Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Field Experimental Design
2.3. Soil Sampling
2.4. Saturated Hydraulic Conductivity Measurement
2.5. Measurement of Soil BD, SWRC, Water-Stable Aggregate, and Other Properties
2.6. Data Analysis
2.6.1. Mean Weight Diameter (MWD), Geometric Mean Diameter (GMD), and Water-Stable Aggregates (WSA)
2.6.2. Soil Hydraulic Properties
2.6.3. Pore-Size Distribution
2.6.4. Statistical Analysis
3. Results
3.1. Soil Basic Properties
3.2. Water-Stable Aggregates
3.3. Soil Water Retention Curve (SWRC)
3.4. Soil Saturated Hydraulic Conductivity
3.5. Relationships Between Soil Properties and Hydraulic Properties
4. Discussion
4.1. Main Factors in the Evolution of Soil Hydraulic Properties During Revegetation
4.2. Implications for Future Research and Land Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kabir, E.B.; Bashari, H.; Bassiri, M.; Mosaddeghi, M.R. Effects of land-use/cover change on soil hydraulic properties and pore characteristics in a semi-arid region of central Iran. Soil Till. Res. 2020, 197, 104478. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Global Assessment of Land Degradation and Improvement. 1. Identification by Remote Sensing; Report 2008/01; ISRIC—World Soil Information: Wageningen, The Netherlands, 2008; Available online: https://www.zora.uzh.ch/id/eprint/76769/1/2008_SchaepmanM_2008_GLADA_FAO_Kopie_.pdf (accessed on 6 July 2024).
- Zhou, X.; Lin, H.; White, E. Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. Catena 2008, 73, 180–188. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Wang, C.; Chen, S.; Wan, Y. Variation in soil infiltration properties under different land use/cover in the black soil region of Northeast China. Int. Soil Water Conser. 2024, 12, 379–387. [Google Scholar] [CrossRef]
- Sun, D.; Yang, H.; Guan, D.; Yang, M.; Wu, J.; Yuan, F.; Jin, C.; Wang, A.; Zhang, Y. The effects of land use change on soil infiltration capacity in China: A meta-analysis. Sci. Total Environ. 2018, 626, 1394–1401. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, J.; Li, Y.; Kong, Y.; Cao, L.; He, W. Soil macropore and hydraulic conductivity dynamics of different land uses in the dry-hot valley region of China. Water 2023, 15, 3036. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Ma, R.T.; Hu, F.N.; Xu, C.Y.; Liu, J.F.; Zhao, S.W. Response of soil aggregate stability and splash erosion to different breakdown mechanisms along natural vegetation restoration. Catena 2022, 208, 105775. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Munkholm, L.J.; Schjønning, P. Wheel load, repeated wheeling, and traction effects on subsoil compaction in northern Europe. Soil Till. Res. 2019, 186, 300–309. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyż, E.A.; Richard, G.; Reszkowska, A. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma 2008, 143, 243–253. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Guber, A.K. Soil pores and their contributions to soil carbon processes. Geoderma 2017, 287, 31–39. [Google Scholar] [CrossRef]
- Gajic, K.; Kresovic, B.; Tolimir, M.; Zivotic, L.; Lipovac, A.; Gajic, B. Hydraulic properties of fine-textured soils in lowland ecosystems of Western Serbia vary depending on land use. Geoderma Reg. 2023, 32, e00603. [Google Scholar] [CrossRef]
- Udom, B.E.; Ogunwole, J.O. Soil organic carbon, nitrogen, and phosphorus distribution in stable aggregates of an Ultisol under contrasting land use and management history. J. Soil Sci. Plant Nut. 2015, 178, 460–467. [Google Scholar] [CrossRef]
- An, S.; Darboux, F.; Cheng, M. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma 2013, 209–210, 75–85. [Google Scholar] [CrossRef]
- Schlüter, S.; Sammartino, S.; Koestel, J. Exploring the relationship between soil structure and soil functions via pore-scale imaging. Geoderma 2020, 370, 114370. [Google Scholar] [CrossRef]
- Bacq-Labreuil, A.; Crawford, J.; Mooney, S.J.; Neal, A.L.; Akkari, E.; McAuliffe, C.; Zhang, X.; Redmile-Gordon, M.; Ritz, K. Effects of cropping systems upon the three dimensional architecture of soil systems are modulated by texture. Geoderma 2018, 332, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.L.; Schjønning, P.; Watts, C.W.; Christensen, B.T.; Munkholm, L.J. Soil water retention: Uni-modal models of pore-size distribution neglect impacts of soil management. Soil Sci. Soc. Am. J. 2019, 83, 18–26. [Google Scholar] [CrossRef]
- Zuo, L.; Zhang, Z.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.; Zhang, W.; Zhang, H.; Wu, W.; Zhao, X.; et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2006—A Framework for International Classification, Correlation and Communication; World Soil Resources Reports; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006.
