Exploring the Effect of Integration Development of Digital Intelligence on Green Technology Innovation Quantity and Quality
Abstract
1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypothesis
3.1. Analysis of the Impact of Digital Intelligence Integration on the Quantity and Quality of Green Technology Innovation
3.2. Analysis of the Mechanisms of the Impact of Digital Intelligence Integration on the Quantity and Quality of Green Technology Innovation
3.3. Analysis of the Moderating Effect of Nationalization Degree and Green Purchasing
4. Research Design
4.1. Data Source and Indicator Processing
4.2. Model Construction
4.3. Variables Description
4.3.1. Explained Variables
4.3.2. Explanatory Variable
4.3.3. Control Variables
4.3.4. Mediating Variables
4.3.5. Moderating Variables
5. Result Analysis and Discussion
5.1. Spatial Correlation Test
5.2. Overall Regression Test at the National Level
5.3. Robustness Test
5.4. Influence Mechanism Test
5.5. Regional Regression Test of East, Central and West Regions
5.6. Analysis of Moderating Effect
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
6.3. Limitations and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Wang, Y.; Liu, S.; Song, M. Mechanism of latecomer enterprises’ technological catch-up in technical standards alliances–An ambidextrous innovation perspective. J. Bus. Res. 2023, 154, 113321. [Google Scholar] [CrossRef]
- Niu, Y.; Wen, W.; Wang, S.; Li, S. Breaking barriers to innovation: The power of digital transformation. Financ. Res. Lett. 2023, 51, 103457. [Google Scholar] [CrossRef]
- Rao, S.; Pan, Y.; He, J.; Shangguan, X. Digital finance and corporate green innovation: Quantity or quality? Environ. Sci. Pollut. Res. 2022, 29, 56772–56791. [Google Scholar] [CrossRef]
- Huang, X.; Liu, W.; Zhang, Z.; Zou, X.; Li, P. Quantity or quality: Environmental legislation and corporate green innovations. Ecol. Econ. 2023, 204, 107684. [Google Scholar] [CrossRef]
- Negroponte, N.; Harrington, R.; McKay, S.R.; Christian, W. Being digital. Comput. Phys. 1997, 11, 261–262. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Dong, J.Q.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Iqbal, R.; Doctor, F.; More, B.; Mahmud, S.; Yousuf, U. Big data analytics: Computational intelligence techniques and application areas. Technol. Forecast. Soc. Chang. 2020, 153, 119253. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y. Operations Management Innovation Enabled by Digitalization and Intellectualization: From Supply Chain to Supply Chain Ecosystem. J. Manag. World 2021, 11, 227–240+14. [Google Scholar]
- Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sust. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Q. Study on spatial–temporal evolution characteristics and restrictive factors of urban–rural integration in northeast China from 2000 to 2019. Land 2022, 11, 1195. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, R.; Wang, H.; Yi, M.; Huang, Y. Industrial digitization and synergy between pollution and carbon emissions control: New empirical evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 36127–36142. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yang, Y.; Wang, Y.; Zhang, P.; Luo, X. Study on spatiotemporal evolution features and affecting factors of collaborative governance of pollution reduction and carbon abatement in urban agglomerations of the Yellow River basin. Int. J. Environ. Res. Public Health 2023, 20, 3994. [Google Scholar] [CrossRef]
- Li, Y.; Hsu, W.L.; Zhang, Y. Evaluation study on the ecosystem governance of industry–education integration platform in China. Sustainability 2022, 14, 13208. [Google Scholar] [CrossRef]
- Chen, L. Analysis of the effect of the integration development of sports economy and health industry in the context of public health based on big data analysis technology. J. Environ. Public Health 2022, 2022, 1987918. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation: Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Du, K.; Cheng, Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Fang, Z. Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China. Renew. Energy 2023, 205, 772–782. [Google Scholar] [CrossRef]
- Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W. Does green innovation induce green total factor productivity? Novel findings from Chinese city level data. Technol. Forecast. Soc. Chang. 2022, 185, 122021. [Google Scholar] [CrossRef]
