Blockchain Opportunities for Water Resources Management: A Comprehensive Review
Abstract
:1. Introduction
Background on Blockchain Technology
2. Materials and Methods
2.1. Scope and Purpose
- RQ1.
- What is the current state of blockchain technology in hydrological applications, and what future developments can be anticipated?
- RQ2.
- How can blockchain technology meet the specific data management needs of the water sector, and what are its comparative advantages over existing systems?
- RQ3.
- What are the key opportunities presented by blockchain for improving water governance, and what challenges might impede its adoption?
- RQ4.
- What are the limitations and gaps in the current body of research on blockchain in hydrology, and how might these inform future investigations?
- RQ5.
- Based on the findings, what recommendations can be made for stakeholders in water resources management, and what are the broader implications for the field?
- RQ6.
- In what ways can future studies build upon and refine the current model to address unresolved issues and enhance the utility of blockchain applications in this domain?
2.2. Study Design
3. Results
3.1. Summary of Findings
3.2. Analysis of Academic Content
3.2.1. Water Governance
3.2.2. Water Economics
3.2.3. Water Quality Management
3.2.4. Agricultural Water Management
3.2.5. Urban Water Management
3.2.6. Water and SDGs
3.3. Analysis of Non-Academic Content
4. Discussion
4.1. Fundamental Benefits of Blockchain in Hydrology
4.2. Challenges for Blockchain in Hydrological Applications
5. Recommendations for Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Database | Keywords | Years | Results |
---|---|---|---|
Google Scholar | “blockchain” and “water” | All times | 39,000 |
Since 2018 | 19,200 | ||
Since 2019 | 18,500 | ||
Since 2020 | 17,500 | ||
Since 2021 | 16,900 | ||
Since 2022 | 7220 | ||
“blockchain” and “water management” | All times | 4230 | |
“blockchain” and “water rights” | All times | 186 | |
“blockchain” and “water trading” | All times | 99 | |
“blockchain” and “water quality” | All times | 3120 | |
“blockchain” and “water market” | All times | 93 | |
“blockchain” and “urban water management” | All times | 171 | |
“blockchain” and “transboundary water” | All times | 76 | |
“blockchain” and “wastewater management” | All times | 92 | |
“blockchain” and “water finance” | All times | 25 | |
“blockchain” and “water economics” | All times | 25 | |
“blockchain” and “virtual water” | All times | 121 | |
allintitle: “blockchain” and “water” | All times | 61 | |
“distributed ledger” and “water management” | All times | 538 | |
“distributed ledger” and “water resources management” | All times | 50 | |
“blockchain” and “water resources management” | All times | 484 | |
“blockchain” and “industrial water” | All times | 110 | |
“blockchain” and “basin management” | All times | 97 | |
“smart contract” and “blockchain” and “water management” | All times | 351 | |
“smart contract” and “blockchain” and “water quality” | All times | 298 | |
“smart contract” and “blockchain” and “water rights” | All times | 42 | |
“smart contract” and “blockchain” and “water trading” | All times | 51 | |
“smart contract” and “blockchain” and “urban water” | All times | 52 | |
“smart contract” and “blockchain” and “flood management” | All times | 26 | |
“blockchain” and “water distribution systems” | All times | 709 | |
Scopus | “blockchain” and “water” | All times | 257 |
“blockchain” and “water management” | All times | 34 | |
“blockchain” and “water rights” | All times | 13 | |
“blockchain” and “water trading” | All times | 26 | |
“blockchain” and “water quality” | All times | 30 | |
“blockchain” and “water market” | All times | 1 | |
