaloniki City, Greece: A One-Year Monitoring Period. Sci. Total Environ. 2018, 639, 417–427. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human Health Risk Assessment of Heavy Metals in Soil-Vegetable System: A Multi-Medium Analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef]
- Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating Bioaccessibility into Human Health Risk Assessments of Heavy Metals in Urban Park Soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef]
- Ghanavati, N.; Nazarpour, A.; De Vivo, B. Ecological and Human Health Risk Assessment of Toxic Metals in Street Dusts and Surface Soils in Ahvaz, Iran. Environ. Geochem. Health 2019, 41, 875–891. [Google Scholar] [CrossRef]
- Kelepertzis, E. Investigating the Sources and Potential Health Risks of Environmental Contaminants in the Soils and Drinking Waters from the Rural Clusters in Thiva Area (Greece). Ecotoxicol. Environ. Saf. 2014, 100, 258–265. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A Review of Heavy Metal Pollution Levels and Health Risk Assessment of Urban Soils in Chinese Cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, P.; Sawidis, T.; Breuste, J.; Kostić, O.; Čakmak, D.; Đorđević, D.; Pavlović, D.; Pavlović, M.; Perović, V.; Mitrović, M. Fractionation of Potentially Toxic Elements (PTEs) in Urban Soils from Salzburg, Thessaloniki and Belgrade: An Insight into Source Identification and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2021, 18, 6014. [Google Scholar] [CrossRef]
- Koureas, M.; Mellou, K.; Vontas, A.; Kyritsi, M.; Panagoulias, I.; Koutsolioutsou, A.; Mouchtouri, V.A.; Speletas, M.; Paraskevis, D.; Hadjichristodoulou, C. Wastewater Levels of Respiratory Syncytial Virus Associated with Influenza-like Illness Rates in Children—A Case Study in Larissa, Greece (October 2022–January 2023). Int. J. Environ. Res. Public Health 2023, 20, 5219. [Google Scholar] [CrossRef]
- Kokouva, M.; Bitsolas, N.; Hadjigeorgiou, G.M.; Rachiotis, G.; Papadoulis, N.; Hadjichristodoulou, C. Pesticide Exposure and Lymphohaematopoietic Cancers: A Case-Control Study in an Agricultural Region (Larissa, Thessaly, Greece). BMC Public Health 2011, 11, 5. [Google Scholar] [CrossRef]
- Open Source Geospatial Foundation Project. Development Team QGIS Geographic Information System; QGIS: Berne, Switzerland, 2015. [Google Scholar]
- Page, A.L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 1st ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- ISO 10390:2005; Soil Quality, Determination of PH. International Standards Organization: Geneve, Switzerland, 2005.
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Allison, L.E.; Moodie, C.D. Carbonate. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1379–1396. [Google Scholar]
- USEPA. Child-Specific Exposure Factors Handbook; EPA-600-P-00-002B; National Center for Environmental Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2002.
- USEPA. Risk Assessment Guidance for Super Fund. In Volume I: Human Health Evaluation Manual; United States Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Bierkens, J.; Van Holderbeke, M.; Cornelis, C.; Torfs, R. Exposure Through Soil and Dust Ingestion. In Dealing with Contaminated Sites; Springer: Dordrecht, The Netherlands, 2011; pp. 261–286. [Google Scholar]
- Chatzimavroudis, G.; Christopoulos, P.; Atmatzidis, S.; Papadakis, G.; Nalbanti, P.; Papaziogas, B.; Koutelidakis, I.; Atmatzidis, K. Pica: An Uncommon Cause of Acute Abdominal Pain in Children. Indian J. Pediatr. 2011, 78, 886–887. [Google Scholar] [CrossRef] [PubMed]
- Fotoulaki, M.; Panagopoulou, P.; Efstratiou, I.; Nousia-Arvanitakis, S. Pitfalls in the Approach to Pica. Eur. J. Pediatr. 2007, 166, 623–624. [Google Scholar] [CrossRef]
- Gerontidis, A.; Grammatikopoulou, M.G.; Tzimos, C.; Gkiouras, K.; Taousani, E.; Athanasiadis, L.; Goulis, D.G. Effectors of Pregorexia and Emesis among Pregnant Women: A Pilot Study. Nutrients 2022, 14, 5275. [Google Scholar] [CrossRef]
- USEPA. OSWER Directive 9200.1-120 and FAQ. Office of Solid Waste and Emergency Response; United States Environmental Protection Agency: Washington, DC, USA, 2014.