- Song, W.; Han, X. The bilateral effects of foreign direct investment on green innovation efficiency: Evidence from 30 Chinese provinces. Energy 2022, 261, 125332. [Google Scholar] [CrossRef]
- Behera, P.; Sethi, N. Nexus between environment regulation, FDI, and green technology innovation in OECD countries. Environ. Sci. Pollut. Res. 2022, 29, 52940–52953. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Zhang, F.Q.; Xu, R.Y.; Miao, Z.; Cheng, Y.H.; Sun, H.P. Spatiotemporal pattern evolution and influencing factors of green innovation efficiency: A China’s city level analysis. Ecol. Indic. 2023, 146, 109901. [Google Scholar]
- Gao, K.; Wang, L.; Liu, T.; Zhao, H. Management executive power and corporate green innovation—Empirical evidence from China’s state-owned manufacturing sector. Technol. Soc. 2022, 70, 102043. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, C.; Sun, G. Big data application, factor allocation, and green innovation in Chinese manufacturing enterprises. Technol. Forecast. Soc. Chang. 2023, 192, 122567. [Google Scholar] [CrossRef]
- Zamir, A.; Mujahid, N. Nexus among green energy consumption, foreign direct investment, green innovation technology, and environmental pollution on economic growth. Environ. Sci. Pollut. Res. 2022, 29, 76501–76513. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Dai, A. Multiparty evolutionary game strategy for green technology innovation under market orientation and pandemics. Front. Public Health 2022, 9, 821172. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, X.; Liu, Z.; Shi, H.; Xu, H. Does green finance promote enterprises’ green technology innovation in China? Front. Environ. Sci. 2022, 10, 981013. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Nie, C. The effect of broadband infrastructure construction on urban green innovation: Evidence from a quasi-natural experiment in China. Econ. Anal. Policy 2023, 77, 581–598. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Liu, Y. The effect of manufacturing intelligence on green innovation performance in China. Technol. Forecast. Soc. Chang. 2022, 178, 121569. [Google Scholar] [CrossRef]
- Sun, Y.; He, M. Does digital transformation promote green innovation? A micro-level perspective on the Solow Paradox. Front. Environ. Sci. 2023, 11, 1134447. [Google Scholar] [CrossRef]
- Zhang, G.; Du, P. The Impact of Digital Transformation on Technological Innovation of Chinese Enterprises: Quantity Increase or Quality Improvement? Bus. Manag. J. 2022, 44, 82–96. [Google Scholar]
- Leal Filho, W.; Yang, P.; Eustachio, J.H.P.P.; Azul, A.M.; Gellers, J.C.; Gielczyk, A.; Dinis, M.A.P.; Kozlova, V. Deploying digitalisation and artificial intelligence in sustainable development research. Environ. Dev. Sustain. 2023, 25, 4957–4988. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Han, X.; Xiao, Y. Quantity or quality? Regional innovation policy and green technology innovation. Environ. Sci. Pollut. Res. 2023, 30, 77358–77370. [Google Scholar] [CrossRef]
- Cheng, Y.; Du, K.; Yao, X. Stringent environmental regulation and inconsistent green innovation behavior: Evidence from air pollution prevention and control action plan in China. Energy Econ. 2023, 120, 106571. [Google Scholar] [CrossRef]
- Bahoo, S.; Cucculelli, M.; Qamar, D. Artificial intelligence and corporate innovation: A review and research agenda. Technol. Forecast. Soc. Chang. 2023, 188, 122264. [Google Scholar] [CrossRef]
- Johnson, J.S.; Friend, S.B.; Lee, H.S. Big data facilitation, utilization, and monetization: Exploring the 3Vs in a new product development process. J. Prod. Innov. Manag. 2017, 34, 640–658. [Google Scholar] [CrossRef]
- Shang, H.; Jiang, L.; Pan, X.; Pan, X. Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities. Energy Econ. 2022, 114, 106307. [Google Scholar] [CrossRef]
- Fang, Y.; Cao, H.; Sun, J. Impact of artificial intelligence on regional green development under China’s environmental decentralization system—Based on spatial durbin model and threshold effect. Int. J. Environ. Res. Public Health 2022, 19, 14776. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.L.; Yang, Z. Can artificial intelligence improve green economic growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar] [CrossRef]
- Wang, S.; Li, M. Does industrial intelligence improve resource misallocation? An empirical test based on China. Environ. Sci. Pollut. Res. 2022, 29, 77973–77991. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H. Inter-organizational cooperation in digital green supply chains: A catalyst for eco-innovations and sustainable business practices. J. Clean. Prod. 2024, 472, 143383. [Google Scholar] [CrossRef]