- Elrick, D.E.; Reynolds, W.D.; Tan, K.A. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Groundw. Monit. Remediat. 1989, 9, 184–193. [Google Scholar] [CrossRef]
- Gu, F.; Ren, T.; Li, B.; Li, L. Accounting for calcareous concretions in calcic vertisols improves the accuracy of soil hydraulic property estimations. Soil Sci. Soc. Am. J. 2017, 81, 1296–1302. [Google Scholar] [CrossRef]
- Reatto, A.; da Silva, E.M.; Bruand, A.; Martins, E.S.; Lima, J.E.F.W. Validity of the centrifuge method for determining the water retention properties of tropical soils. Soil Sci. Soc. Am. J. 2008, 72, 1547–1553. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1993, 57, 1071–1076. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. 2.4 Particle-size analysis. In Methods of Soil Analysis: Part 4 Physical Methods 5.4; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monograph: Madison, WI, USA, 1986; Volume 9, pp. 425–442. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Topp, G.C. Soil water analyses: Principles and parameters. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 919–920. [Google Scholar]
- Korkanç, S.Y. Effects of afforestation on soil organic carbon and other soil properties. Catena 2014, 123, 62–69. [Google Scholar] [CrossRef]
- Segura, C.; Navarro, F.B.; Jiménez, M.N.; Fernández-Ondoño, E. Implications of afforestation vs. secondary succession for soil properties under a semiarid climate. Sci. Total Environ. 2020, 704, 135393. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.C.; Cavagnaro, T.R.; Mac Nally, R.; Paul, K.I.; Baker, P.J.; Beringer, J.; Thomson, J.R.; Thompson, R.M. Reforestation with native mixed-species plantings in a temperate continental climate effectively sequesters and stabilizes carbon within decades. Glob. Change Biol. 2015, 21, 1552–1566. [Google Scholar] [CrossRef]
- Güner, Ş.T.; Erkan, N.; Karataş, R. Effects of afforestation with different species on carbon pools and soil and forest floor properties. Catena 2021, 196, 104871. [Google Scholar] [CrossRef]
- Mikha, M.M.; Green, T.R.; Untiedt, T.J.; Hergret, G.W. Land management affects soil structural stability: Multi-index principal component analyses of treatment interactions. Soil Till. Res. 2024, 235, 105890. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Rabbi, S.M.F.; Zhang, Y.; Young, I.M.; Jones, A.R.; Dennis, P.G.; Menzies, N.W.; Kopittke, P.M.; Dalal, R.C. Soil Organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Sci. Total Environ. 2021, 778, 146286. [Google Scholar] [CrossRef]
- Okolo, C.C.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Eze, P.N. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a smi-arid environment. Agric. Ecosyst. Environ. 2020, 297, 106924. [Google Scholar] [CrossRef]