- Chabukdhara, M.; Nema, A.K. Heavy Metals Assessment in Urban Soil around Industrial Clusters in Ghaziabad, India: Probabilistic Health Risk Approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef]
- USEPA. Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2007.
- Li, R.; Cai, G.; Wang, J.; Ouyang, W.; Cheng, H.; Lin, C. Contents and Chemical Forms of Heavy Metals in School and Roadside Topsoils and Road-Surface Dust of Beijing. J. Soils Sediments 2014, 14, 1806–1817. [Google Scholar] [CrossRef]
- Wu, S.; Peng, S.; Zhang, X.; Wu, D.; Luo, W.; Zhang, T.; Zhou, S.; Yang, G.; Wan, H.; Wu, L. Levels and Health Risk Assessments of Heavy Metals in Urban Soils in Dongguan, China. J. Geochem. Explor. 2015, 148, 71–78. [Google Scholar] [CrossRef]
- USEPA. Regional Screening Levels (RSLs)—Generic Tables; United States Environmental Protection Agency: Washington, DC, USA, 2016.
- Ma, X.; Zhao, Y.; Zheng, Y.; Wang, L.; Zhang, Y.; Sun, Y.; Ji, J.; Hao, X.; Liu, S.; Sun, N. Effect of Different Fertilization on Soil Fertility, Biological Activity, and Maize Yield in the Albic Soil Area of China. Plants 2025, 14, 810. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, W.; Yang, J.; Yao, R.; Wang, X.; Li, W. Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils. Water 2023, 15, 3274. [Google Scholar] [CrossRef]
- Guo, Y.; Han, J.; Bao, H.; Wu, Y.; Shen, L.; Xu, X.; Chen, Z.; Smith, P.; Abdalla, M. A Systematic Analysis and Review of Soil Organic Carbon Stocks in Urban Greenspaces. Sci. Total Environ. 2024, 948, 174788. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Bhattacharya, T.; Kumari, M.; Kumar, A. Exploring Heavy Metal Dynamics and Risks from Dust and Soil in Urban Cities of Jharkhand, India. Sci. Rep. 2024, 14, 32101. [Google Scholar] [CrossRef]
- Thakkar, D.; Valand, M.; Vachhrajani, K. Assessment of Seasonal Variations in Soil Heavy Metal Concentrations and Potential Health Risks in Gujarat, India. Environ. Geochem. Health 2024, 46, 391. [Google Scholar] [CrossRef]
- Abdullahi, N.; Dandago, M.A.; Gambo, M.S.; Abubakar, S.S.; Tsoho, A.U.; Idah, P.G. Heavy Metals Seasonal Variation and Uptake Pattern in Rice Grown in Kano State, Nigeria. J. Agric. Environ. 2024, 20, 175–185. [Google Scholar] [CrossRef]
- Aslanidis, P.-S.C.; Golia, E.E. Urban Sustainability at Risk Due to Soil Pollution by Heavy Metals—Case Study: Volos, Greece. Land 2022, 11, 1016. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.; Wong, S.; Shi, W.; Thornton, I. The Study of Metal Contamination in Urban Soils of Hong Kong Using a GIS-Based Approach. Environ. Pollut. 2004, 129, 113–124. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution Characteristics, Risk Assessment, and Source Apportionment of Heavy Metals in Road Dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Adimalla, N. Groundwater Quality for Drinking and Irrigation Purposes and Potential Health Risks Assessment: A Case Study from Semi-Arid Region of South India. Expo. Health 2019, 11, 109–123. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human Health Risk Assessment and Riskiest Heavy Metal Origin Identification in Urban Soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B. Heavy Metals in the Environment; Marcel Dekker Inc.: New York, NY, USA, 2002; ISBN 9780824744755. [Google Scholar]