- Nie, L.; Gong, H.; Lai, X. Green research intensity and diversified performance: The moderating role of environmental regulation. Eur. J. Innov. Manag. 2022, 27, 447–473. [Google Scholar] [CrossRef]
- Li, G.; Xue, Q.; Qin, J. Environmental information disclosure and green technology innovation: Empirical evidence from China. Technol. Forecast. Soc. Chang. 2022, 176, 121453. [Google Scholar] [CrossRef]
- Luo, S.; Yimamu, N.; Li, Y.; Wu, H.; Irfan, M.; Hao, Y. Digitalization and sustainable development: How could digital economy development improve green innovation in China? Bus. Strateg. Environ. 2023, 32, 1847–1871. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Peng, X.; Lee, S. Green or nongreen innovation? Different strategic preferences among subsidized enterprises with different ownership types. J. Clean Prod. 2020, 245, 118786. [Google Scholar] [CrossRef]
- Yu, Z.; Shen, Y.; Jiang, S. The effects of corporate governance uncertainty on state-owned enterprises’ green innovation in China: Perspective from the participation of non-state-owned shareholders. Energy Econ. 2022, 115, 106402. [Google Scholar] [CrossRef]
- Fairhurst, D.D.; Nam, Y. The practice of and motivation for equity recycling: Evidence from the Asia-Pacific region. Pac.-Basin Financ. J. 2019, 57, 101171. [Google Scholar] [CrossRef]
- Cleff, T.; Rennings, K. Determinants of environmental product and process innovation. Eur. Environ. 1999, 9, 191–201. [Google Scholar] [CrossRef]
- Horbach, J.; Rammer, C.; Rennings, K. Determinants of eco-innovations by type of environmental impact—The role of regulatory push/pull, technology push and market pull. Ecol. Econ. 2012, 78, 112–122. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Ned, J.P.; Sui, L. How does digital finance affect green technology innovation in the polluting industry? Based on the serial two-mediator model of financing constraints and research and development (R&D) investments. Environ. Sci. Pollut. Res. 2023, 30, 74141–74152. [Google Scholar]
- Lin, R.J.; Tan, K.H.; Geng, Y. Market demand, green product innovation, and firm performance: Evidence from Vietnam motorcycle industry. J. Clean Prod. 2013, 40, 101–107. [Google Scholar] [CrossRef]
- Zeng, J.; Blanco-González-Tejero, C.; Sendra, F.J. The spatial difference-in-difference measurement of policy effect of environmental protection interview on green innovation. Technol. Forecast. Soc. Chang. 2023, 191, 122511. [Google Scholar] [CrossRef]
- Yuan, G.; Ye, Q.; Sun, Y. Financial innovation, information screening and industries’ green innovation—Industry-level evidence from the OECD. Technol. Forecast. Soc. Chang. 2021, 171, 120998. [Google Scholar] [CrossRef]
- Du, G.; Zhou, C.; Ma, Y. Impact mechanism of environmental protection tax policy on enterprises’ green technology innovation with quantity and quality from the micro-enterprise perspective. Environ. Sci. Pollut. Res. 2023, 30, 80713–80731. [Google Scholar] [CrossRef]
- Zhang, J.; Lyu, Y.; Li, Y.; Geng, Y. Digital economy: An innovation driving factor for low-carbon development. Environ. Impact Assess. Rev. 2022, 96, 106821. [Google Scholar] [CrossRef]
- Meng, X.; Xu, S.; Zhang, J. How does industrial intelligence affect carbon intensity in China? Empirical analysis based on Chinese provincial panel data. J. Clean Prod. 2022, 376, 134273. [Google Scholar] [CrossRef]
- Yang, H.; Lu, F.; Zhang, F. Exploring the effect of producer services agglomeration on China’s energy efficiency under environmental constraints. J. Clean Prod. 2020, 263, 121320. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Natural resource abundance, resource industry dependence and economic green growth in China. Resour. Policy 2020, 68, 101734. [Google Scholar] [CrossRef]
- Wu, J.; Nie, X.; Wang, H.; Li, W. Eco-industrial parks and green technological progress: Evidence from Chinese cities. Technol. Forecast. Soc. Chang. 2023, 189, 122360. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; He, S. The effect of enterprise financialization on green innovation: Evidence from Chinese A-share non-financial listed enterprises. Environ. Sci. Pollut. Res. 2023, 30, 56802–56817. [Google Scholar] [CrossRef]
- Yu, L.; Duan, Y.; Fan, T. Innovation performance of new products in China’s high-technology industry. Int. J. Prod. Econ. 2020, 219, 204–215. [Google Scholar] [CrossRef]