- Korkanç, S.Y. Effects of the land use/cover on the surface runoff and soil loss in the Niğde-Akkaya Dam Watershed, Turkey. Catena 2018, 163, 233–243. [Google Scholar] [CrossRef]
- Sekucia, F.; Dlapa, P.; Kollár, J.; Cerdá, A.; Hrabovský, A.; Svobodová, L. Land-use impact on porosity and water retention of soils rich in rock fragments. Catena 2020, 195, 104807. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Wu, G.-L.; Huang, Z.; Cui, Z.; Cheng, Z.; Zhang, R.-Q.; Tian, F.-P.; He, H. Preferential water flow: Influence of alfalfa (Medicago sativa L.) decayed root channels on soil water infiltration. J. Hydrol. 2019, 578, 124019. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P.; Sotirakoglou, K.; Poulovassilis, A. Temporal variability of surface soil hydraulic properties under various tillage systems. Soil Till. Res. 2016, 158, 22–31. [Google Scholar] [CrossRef]
- Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, H.; Mommer, L.; et al. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant Soil 2015, 397, 1–16. [Google Scholar] [CrossRef]
- Ghimire, C.P.; Bruijnzeel, L.A.; Bonell, M.; Coles, N.; Lubczynski, M.W.; Gilmour, D.A. The effects of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal: Sustained forest use and soil hydraulic conductivity. Ecohydrology 2014, 7, 478–495. [Google Scholar] [CrossRef]
- Bodhinayake, W.; Si, B.C. Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrol. Process. 2004, 18, 2835–2850. [Google Scholar] [CrossRef]
- Pollacco, J.A.P.; Eger, A.; Rajanayaka, C.; Fernández-Gálvez, J. Improved partitioning between matrix and macropore flow: Novel bimodal lognormal functions for water retention and hydraulic conductivity in pumice and non-pumice soils. J. Hydrol. 2024, 644, 131985. [Google Scholar] [CrossRef]
- Chen, H.; Feng, S.J. A simple water retention model of dual-porosity soils based on self-similarity of bimodal pore size distribution. Comput. Geotech. 2023, 162, 105684. [Google Scholar] [CrossRef]
- Ding, X.H.; Lu, B.; Zhou, H.T.; Chen, Y.T. Generalized solutions for advection–dispersion transport equations subject to time-and space-dependent internal and boundary sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Dexter, A.R. Advances in characterization of soil structure. Soil Till. Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Y.; Feng, H.; Peng, X.; Si, B. Using the double-exponential water retention equation to determine how soil pore-size distribution is linked to soil texture. Soil Till. Res. 2016, 156, 119–130. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Z.M.; Liu, Y.T.; Cui, Z.L.; Mo, Q.Y.; Zhang, C.; Sheng, H.; Wang, W.; Zhang, Y.K. Variation in Soil Aggregate Stability Due to Land Use Changes from Alpine Grassland in a High-Altitude Watershed. Land 2023, 12, 393. [Google Scholar] [CrossRef]