Exposure Parameters | Explanation | Units | Adults | Children | Children with Soil-Pica Disorder | |
---|---|---|---|---|---|---|
C | Metal concentration | mg/kg | ||||
IR | Ingestion rate | mg/d | 100 | 1000 | 20,000 | |
EF | Exposure frequency | d/y | 350 | 104 | ||
ED | Exposure duration | y | 24 | 6 | ||
BW | Body weight | kg | 70 | 15 | ||
CF | Conversion factor | 10−6 | ||||
AT | Average time | Non-carcinogenic | d | 8760 | 2190 | |
Carcinogenic | d | - | 25,550 | |||
SA | Surface area | cm2 | 5700 | 2800 | ||
SAF | Skin adherence factor | mg/cm2 | 0.07 | 0.2 | ||
ABS | Dermal absorption factor | - | 10−3 |
pH (1:1) | EC (μS/cm) | OM (%) | Clay (%) | Sand (%) | CaCO3 (%) | |
---|---|---|---|---|---|---|
Minimum Value | 6.6 | 105.6 | 1.4 | 13 | 38 | 5.3 |
Maximum Value | 8.9 | 355.9 | 3.7 | 29 | 62 | 8.7 |
Mean Value | 7.9 | 257.0 | 2.8 | 19 | 52 | 7.1 |
Relative Standard Deviation | 0.56 | 68.97 | 0.54 | 3.19 | 5.61 | 0.73 |
Skewness Coefficient | −0.737 | −0.508 | −0.757 | 0.916 | −0.367 | 0.264 |
Kurtosis Coefficient | 0.010 | −0.320 | 0.260 | 1.513 | −0.066 | 0.799 |
Metal | Range (mg/kg) | Mean ± SD | Median | CV | Skewness | Kurtosis | EU Limits (mg/kg) | |
---|---|---|---|---|---|---|---|---|
Sampling Period 1—March | Cd | 0.06–0.11 | 0.09 ± 0.01 | 0.09 | 0.142 | −0.120 | −0.615 | 3 |
Cu | 32.20–56.00 | 46.31 ± 5.44 | 47.00 | 0.117 | −0.495 | 0.168 | 140 | |
Pb | 29.62–51.52 | 42.62 ± 4.99 | 43.24 | 0.117 | −0.494 | 0.190 | 300 | |
Zn | 57.96–106.40 | 85.12 ± 11.75 | 84.60 | 0.138 | −0.114 | −0.440 | 300 | |
Sampling Period 2—September | Cd | 0.07–0.11 | 0.10 ± 0.01 | 0.10 | 0.101 | −0.793 | 1.480 | 3 |
Cu | 39.60–68.40 | 57.33 ± 6.56 | 57.60 | 0.114 | −0.477 | 0.394 | 140 | |
Pb | 34.43–62.55 | 48.60 ± 5.82 | 47.48 | 0.120 | −0.122 | 0.354 | 300 | |
Zn | 71.50–121.00 | 99.80 ± 12.62 | 99.00 | 0.126 | −0.025 | −0.489 | 300 |
Model | Nugget | Range | Sill | Nugget:Still Ratio | R2 | ||
---|---|---|---|---|---|---|---|
Geostatistical Parameters: Summer | Cd | Linear to Sill | 0.014 | 983 | 0.44 | 0.08 | 0.83 |
Cu | Exponential | 0.022 | 953 | 0.24 | 0.32 | 0.87 | |
Pb | Linear to Sill | 0.057 | 937 | 0.44 | 0.17 | 0.78 | |
Zn | Linear to Sill | 0.036 | 908 | 0.22 | 0.13 | 0.79 |
Metals | Reference Doses | Slope Factor | Non-Carcinogenic Risk | Carcinogenic Risk | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adults | Children | |||||||||||
RfDing | RfDderm | SFo | HQing | HQderm | HQing-norm | HQing-pica | HQderm | CR | ||||