- Alos-Simo, L.; Verdu-Jover, A.J.; Gomez-Gras, J.M. Does activity sector matter for the relationship between eco-innovation and performance? Implications for cleaner production. J. Clean Prod. 2020, 263, 121544. [Google Scholar] [CrossRef]
- Zhang, D.; Jin, Y. R&D and environmentally induced innovation: Does financial constraint play a facilitating role? Int. Rev. Financ. Anal. 2021, 78, 101918. [Google Scholar]
- Zhao, G.; Zhou, P.; Wen, W. Feed-in tariffs, knowledge stocks and renewable energy technology innovation: The role of local government intervention. Energy Policy 2021, 156, 112453. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, L.; Li, H.; Ballesteros-Pérez, P.; Skitmore, M.; Zuo, J. The impact of environmental regulations on urban Green innovation efficiency: The case of Xi’an. Sust. Cities Soc. 2020, 57, 102123. [Google Scholar] [CrossRef]
- Zailani, S.; Govindan, K.; Iranmanesh, M.; Shaharudin, M.R.; Chong, Y.S. Green innovation adoption in automotive supply chain: The Malaysian case. J. Clean Prod. 2015, 108, 1115–1122. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Liang, Q.; Xiao, S.; Li, M. Digital economy development, spatial spillover and innovation quality growth—The threshold effect test of market efficiency. Shanghai J. Econ. 2021, 9, 44–56. [Google Scholar]
- Tan, F.; Gong, C.; Niu, Z. How does regional integration development affect green innovation? Evidence from China’s major urban agglomerations. J. Clean Prod. 2022, 379, 134613. [Google Scholar] [CrossRef]
- Chen, B.; Ren, M.; Chen, L. Impact analysis of large-scale environmental spot inspection policy on green innovation: Evidence from China. Front. Environ. Sci. 2021, 9, 676413. [Google Scholar] [CrossRef]
- Ma, Y.; Lin, T.; Xiao, Q. The relationship between environmental regulation, green-technology innovation and green total-factor productivity—Evidence from 279 cities in China. Int. J. Environ. Res. Public Health 2022, 19, 16290. [Google Scholar] [CrossRef]
- Shao, X.; Liu, S.; Ran, R.; Liu, Y. Environmental regulation, market demand, and green innovation: Spatial perspective evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 63859–63885. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Liu, B.; Luo, F.; Wu, C.; Chen, H.; Wei, W. The effect of economic growth target constraints on green technology innovation. J. Environ. Manag. 2021, 292, 112765. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Razzaq, A.; Sharif, A.; Yang, X. Influence mechanism between green finance and green innovation: Exploring regional policy intervention effects in China. Technol. Forecast. Soc. Chang. 2022, 182, 121882. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y. Does pollution levy standard reform promotes green innovation? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 35913–35928. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Ma, S.; Zheng, Y.; Pan, C. Does the construction of innovative cities promote urban green innovation? J. Environ. Manag. 2022, 318, 115605. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, Y. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. J. Clean Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities. J. Clean Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Zhai, X.; An, Y. The relationship between technological innovation and green transformation efficiency in China: An empirical analysis using spatial panel data. Technol. Soc. 2021, 64, 101498. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H. Green entrepreneurship success in the age of generative artificial intelligence: The interplay of technology adoption, knowledge management, and government support. Technol. Soc. 2024, 79, 102744. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, X. Research on green innovation performance of manufacturing industry and its improvement path in China. Sustainability 2022, 14, 8000. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, M. Rising strategy of central China and the transformation and upgrading of regional industrial structure—Empirical evidence from urban panel data in China. China Soft Sci. 2022, 2, 105–115. [Google Scholar]
First-Level Indicators | Second-Level Indicators | |
---|---|---|
Digitalization subsystem | Digital infrastructure | Internet penetration rate |
Telephone penetration rate | ||
Length of long-distance optical cable line | ||
Internet broadband access port | ||
Number of Internet domain names | ||