- Jiao, F.; Wen, Z.M.; An, S.S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena 2011, 86, 110–116. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, K.; Wang, J. Evaluation of soil quality change over time when retiring cultivated farmland on gravel-sand mulched fields in central Ningxia. Acta Pratacult. Sin. 2024, 33, 58–68. (In Chinese) [Google Scholar]
- Smith, A.P.; Bond-Lamberty, B.; Benscoter, B.W.; Tfaily, M.M.; Hinkle, C.R.; Liu, C.; Bailey, V.L. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nat. Commun. 2017, 8, 1335. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.J.; Sun, R.X.; Li, L. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China. J. Beijing For. Univ. 2020, 42, 94–103. (In Chinese) [Google Scholar]
- Soracco, C.G.; Villarreal, R.; Melani, E.M.; Oderiz, J.A.; Salazar, M.P.; Otero, M.F.; Irizar, A.B.; Lozano, L.A. Hydraulic conductivity and pore connectivity. Effects of conventional and no-till systems determined using a simple laboratory device. Geoderma 2019, 337, 1236–1244. [Google Scholar] [CrossRef]
- Ju, Y.F.; Gao, Y.C.; Zhang, G.; He, H.L. The North China Plain is turning warmer and dryer. Acta Ecol. Sin. 2024, 44, 7631–7645. (In Chinese) [Google Scholar]
- Jameel, M.A.K.; Mohamed, A.H.; Emad, H.K. Harnessing GABA Pathways to Improve Plant Resilience Against Salt Stress. Horticulturae 2024, 10, 1296. [Google Scholar] [CrossRef]
Land Use | Geographical Coordinates | Elevation m | Slope | Plant Species |
---|---|---|---|---|
Abandoned cropland | 115°15′11″ E, 40°53′19″ N | 1320 | 5 | Potentilla supina L., Tribulus terrestris L., Medicago Sativa Linn |
Shrubland | 115°15′46″ E, 40°53′7″ N | 1337 | 10 | Caragana, Hippophae rhamnoides Linn |
Woodland | 115°15′40″ E, 40°52′50″ N | 1382 | 8 | Betula platyphylla Suk |
Soil Depth | Land Use | SOC | pH | TN | Clay | Silt | Sand | BD |
---|---|---|---|---|---|---|---|---|
cm | g kg−1 | / | g kg−1 | % | % | % | g cm−3 | |
0–10 | AC | 29.11 ± 8.67 A | 8.15 ± 0.01 A | 2.43 ± 0.03 A | 22.43 ± 1.43 A | 51.45 ± 10.02 A | 26.12 ± 8.77 A | 1.26 ± 0.14 A |
SL | 32.85 ± 7.67 A | 7.89 ± 0.21 A | 1.48 ± 0.39 B | 19.43 ± 1.14 A | 49.62 ± 6.85 A | 30.95 ± 6.58 A | 1.26 ± 0.13 A | |
WL | 42.05 ± 0.24 A | 6.75 ± 0.18 B | 1.56 ± 0.35 B | 27.34 ± 1.87 A | 49.33 ± 3.41 A | 23.34 ± 2.46 A | 1.30 ± 0.16 A | |
10–20 | AC | 21.04 ± 17.51 A | 8.17 ± 0.06 A | 2.12 ± 0.67 A | 21.79 ± 3.75 A | 49.97 ± 7.69 A | 28.23 ± 10.00 A | 1.34 ± 0.13 A |