“blockchain” and “urban water management” | All times | 2 | |
“blockchain” and “transboundary water” | All times | - | |
“blockchain” and “waste water management” | All times | 1 | |
“blockchain” and “water finance” | All times | 1 | |
“blockchain” and “water economics” | All times | - | |
“blockchain” and “virtual water” | All times | 3 | |
allintitle: “blockchain” and “water” | All times | 33 | |
“distributed ledger” and “water management” | All times | 5 | |
“distributed ledger” and “water resources management” | All times | 2 | |
“blockchain” and “water resources management” | All times | 8 | |
“blockchain” and “industrial water” | All times | 1 | |
“blockchain” and “basin management” | All times | - | |
“smart contract” and “blockchain” and “water management” | All times | 7 | |
“smart contract” and “blockchain” and “water quality” | All times | 1 | |
“smart contract” and “blockchain” and “water rights” | All times | 2 | |
“smart contract” and “blockchain” and “water trading” | All times | 1 | |
“smart contract” and “blockchain” and “urban water” | All times | 1 | |
“smart contract” and “blockchain” and “flood management” | All times | 5 | |
Web of Science | “blockchain” and “water management” | All times | 118 |
Crossref | “blockchain” and “water management” | All times | 1000 |
Open Alex | “blockchain” and “water” | All times | 3 |
Jisc Library Hub | “blockchain” and “water management” | All times | 101 |
Library of Congress | “blockchain” and “water management” | All times | 3 |
Authors | Source Type | Focus Area | Development Level | Blockchain Type | Blockchain Technology | Smart Contract/Chain Code |
---|---|---|---|---|---|---|
A B Belliera, 2019 [74] | Journal Paper | Water Economics | Exploration | - | - | - |
A Bhaduri et al., 2021 [64] | Book Chapter | Water Economics | Conceptual | Not Available | Not Available | Yes |
A G Vernekar, 2020 [59] | Journal Paper | Water Governance | Conceptual | Not Available | Ethereum | Yes |
A Hangan et al., 2022 [41] | Journal Paper | Water Governance | Exploration | - | - | - |
A M Dragulinescu et al., 2021 [106] | Conference Paper | Agricultural Water Management | Simulation | Not Available | Hyperledger | No |
A M Drăgulinescu et al., 2021 [107] | Conference Paper | Agricultural Water Management | Conceptual | Not Available | Not Available | No |
A Parmentola et al., 2021 [137] | Journal Paper | Water—SDG | Exploration | - | - | - |
A Poberezhna, 2018 [65] | Book Chapter | Water Economics | Exploration | - | - | - |
A Predescu et al., 2021 [134] | Journal Paper | Urban Water Management | DApp | Private | Hyperledger | Yes |
A Scozzari et al., 2021 [37] | Book Chapter | Water Governance | Exploration | - | - | - |
B Bordel et al., 2019 [117] | Conference Paper | Agricultural Water Management | Simulation | Hybrid | Ethereum | Yes |
B Miller, 2021 [77] | Technical Report | Water Economics | Conceptual | Not Available | Not Available | Yes |
B Pahonțu et al., 2020 [132] | Conference Paper | Urban Water Management | Simulation | Private | Hyperledger | Yes |
C Rottondi, G Verticale, 2017 [133] | Journal Paper | Urban Water Management | Simulation | Public | Not Available | No |
California Blockchain Working Group, 2020 [61] | Technical Report | Water Governance | Exploration | - | - | - |
CRCNA, Civic Ledger, 2020 [84] | Technical Report | Water Economics | Pilot Project | Public | Ethereum | Yes |
D Arsene et al., 2020 [131] | Conference Paper | Urban Water Management | Simulation | Private | Hyperledger | Yes |
E Kaur, A Oza, 2020 [92] | Journal Paper | Water Quality Management | Simulation | Private | Ethereum | Yes |
E M Dogo et al., 2019 [38] | Book Chapter | Water Governance | Exploration | - | - | - |