Digital industrialization | Total industrial output value of digital industry | |
Digital industry practitioners | ||
Software business revenue | ||
Total volume of telecommunications business | ||
Number of digital TV subscribers | ||
Industrial digitalization | E-commerce sales | |
Enterprise informatization level | ||
Enterprise website coverage | ||
Digital Inclusive Finance Index | ||
Number of express businesses | ||
Digital governance | Digital government level | |
Investment intensity of R&D funds | ||
Number of patent applications authorized | ||
Years of education per capita | ||
Number of digital economy enterprises | ||
Intellectualization Subsystem | Intelligent foundation | Intelligent infrastructure |
Intelligent talents | ||
Intelligent technology | Intelligent technology development | |
Intelligent technology services | ||
Intelligent benefits | Intelligent economic benefits | |
Intelligent efficiency |
Green Technology Innovation Quantity | Green Technology Innovation Quality | |||||
---|---|---|---|---|---|---|
Year | Moran’s I | ZValues | p Values | Moran’s I | ZValues | p Values |
2013 | 0.051 | 2.528 | 0.006 | 0.020 | 1.662 | 0.048 |
2014 | 0.040 | 2.167 | 0.015 | 0.020 | 1.624 | 0.052 |
2015 | 0.042 | 2.253 | 0.012 | 0.024 | 1.763 | 0.039 |
2016 | 0.059 | 2.680 | 0.004 | 0.039 | 2.162 | 0.015 |
2017 | 0.060 | 2.719 | 0.003 | 0.052 | 2.491 | 0.006 |
2018 | 0.041 | 2.217 | 0.013 | 0.036 | 2.049 | 0.020 |
2019 | 0.040 | 2.209 | 0.014 | 0.038 | 2.119 | 0.017 |
2020 | 0.039 | 2.210 | 0.014 | 0.029 | 1.846 | 0.032 |
2021 | 0.047 | 2.380 | 0.009 | 0.046 | 2.304 | 0.011 |
2022 | 0.034 | 2.012 | 0.022 | 0.022 | 1.651 | 0.049 |
Green Technology Innovation Quantity | Green Technology Innovation Quality | |||
---|---|---|---|---|
Test Indicator | Statistical Result | p Value | Statistical Result | p Value |
Robust LM-lag | 8.717 | 0.003 | 10.715 | 0.001 |
Robust LM-error | 117.868 | 0.000 | 201.101 | 0.000 |
Hausman test | 96.78 | 0.000 | 74.83 | 0.000 |
LR test spatial lag | 152.08 | 0.000 | 132.34 | 0.000 |
LR test spatial error | 84.29 | 0.000 | 93.67 | 0.000 |
Wald test spatial lag | 109.08 | 0.000 | 131.78 | 0.000 |
Wald test spatial error | 85.00 | 0.000 | 110.01 | 0.000 |
Variables | Spatial Fixed Effect | Time Fixed Effect | Spatial andTime Fixed Effect | |||
---|---|---|---|---|---|---|
lnNgin | lnQgin | lnNgin | lnQgin | lnNgin | lnQgin | |
1 | 2 | 3 | 4 | 5 | 6 | |
lnDigin | −1.387 *** | −0.536 | 4.315 *** | 5.025 *** | −1.289 *** | −0.214 |
(0.335) | (0.403) | (0.519) | (0.555) | (0.299) | (0.350) | |
lnPgdp | 0.469 | 0.799 | 0.129 | 0.062 | 0.206 | 0.350 |
(0.425) | (0.513) | (0.100) | (0.108) | (0.375) | (0.440) | |
lnEr | 0.125 | 0.184 | −1.441 *** | −1.454 *** | −0.019 | 0.043 |
(0.114) | (0.137) | (0.221) | (0.240) | (0.102) | (0.119) | |
(lnEr)2 | 0.008 | 0.011 | −0.085 *** | −0.086 *** | −0.001 | 0.002 |
(0.007) | (0.008) | (0.014) | (0.015) | (0.006) | (0.007) | |
lnIs | 0.002 | 0.013 | 0.078 *** | 0.126 *** | −0.001 | 0.023 |
(0.020) | (0.024) | (0.024) | (0.026) | (0.018) | (0.022) | |
lnKpro | 0.410 * | 0.566 ** | 1.318 *** | 0.968 *** | 0.734 *** | 1.252 *** |
(0.211) | (0.253) | (0.144) | (0.155) | (0.209) | (0.247) | |
lnPmd | 1.658 ** | 1.395 | 0.481 *** | 0.465 *** | 1.087 | 0.098 |
(0.750) | (0.904) | (0.034) | (0.036) | (0.666) | (0.783) | |
lnFDI | 0.043 * | 0.073 *** | −0.056 * | −0.044 | 0.030 | 0.048 ** |
(0.023) | (0.028) | (0.029) | (0.032) | (0.021) | (0.024) | |
Spatial rho | 0.664 *** | 0.650 *** | −2.062 *** | −1.920 *** | −1.217 *** | −1.210 *** |
(0.057) | (0.071) | (0.234) | (0.242) | (0.267) | (0.262) | |
Sigma2_e | 0.027 *** | 0.039 *** | 0.158 *** | 0.185 *** | 0.020 *** | 0.028 *** |
(0.002) | (0.003) | (0.013) | (0.015) | (0.002) | (0.002) | |
W ×lnDigin | −5.504 *** | −3.153 | −12.018 *** | −8.502 *** | −3.222 | 2.069 |
(1.918) | (2.153) | (2.961) | (3.278) | (2.184) | (2.525) | |
W ×lnPgdp | 0.632 | 0.205 | 1.829 *** | 1.683 *** | 1.050 | 0.776 |
(0.673) | (0.813) | (0.602) | (0.653) | (2.038) | (2.384) | |
W×lnEr | −1.688 *** | −1.634 *** | −0.670 | −2.013 | −2.802 *** | −3.014 *** |
(0.441) | (0.522) | (1.359) | (1.476) | (0.665) | (0.783) | |
W × (lnEr)2 | −0.120 *** | −0.115 *** | −0.038 | −0.125 | −0.177 *** | −0.199 *** |
(0.030) | (0.035) | (0.087) | (0.094) | (0.041) | (0.048) | |
W × lnIs | −0.019 | 0.005 | −0.286 | −0.394* | −0.065 | 0.001 |
(0.096) | (0.116) | (0.217) | (0.237) | (0.115) | (0.136) | |
W × lnKpro | −1.411 *** | −1.316** | 4.562 *** | 2.946 *** | 3.279** | 7.033 *** |