SL | 34.93 ± 7.11 A | 7.93 ± 0.28 A | 1.1 ± 0.82 B | 23.61 ± 1.90 A | 52.08 ± 3.07 A | 24.31 ± 1.17 A | 1.17 ± 0.10 B | |
WL | 38 ± 12.98 A | 7.30 ± 0.59 B | 1.83 ± 0.43 AB | 26.16 ± 4.85 A | 50.45 ± 6.39 A | 23.39 ± 5.70 A | 1.23 ± 0.07 AB | |
20–30 | AC | 35.02 ± 3.37 A | 8.25 ± 0.04 A | 1.99 ± 0.14 A | 23.53 ± 5.03 A | 51.08 ± 6.16 A | 25.39 ± 6.79 A | 1.44 ± 0.08 A |
SL | 14.93 ± 9.19 B | 8.04 ± 0.08 A | 0.79 ± 0.4 C | 24.65 ± 2.37 A | 48.40 ± 7.74 A | 26.94 ± 10.1 A | 1.29 ± 0.07 AB | |
WL | 30.9 ± 1.51 AB | 7.44 ± 0.80 B | 1.58 ± 0.07 B | 20.46 ± 2.89 A | 49.67 ± 7.47 A | 29.87 ± 7.17 A | 1.21 ± 0.09 B | |
30–40 | AC | 20.38 ± 14.35 B | 8.21 ± 0.07 A | 2.14 ± 0.15 A | 25.82 ± 2.31 A | 48.35 ± 8.73 A | 25.83 ± 8.37 A | 1.29 ± 0.02 A |
SL | 37.78 ± 17.43 A | 7.98 ± 0.04 A | 1.12 ± 0.66 B | 22.82 ± 5.09 A | 50.78 ± 8.85 A | 26.41 ± 13.82 A | 1.27 ± 0.07 A | |
WL | 37.37 ± 1.1 AB | 7.84 ± 0.40 A | 1.87 ± 0.79 AB | 19.37 ± 6.29 A | 53.62 ± 6.21 A | 27.01 ± 9.04 A | 1.29 ± 0.04 A |
Soil Depth | Land Use | Large Macroaggregates (2 mm) | Macroaggregates (2–0.25 mm) | Microaggregates (0.25–0.053 mm) | Associated Particles (0.053 mm) | MWD | GMD | WSA |
---|---|---|---|---|---|---|---|---|
cm | ----------------------------------------%--------------------------------------- | mm | mm | % | ||||
0–10 | AC | 10.97 ± 6.44 A | 26.26 ± 2.09 B | 14.90 ± 5.41 A | 47.87 ± 2.08 A | 0.99 ± 0.38 A | 0.17 ± 0.05 B | 37.23 ± 7.22 B |
SL | 14.01 ± 6.00 A | 31.2 ± 5.74 AB | 9.70 ± 1.93 B | 45.09 ± 2.36 AB | 1.22 ± 0.30 A | 0.22 ± 0.03 AB | 45.21 ± 1.00 AB | |
WL | 10.71 ± 3.74 A | 39.03 ± 1.55 A | 12.83 ± 1.07 AB | 37.43 ± 4.44 B | 1.11 ± 0.24 A | 0.26 ± 0.07 A | 49.74 ± 5.29 A | |
10–20 | AC | 10.48 ± 5.54 A | 28.78 ± 2.85 A | 14.42 ± 2.91 A | 46.32 ± 6.33 A | 0.99 ± 0.32 A | 0.18 ± 0.05 B | 39.26 ± 4.73 B |
SL | 15.88 ± 5.49 A | 31.61 ± 3.25 A | 11.96 ± 0.96 A | 40.55 ± 7.47 A | 1.34 ± 0.34 A | 0.26 ± 0.09 A | 47.50 ± 7.33 AB | |
WL | 13.71 ± 3.44 A | 34.27 ± 8.36 A | 12.08 ± 1.44 A | 39.94 ± 3.73 A | 1.24 ± 0.12 A | 0.25 ± 0.03 A | 47.99 ± 5.01 A | |
20–30 | AC | 8.78 ± 3.63 AB | 30.54 ± 0.59 A | 14.36 ± 2.19 A | 46.32 ± 3.13 A | 0.90 ± 0.21 A | 0.17 ± 0.03 AB | 39.33 ± 3.39 A |
SL | 5.70 ± 2.23 B | 29.76 ± 9.15 A | 13.71 ± 0.51 A | 50.83 ± 7.01 A | 0.71 ± 0.06 B | 0.14 ± 0.03 B | 35.45 ± 7.18 A | |
WL | 12.12 ± 2.79 A | 31.17 ± 6.66 A | 10.32 ± 3.78 A | 46.38 ± 6.05 A | 1.11 ± 0.09 A | 0.20 ± 0.03 A | 43.29 ± 4.00 A | |
30–40 | AC | 9.25 ± 3.85 A | 36.57 ± 0.49 A | 13.27 ± 4.31 A | 40.90 ± 1.96 B | 1.00 ± 0.22 A | 0.22 ± 0.03 A | 45.82 ± 3.40 A |
SL | 3.61 ± 3.44 B | 21.21 ± 3.09 B | 13.23 ± 0.75 A | 61.95 ± 5.42 A | 0.49 ± 0.22 B | 0.09 ± 0.02 B | 24.82 ± 5.38 B | |