Cd | 1.00 × 10−3 | 1.00 × 10−5 | 6.10 | Min | 9.18 × 10−5 | 3.66 × 10−5 | 1.27 × 10−3 | 2.55 × 10−2 | 7.13 × 10−5 | Cdcarc | Min | 1.92 × 10−7 |
Max | 1.55 × 10−4 | 6.18 × 10−5 | 2.15 × 10−3 | 4.29 × 10−2 | 1.20 × 10−4 | Max | 3.24 × 10−7 | |||||
Mean | 1.32 × 10−4 | 5.26 × 10−5 | 1.83 × 10−3 | 3.66 × 10−2 | 1.02 × 10−4 | Mean | 2.76 × 10−7 | |||||
Cu | 4.00 × 10−2 | 1.20 × 10−2 | Min | 1.36 × 10−3 | 1.80 × 10−5 | 1.88 × 10−2 | 3.76 × 10−1 | 3.51 × 10−5 | ||||
Max | 2.34 × 10−3 | 3.12 × 10−5 | 3.25 × 10−2 | 6.50 × 10−1 | 6.06 × 10−5 | |||||||
Mean | 1.96 × 10−3 | 2.61 × 10−5 | 2.72 × 10−2 | 5.45 × 10−1 | 5.08 × 10−5 | |||||||
Pb | 3.50 × 10−3 | 5.25 × 10−4 | 8.50 × 10−3 | Min | 1.35 × 10−2 | 3.58 × 10−4 | 1.87 × 10−1 | 3.74 | 6.98 × 10−4 | Pbcarc | Min | 1.37 × 10−7 |
Max | 2.45 × 10−2 | 6.51 × 10−4 | 3.39 × 10−1 | 6.79 | 1.27 × 10−3 | Max | 2.50 × 10−7 | |||||
Mean | 1.90 × 10−2 | 5.06 × 10−4 | 2.64 × 10−1 | 5.27 | 9.85 × 10−4 | Mean | 1.94 × 10−7 | |||||
Zn | 3.00 × 10−1 | 6.00 × 10−2 | Min | 3.26 × 10−4 | 6.51 × 10−6 | 4.53 × 10−3 | 9.05 × 10−2 | 1.27 × 10−5 | ||||
Max | 5.53 × 10−4 | 1.10 × 10−5 | 7.66 × 10−3 | 1.53 × 10−1 | 2.15 × 10−5 | |||||||
Mean | 4.56 × 10−4 | 9.09 × 10−6 | 6.32 × 10−3 | 1.26 × 10−1 | 1.77 × 10−5 | |||||||
HQtot | Min | 3.69 × 10−2 | 4.31 × 10−4 | 2.12 × 10−1 | 4.24 | 8.38 × 10−4 | ||||||
Max | 6.48 × 10−2 | 7.49 × 10−4 | 3.82 × 10−1 | 7.63 | 1.46 × 10−3 | |||||||
Mean | 5.27 × 10−2 | 5.94 × 10−4 | 2.99 × 10−1 | 5.98 | 1.16 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkoltsou, V.-S.; Papadimou, S.G.; Bourliva, A.; Skilodimou, H.D.; Golia, E.E. Heavy Metal Levels in Green Areas of the Urban Soil Environment of Larissa City (Central Greece): Health and Sustainable Living Risk Assessment for Adults and Children. Sustainability 2025, 17, 4421. https://doi.org/10.3390/su17104421
Gkoltsou V-S, Papadimou SG, Bourliva A, Skilodimou HD, Golia EE. Heavy Metal Levels in Green Areas of the Urban Soil Environment of Larissa City (Central Greece): Health and Sustainable Living Risk Assessment for Adults and Children. Sustainability. 2025; 17(10):4421. https://doi.org/10.3390/su17104421
Chicago/Turabian StyleGkoltsou, Violeta-Stefania, Sotiria G. Papadimou, Anna Bourliva, Hariklia D. Skilodimou, and Evangelia E. Golia. 2025. "Heavy Metal Levels in Green Areas of the Urban Soil Environment of Larissa City (Central Greece): Health and Sustainable Living Risk Assessment for Adults and Children" Sustainability 17, no. 10: 4421. https://doi.org/10.3390/su17104421
APA StyleGkoltsou, V.-S., Papadimou, S. G., Bourliva, A., Skilodimou, H. D., & Golia, E. E. (2025). Heavy Metal Levels in Green Areas of the Urban Soil Environment of Larissa City (Central Greece): Health and Sustainable Living Risk Assessment for Adults and Children. Sustainability, 17(10), 4421. https://doi.org/10.3390/su17104421