(0.482) | (0.576) | (0.915) | (0.981) | (1.388) | (1.643) | |
W × lnPmd | 10.302 *** | 6.603* | 2.881 *** | 2.543 *** | 7.483** | −1.780 |
(3.166) | (3.714) | (0.275) | (0.288) | (3.419) | (3.908) | |
W × lnFDI | −0.015 | −0.004 | −0.077 | 0.180 | −0.029 | −0.013 |
(0.128) | (0.158) | (0.200) | (0.216) | (0.133) | (0.157) | |
N | 300 | 300 | 300 | 300 | 300 | 300 |
Log−like | 111.290 | 55.211 | −184.059 | −202.845 | −68.659 | 102.295 |
R2 | 0.548 | 0.563 | 0.646 | 0.698 | 0.511 | 0.041 |
Variables | Direct Effect | Indirect Effect | Total Effect | |||
---|---|---|---|---|---|---|
lnNgin | lnQgin | lnNgin | lnQgin | lnNgin | lnQgin | |
lnDigin | 5.778 *** | 6.208 *** | −8.252 *** | −7.346 *** | −2.475 ** | −1.139 |
(0.597) | (0.634) | (1.209) | (1.335) | (1.011) | (1.141) | |
lnPgdp | 0.012 | −0.049 | 0.643 *** | 0.663 ** | 0.654 *** | 0.614 *** |
(0.117) | (0.124) | (0.246) | (0.272) | (0.197) | (0.225) | |
lnEr | −1.570 *** | −1.470 *** | 0.869 | 0.266 | −0.701 * | −1.204 ** |
(0.258) | (0.274) | (0.529) | (0.583) | (0.424) | (0.477) | |
(lnEr)2 | −0.092 *** | −0.086 *** | 0.052 | 0.013 | −0.041 | −0.073 ** |
(0.016) | (0.017) | (0.033) | (0.037) | (0.027) | (0.031) | |
lnIs | 0.110 *** | 0.169 *** | −0.183 ** | −0.267 *** | −0.073 | −0.098 |
(0.029) | (0.031) | (0.088) | (0.100) | (0.075) | (0.087) | |
lnKpro | 1.195 *** | 0.904 *** | 0.742 ** | 0.452 | 1.937 *** | 1.356 *** |
(0.152) | (0.162) | (0.363) | (0.397) | (0.331) | (0.372) | |
lnPmd | 0.350 *** | 0.359 *** | 0.749 *** | 0.672 *** | 1.099 *** | 1.031 *** |
(0.040) | (0.042) | (0.098) | (0.109) | (0.083) | (0.094) | |
lnFDI | −0.060* | −0.062 * | 0.020 | 0.113 | −0.041 | 0.050 |
(0.032) | (0.034) | (0.081) | (0.090) | (0.070) | (0.080) |
Variables | Spatial Adjacency Matrix | Inverse Distance Squared Matrix | Economic Geography Weight Matrix | ||||
---|---|---|---|---|---|---|---|
lnNgin | lnQgin | lnNgin | lnQgin | lnNgin | lnQgin | ||
1 | 2 | 3 | 4 | 5 | 6 | ||
Direct effect | lnDigin | 6.803 *** | 6.934 *** | 5.812 *** | 6.176 *** | 5.063 *** | 5.700 *** |
(0.723) | (0.744) | (0.609) | (0.646) | (0.660) | (0.696) | ||
lnPgdp | 0.015 | 0.046 | −0.081 | −0.127 | −1.678 *** | −1.792 *** | |
(0.157) | (0.160) | (0.121) | (0.128) | (0.360) | (0.382) | ||
lnEr | −1.951 *** | −1.961 *** | −1.564 *** | −1.445 *** | −1.789 *** | −1.796 *** | |
(0.288) | (0.297) | (0.266) | (0.282) | (0.260) | (0.274) | ||
(lnEr)2 | −0.115 *** | −0.115 *** | −0.091 *** | −0.084 *** | −0.109 *** | −0.109 *** | |
(0.018) | (0.019) | (0.017) | (0.018) | (0.017) | (0.018) | ||
lnIs | 0.076 *** | 0.118 *** | 0.121 *** | 0.186 *** | 0.063 ** | 0.108 *** | |
(0.028) | (0.029) | (0.030) | (0.032) | (0.029) | (0.031) | ||
lnKpro | 1.048 *** | 0.751 *** | 1.291 *** | 1.002 *** | 1.312 *** | 1.054 *** | |
(0.175) | (0.180) | (0.151) | (0.161) | (0.198) | (0.209) | ||
lnPmd | 0.257 *** | 0.335 *** | 0.309 *** | 0.318 *** | 0.504 *** | 0.503 *** | |
(0.066) | (0.066) | (0.041) | (0.043) | (0.042) | (0.045) | ||
lnFDI | 0.008 | 0.002 | −0.100 *** | −0.101 *** | 0.012 | 0.015 | |
(0.035) | (0.036) | (0.034) | (0.036) | (0.034) | (0.036) | ||
Indirect effect | lnDigin | −6.263 *** | −5.575 *** | −5.561 *** | −4.706 *** | −3.301 *** | −3.123 ** |
(0.798) | (0.831) | (0.893) | (0.967) | (1.272) | (1.334) | ||
lnPgdp | 0.404 ** | 0.214 | 0.725 *** | 0.730 *** | 3.009 *** | 3.034 *** | |
(0.199) | (0.205) | (0.190) | (0.205) | (0.489) | (0.515) | ||
lnEr | 0.849 ** | 0.850 * | 0.474 | −0.023 | 0.309 | 0.131 | |
(0.414) | (0.434) | (0.386) | (0.417) | (0.398) | (0.414) | ||
(lnEr)2 | 0.046 * | 0.044 | 0.028 | −0.004 | 0.023 | 0.012 | |
(0.026) | (0.027) | (0.024) | (0.026) | (0.024) | (0.025) | ||
lnIs | −0.010 | −0.062 | −0.114 ** | −0.188 *** | −0.059 | −0.085 | |
(0.042) | (0.045) | (0.058) | (0.063) | (0.066) | (0.070) | ||
lnKpro | 0.644 ** | 0.554 ** | 0.626 ** | 0.384 | 0.808 ** | 0.572 | |
(0.266) | (0.278) | (0.246) | (0.265) | (0.357) | (0.363) | ||
lnPmd | 0.586 *** | 0.500 *** | 0.553 *** | 0.495 *** | 0.164 | 0.128 | |
(0.079) | (0.081) | (0.069) | (0.074) | (0.106) | (0.111) | ||
lnFDI | −0.200 *** | −0.167 *** | 0.101 * | 0.150 ** | −0.138 * | −0.085 | |
(0.051) | (0.054) | (0.057) | (0.062) | (0.076) | (0.079) | ||
Total effect | lnDigin | 0.540 | 1.360 ** | 0.251 | 1.470 * | 1.761 | 2.577 ** |
(0.514) | (0.560) | (0.728) | (0.811) | (1.079) | (1.121) | ||
lnPgdp | 0.418 *** | 0.260 *** | 0.644 *** | 0.603 *** | 1.331 *** | 1.242 *** | |
(0.090) | (0.097) | (0.141) | (0.156) | (0.188) | (0.195) | ||