E Ramsey et al., 2020 [78] | Journal Paper | Water Economics | Exploration | - | - | - |
E Sriyono, 2020 [36] | Journal Paper | Water Governance | Conceptual | Not Available | Not Available | No |
E Vannucci et al., 2021 [75] | Journal Paper | Water Economics | Exploration | - | - | - |
F Abu-Amara et al., 2022 [83] | Journal Paper | Water Economics | DApp | Private | Hyperledger | Yes |
F M Enescu et al., 2020 [119] | Journal Paper | Agricultural Water Management | DApp | Public | Ethereum | Yes |
F Mohammadi et al., 2022 [56] | Conference Paper | Water Governance | Conceptual | Not Available | Not Available | Yes |
G Grigoras et al., 2018 [71] | Conference Paper | Water Economics | Conceptual | Not Available | Not Available | Yes |
G Wu et al., 2022 [43] | Conference Paper | Water Governance | Exploration | - | - | - |
G Zhao et al., 2019 [69] | Journal Paper | Water Economics | Exploration | - | - | - |
H H Mahmoud et al., 2019 [125] | Conference Paper | Urban Water Management | Conceptual | Not Available | Not Available | No |
H H Mahmoud et al., 2021 [126] | Journal Paper | Urban Water Management | Simulation | Not Available | Not Available | No |
H Li et al., 2021 [51] | Journal Paper | Water Governance | Conceptual | Not Available | Not Available | Yes |
H Mora et al., 2021 [135] | Journal Paper | Water—SDG | Exploration | - | - | - |
H Zeng et al., 2021 [115] | Journal Paper | Agricultural Water Management | Simulation | Not Available | Not Available | No |
I Lukić et al., 2022 [121] | Journal Paper | Urban Water Management | Exploration | - | - | - |
J B Abdo, S Zeadally, 2020 [67] | Journal Paper | Water Economics | Conceptual | Not Available | Not Available | Yes |
J Crawford et al., 2021 [97] | Conference Paper | Water Quality Management | Simulation | - | Other (Corda) | Yes |
J Gudmundsson, J L Hougaard, 2021 [98] | Technical Report | Water Quality Management | Conceptual | Not Available | Not Available | Yes |
J Ikeda, K Liffiton, 2019 [66] | Technical Report | Water Economics | Exploration | - | - | - |
J S V Angara, R S Saripalle, 2022 [72] | Journal Paper | Water Economics | Conceptual | Public | Not Available | Yes |
J Thomason et al., 2018 [68] | Book Chapter | Water Economics | Exploration | - | - | - |
J Yan et al., 2019 [88] | Journal Paper | Water Quality Management | Conceptual | Not Available | Not Available | No |
Berman et al., 2020 [95] | Journal Paper | Water Quality Management | Simulation | - | Ethereum | Yes |
K M Krishna et al., 2021 [109] | Conference Paper | Agricultural Water Management | Conceptual | Not Available | Not Available | No |
K Quist-Aphetsi, H Blankson, 2019 [91] | Conference Paper | Water Quality Management | Exploration | - | - | - |
K Wan et al., 2020 [89] | Journal Paper | Water Quality Management | Exploration | - | - | - |
L Lin et al., 2021 [48] | Conference Paper | Water Governance | Conceptual | Public | Ethereum | Yes |
L Majia, 2021 [54] | Conference Paper | Water Governance | Simulation | Not Available | Not Available | No |
L S Iyer et al., 2020 [42] | Conference Paper | Water Governance | Exploration | - | - | - |
L Ting et al., 2022 [114] | Journal Paper | Agricultural Water Management | Conceptual | Not Available | Not Available | No |
M A Ferrag et al., 2020 [105] | Journal Paper | Agricultural Water Management | Exploration | - | - | - |
M Asgari et al., 2022 [49] | Journal Paper | Water Governance | Exploration | - | - | - |
M Dramski et al., 2019 [57] | Conference Paper | Water Governance | Simulation | Private | Hyperledger | No |
M H Mughal et al., 2022 [62] | Journal Paper | Water Governance | Pilot Project | Private | Hyperledger | Yes |
M Kassou et al., 2021 [85] | Conference Paper | Water Quality Management | Conceptual | Not Available | Not Available | Yes |