WL | 9.72 ± 3.75 A | 36.97 ± 6.82 A | 12.06 ± 1.88 A | 41.26 ± 1.29 B | 1.03 ± 0.15 A | 0.22 ± 0.01 A | 46.69 ± 3.13 A |
Soil Depth | Land Use | van Genuchten Model | Double-Exponential Model | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
cm | / | m3 m−3 | / | m3 m−3 | |
0–10 | Abandoned Cropland | 0.982 | 0.012 | 0.995 | 0.008 |
Shrubland | 0.985 | 0.011 | 0.996 | 0.007 | |
Woodland | 0.994 | 0.007 | 0.998 | 0.005 | |
10–20 | Abandoned Cropland | 0.978 | 0.013 | 0.995 | 0.007 |
Shrubland | 0.989 | 0.009 | 0.996 | 0.007 | |
Woodland | 0.989 | 0.008 | 0.995 | 0.007 | |
20–30 | Abandoned Cropland | 0.985 | 0.010 | 0.996 | 0.006 |
Shrubland | 0.981 | 0.012 | 0.995 | 0.008 | |
Woodland | 0.982 | 0.013 | 0.996 | 0.007 | |
30–40 | Abandoned Cropland | 0.989 | 0.010 | 0.996 | 0.007 |
Shrubland | 0.989 | 0.010 | 0.997 | 0.006 | |
Woodland | 0.992 | 0.010 | 0.993 | 0.009 |
Soil Depth | Land Use | A1 | A2 | h1 | h2 | C | FC | WP | AWC |
---|---|---|---|---|---|---|---|---|---|
cm | cm3 cm−3 | cm3 cm−3 | cm | cm | cm3 cm−3 | cm3 cm−3 | cm3 cm−3 | cm3 cm−3 | |
0–10 | AC | 0.21 | 0.14 | 60.51 | 4823.81 | 0.17 | 0.30 | 0.18 | 0.12 |
SL | 0.18 | 0.15 | 71.88 | 4554.15 | 0.19 | 0.33 | 0.20 | 0.14 | |
WL | 0.13 | 0.17 | 80.50 | 4061.99 | 0.21 | 0.37 | 0.22 | 0.15 | |
10–20 | AC | 0.19 | 0.14 | 81.90 | 6085.32 | 0.17 | 0.30 | 0.18 | 0.12 |
SL | 0.21 | 0.15 | 43.60 | 4392.98 | 0.20 | 0.34 | 0.21 | 0.14 | |
WL | 0.16 | 0.16 | 45.58 | 4465.47 | 0.22 | 0.36 | 0.22 | 0.14 | |
20–30 | AC | 0.13 | 0.15 | 68.48 | 5007.89 | 0.18 | 0.32 | 0.18 | 0.13 |
SL | 0.17 | 0.15 | 78.03 | 5386.34 | 0.20 | 0.34 | 0.21 | 0.13 | |
WL | 0.18 | 0.14 | 87.47 | 5669.00 | 0.21 | 0.36 | 0.23 | 0.13 | |
30–40 | AC | 0.16 | 0.17 | 82.57 | 5657.56 | 0.18 | 0.34 | 0.20 | 0.15 |
SL | 0.16 | 0.17 | 62.69 | 4694.08 | 0.19 | 0.36 | 0.20 | 0.15 | |
WL | 0.15 | 0.17 | 61.02 | 4335.70 | 0.20 | 0.35 | 0.20 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, F.; Zhou, M.; Zhu, B.; Wang, H. Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution. Sustainability 2025, 17, 4363. https://doi.org/10.3390/su17104363
Gu F, Zhou M, Zhu B, Wang H. Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution. Sustainability. 2025; 17(10):4363. https://doi.org/10.3390/su17104363
Chicago/Turabian StyleGu, Feng, Minghua Zhou, Bo Zhu, and Heng Wang. 2025. "Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution" Sustainability 17, no. 10: 4363. https://doi.org/10.3390/su17104363
APA StyleGu, F., Zhou, M., Zhu, B., & Wang, H. (2025). Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution. Sustainability, 17(10), 4363. https://doi.org/10.3390/su17104363