lnEr | −1.102 *** | −1.111 *** | −1.090 *** | −1.468 *** | −1.480 *** | −1.665 *** | |
(0.303) | (0.328) | (0.292) | (0.323) | (0.402) | (0.413) | ||
(lnEr)2 | −0.069 *** | −0.071 *** | −0.063 *** | −0.088 *** | −0.087 *** | −0.097 *** | |
(0.020) | (0.021) | (0.019) | (0.021) | (0.025) | (0.026) | ||
lnIs | 0.066 * | 0.056 | 0.008 | −0.002 | 0.004 | 0.024 | |
(0.034) | (0.037) | (0.044) | (0.049) | (0.058) | (0.061) | ||
lnKpro | 1.693 *** | 1.304 *** | 1.917 *** | 1.387 *** | 2.120 *** | 1.626 *** | |
(0.225) | (0.243) | (0.232) | (0.257) | (0.332) | (0.337) | ||
lnPmd | 0.843 *** | 0.835 *** | 0.862 *** | 0.813 *** | 0.668 *** | 0.632 *** | |
(0.038) | (0.041) | (0.056) | (0.062) | (0.097) | (0.100) | ||
lnFDI | −0.192 *** | −0.164 *** | 0.001 | 0.048 | −0.126 * | −0.070 | |
(0.038) | (0.041) | (0.047) | (0.052) | (0.075) | (0.077) |
Variables | Resource Allocation Effect | Scale Economy Effect | Technology Promotion Effect | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lnScite | lnNgin | lnQgin | lnSciply | lnNgin | lnQgin | lnEcsca | lnNgin | lnQgin | lnTechp | lnNgin | lnQgin | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
Direct effect | lnDigin | 2.887 *** | 5.247 *** | 5.659 *** | 4.900 *** | 1.436 *** | 1.863 *** | 1.728 ** | 5.282 *** | 5.625 *** | 0.639 ** | 5.140 *** | 5.745 *** |
(0.341) | (0.633) | (0.674) | (0.524) | (0.398) | (0.452) | (0.704) | (0.576) | (0.602) | (0.320) | (0.544) | (0.603) | ||
lnScite | 0.212 ** | 0.221 ** | |||||||||||
(0.106) | (0.113) | ||||||||||||
lnSciply | 0.720 *** | 0.712 *** | |||||||||||
(0.048) | (0.056) | ||||||||||||
lnEcsca | 0.376 *** | 0.363 *** | |||||||||||
(0.042) | (0.045) | ||||||||||||
lnTechp | 0.713 *** | 0.520 *** | |||||||||||
(0.108) | (0.120) | ||||||||||||
Indirect effect | lnDigin | 6.990 *** | −7.957 *** | −6.667 *** | −5.926 *** | −1.840 | −0.175 | −0.927 | −7.985 *** | −7.187 *** | −3.286 | −7.566 *** | −6.956 *** |
(1.596) | (1.768) | (1.975) | (1.070) | (1.418) | (1.707) | (1.450) | (1.118) | (1.298) | (2.076) | (1.203) | (1.392) | ||
lnScite | −0.385 | −0.493 | |||||||||||
(0.320) | (0.359) | ||||||||||||
lnSciply | −1.824 *** | −1.982 *** | |||||||||||
(0.370) | (0.447) | ||||||||||||
lnEcsca | 0.159 | 0.045 | |||||||||||
(0.146) | (0.175) | ||||||||||||
lnTechp | −0.608 *** | −0.428 * | |||||||||||
(0.236) | (0.272) | ||||||||||||
Total effect | lnDigin | 9.878 *** | −2.709 * | −1.008 | −1.026 | −0.405 | 1.689 | 0.801 | −2.703 *** | −1.562 | −2.646 | −2.425 ** | −1.212 |
(1.647) | (1.635) | (1.857) | (0.913) | (1.349) | (1.640) | (1.260) | (0.901) | (1.097) | (2.148) | (1.037) | (1.220) | ||
lnScite | −0.173 | −0.272 | |||||||||||
(0.292) | (0.334) | ||||||||||||
lnSciply | −1.104 *** | −1.270 *** | |||||||||||
(0.394) | (0.475) | ||||||||||||
lnEcsca | 0.535 *** | 0.408 ** | |||||||||||
(0.146) | (0.180) | ||||||||||||
lnTechp | 0.105 | 0.092 | |||||||||||
(0.185) | (0.219) | ||||||||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
mediating effect proportion | / | 10.593% | 10.277% | / | 61.059% | 56.198% | / | 11.245% | 10.104% | / | 7.885% | 5.352% |
Variables | East Region | Central Region | West Region | ||||
---|---|---|---|---|---|---|---|
lnNgin | lnQgin | lnNgin | lnQgin | lnNgin | lnQgin | ||
1 | 2 | 3 | 4 | 5 | 6 | ||
Direct effect | lnDigin | 2.467 *** | 3.474 *** | −1.540 | −2.551 | 8.578 *** | 9.588 *** |
(0.651) | (0.705) | (1.415) | (1.963) | (1.524) | (1.738) | ||
lnPgdp | −0.778 *** | −0.850 *** | 1.303 *** | 1.496 ** | 0.336 | 0.214 | |
(0.280) | (0.290) | (0.426) | (0.607) | (0.282) | (0.329) | ||
lnEr | 0.488 * | 0.422 | −0.885 * | −0.567 | −2.054 *** | −2.027 *** | |
(0.253) | (0.262) | (0.464) | (0.656) | (0.543) | (0.598) | ||
(lnEr)2 | 0.033 ** | 0.027 * | −0.061 ** | −0.041 | −0.120 *** | −0.120 *** | |
(0.015) | (0.015) | (0.030) | (0.043) | (0.039) | (0.043) | ||
lnIs | 2.210 *** | 1.723 *** | 0.369 | 0.109 | −0.631 | 0.222 | |
(0.174) | (0.187) | (0.333) | (0.469) | (0.585) | (0.659) | ||
lnKpro | 0.377 *** | 0.450 *** | 0.359 *** | 0.476 *** | 0.002 | 0.013 | |
(0.048) | (0.050) | (0.055) | (0.078) | (0.043) | (0.051) | ||
lnPmd | 0.928 *** | 0.867 *** | 1.543 *** | 1.657 *** | 0.308 *** | 0.326 *** | |
(0.136) | (0.144) | (0.162) | (0.232) | (0.061) | (0.070) | ||
lnFDI | −0.116 ** | −0.140 ** | 0.067 | 0.097 | 0.039 | 0.004 | |
(0.057) | (0.058) | (0.086) | (0.123) | (0.050) | (0.056) | ||
Indirect effect | lnDigin | −7.018 *** | −7.177 *** | 1.465 | 2.320 | −8.809 ** | −8.138 ** |
(1.844) | (2.147) | (2.298) | (3.294) | (3.978) | (4.023) | ||
lnPgdp | −5.122 *** | −4.692 *** | 3.641 *** | 3.264 * | 0.530 | −0.864 | |
(1.139) | (1.279) | (1.196) | (1.698) | (0.766) | (0.777) | ||
lnEr | −0.898 | −0.540 | −0.713 | −1.568 | −1.119 | 0.148 | |
(0.751) | (0.823) | (1.298) | (1.889) | (1.048) | (1.066) | ||
(lnEr)2 | −0.055 | −0.038 | −0.046 | −0.103 | −0.097 | −0.005 | |
(0.042) | (0.047) | (0.082) | (0.120) | (0.073) | (0.074) | ||
lnIs | 1.023 ** | 0.931 * | 1.905 *** | 2.911 *** | 3.283 ** | 4.867 *** | |
(0.489) | (0.551) | (0.672) | (0.980) | (1.452) | (1.435) | ||
lnKpro | −0.782 *** | −0.757 *** | −0.149 | −0.205 | −0.296 ** | −0.331 *** | |
(0.156) | (0.170) | (0.103) | (0.150) | (0.123) | (0.123) | ||
lnPmd | 4.278 *** | 4.038 *** | −0.731 *** | −1.248 *** | 0.436 *** | 0.417 ** | |
(0.680) | (0.760) | (0.232) | (0.324) | (0.166) | (0.166) | ||
lnFDI | 1.056 *** | 0.803 *** | 0.168 | 0.284 * | 0.151 | 0.236 * | |
(0.219) | (0.230) | (0.103) | (0.150) | (0.129) | (0.127) | ||
Total effect | lnDigin | −4.551 ** | −3.703 | −0.075 | −0.231 | −0.231 | 1.449 |
(2.293) | (2.654) | (1.730) | (2.565) | (3.150) | (2.941) | ||
lnPgdp | −5.899 *** | −5.541 *** | 4.944 *** | 4.761 ** | 0.866 | −0.650 | |
(1.264) | (1.424) | (1.404) | (2.003) | (0.626) | (0.583) | ||
lnEr | −0.409 | −0.119 | −1.599 | −2.135 | −3.173 *** | −1.878 ** | |
(0.756) | (0.842) | (1.260) | (1.884) | (0.862) | (0.794) | ||
(lnEr)2 | −0.022 | −0.011 | −0.107 | −0.144 | −0.217 *** | −0.125 ** | |
(0.043) | (0.048) | (0.082) | (0.122) | (0.060) | (0.055) | ||
lnIs | 3.233 *** | 2.654 *** | 2.275 *** | 3.020 ** | 2.652 * | 5.089 *** | |
(0.601) | (0.677) | (0.785) | (1.176) | (1.412) | (1.321) | ||
lnKpro | −0.405 ** | −0.307 * | 0.210 ** | 0.271 * | −0.293 *** | −0.317 *** | |
(0.160) | (0.175) | (0.105) | (0.157) | (0.102) | (0.095) | ||
lnPmd | 5.206 *** | 4.905 *** | 0.812 *** | 0.409 | 0.744 *** | 0.743 *** | |
(0.797) | (0.885) | (0.268) | (0.391) | (0.150) | (0.139) | ||
lnFDI | 0.940 *** | 0.663 *** | 0.235 | 0.381 * | 0.190 | 0.240 ** | |
(0.245) | (0.255) | (0.146) | (0.215) | (0.123) | (0.114) |
Variables | Degree of Nationalization | Green Purchasing | |||
---|---|---|---|---|---|
lnNgin | lnQgin | lnNgin | lnQgin | ||
1 | 2 | 3 | 4 | ||
Direct effect | lnDigin | 18.640 *** | 19.200 *** | 9.160 *** | 9.872 *** |
(3.756) | (4.075) | (1.452) | (1.574) | ||
lnNaliza × lnDigin | −3.993 *** | −3.964 *** | |||
(1.134) | (1.229) | ||||
lnNaliza | −0.074 | 0.180 | |||
(0.189) | (0.206) | ||||
lnGreeb × lnDigin | 2.554 *** | 2.724 *** | |||
(0.960) | (1.039) | ||||
lnGreeb | −0.501 *** | −0.476 *** | |||
(0.076) | (0.083) | ||||
Indirect effect | lnDigin | −48.630 *** | −33.345 *** | −20.684 *** | −17.393 *** |
(9.480) | (10.841) | (5.001) | (5.626) | ||
lnNaliza × lnDigin | 12.105 *** | 7.760 ** | |||
(2.813) | (3.226) | ||||
lnNaliza | −1.069 ** | −0.904 * | |||
(0.403) | (0.464) | ||||
lnGreeb × lnDigin | −7.923 ** | −5.907 | |||
(3.366) | (3.799) | ||||
lnGreeb | 1.296 *** | 1.363 *** | |||
(0.249) | (0.285) | ||||
Total effect | lnDigin | −29.990 *** | −14.145 | −11.525 ** | −7.520 |
(8.576) | (9.904) | (5.338) | (6.028) | ||
lnNaliza × lnDigin | 8.113 *** | 3.796 | |||
(2.496) | (2.900) | ||||
lnNaliza | −1.142 *** | −0.724 * | |||
(0.366) | (0.430) | ||||
lnGreeb × lnDigin | −5.370 | −3.183 | |||
(3.493) | (3.959) | ||||
lnGreeb | 0.795 *** | 0.887 *** | |||
(0.257) | (0.295) | ||||
Control variables | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, H.; Zhong, S.; Zhong, Y. Exploring the Effect of Integration Development of Digital Intelligence on Green Technology Innovation Quantity and Quality. Sustainability 2025, 17, 4339. https://doi.org/10.3390/su17104339
Li J, Yang H, Zhong S, Zhong Y. Exploring the Effect of Integration Development of Digital Intelligence on Green Technology Innovation Quantity and Quality. Sustainability. 2025; 17(10):4339. https://doi.org/10.3390/su17104339
Chicago/Turabian StyleLi, Jianxuan, Haochang Yang, Shiquan Zhong, and Yue Zhong. 2025. "Exploring the Effect of Integration Development of Digital Intelligence on Green Technology Innovation Quantity and Quality" Sustainability 17, no. 10: 4339. https://doi.org/10.3390/su17104339
APA StyleLi, J., Yang, H., Zhong, S., & Zhong, Y. (2025). Exploring the Effect of Integration Development of Digital Intelligence on Green Technology Innovation Quantity and Quality. Sustainability, 17(10), 4339. https://doi.org/10.3390/su17104339