M Pincheira et al., 2021 [118] | Journal Paper | Agricultural Water Management | Simulation | Public | Ethereum | Yes |
M S Alnahari, S T Ariaratnam, 2022 [120] | Journal Paper | Urban Water Management | Exploration | - | - | - |
M S Kumar et al., 2021 [103] | Book Chapter | Agricultural Water Management | Exploration | - | - | - |
M S Munir et al., 2019 [113] | Journal Paper | Agricultural Water Management | Conceptual | Not Available | Not Available | No |
M Singh et al., 2020 [46] | Journal Paper | Water Governance | Exploration | - | - | - |
M Stankovic et al., 2020 [50] | Technical Report | Water Governance | Exploration | - | - | - |
M Zecchini et al., 2019 [128] | Journal Paper | Urban Water Management | Conceptual | Public | Ethereum | Yes |
M Zecchini, 2019 [70] | Thesis | Water Economics | Exploration | - | - | - |
N Alharbi et al., 2021 [99] | Conference Paper | Water Quality Management | DApp | Private | Hyperledger | Yes |
N Dong, J Fu, 2021 [101] | Conference Paper | Agricultural Water Management | Exploration | - | - | - |
P Coli et al., 2021 [63] | Technical Report | Water Governance | Pilot Project | Ethereum | Yes | |
P Sapra et al., 2022 [60] | Book Chapter | Water Governance | Simulation | Private | Ethereum | Yes |
R Alcarria et al., 2018 [80] | Journal Paper | Water Economics | Simulation | Private | Ethereum | Yes |
R Damania e al., 2019 [86] | Book | Water Quality Management | Exploration | - | - | - |
R Giaffreda, 2019 [116] | Conference Paper | Agricultural Water Management | Experimental | Private | Ethereum | Yes |
R P Sobrinho et al., 2022 [35] | Journal Paper | Water Governance | Exploration | - | - | - |
R Zhang, 2022 [76] | Journal Paper | Water Economics | Conceptual | Not Available | Not Available | No |
S B H Youssef et al., 2019 [53] | Conference Paper | Water Governance | Simulation | Hybrid | Not Available | No |
S Hakak et al., 2020 [90] | Journal Paper | Water Quality Management | Conceptual | Not Available | Not Available | Yes |
S Iyer et al., 2019 [93] | Conference Paper | Water Quality Management | Simulation | Private | Hyperledger | Yes |
S J Pee et al., 2018 [79] | Conference Paper | Water Economics | Simulation | Private | Ethereum | Yes |
S Kim et al., 2022 [123] | Journal Paper | Urban Water Management | Exploration | - | - | - |
S Makani et al., 2022 [122] | Journal Paper | Urban Water Management | Exploration | - | - | - |
S R Niya et al., 2018 [96] | Conference Paper | Water Quality Management | Simulation | Public | Ethereum | Yes |
S Sundaresan et al., 2021 [129] | Book Chapter | Urban Water Management | Simulation | Not Available | Not Available | No |
S Tiwari et al., 2020 [58] | Journal Paper | Water Governance | Simulation | Public | Ethereum | Yes |
T S RajaRajeswari et al., 2022 [112] | Conference Paper | Agricultural Water Management | Conceptual | Hybrid | Not Available | No |
T Thakur et al., 2021 [130] | Journal Paper | Urban Water Management | Simulation | Public | Ethereum | Yes |
T Yasuno et al., 2020 [47] | Conference Paper | Water Governance | Conceptual | Not Available | Not Available | No |
U Sakthi, J DafniRose, 2022 [110] | Journal Paper | Agricultural Water Management | Conceptual | Private | Hyperledger | Yes |
V Kumar et al., 2022 [124] | Book Chapter | Urban Water Management | Exploration | - | - | - |
V Mattila et al., 2022 [138] | Journal Paper | Water—SDG | Exploration | - | - | - |
V Poonia et al., 2021 [39] | Journal Paper | Water Governance | Conceptual | Not Available | Not Available | No |
V Sivaramakrishnan, 2020 [73] | Thesis | Water Economics | Simulation | Public | Ethereum | Yes |
V Sukrutha et al., 2021 [55] | Conference Paper | Water Governance | Simulation | Public | Ethereum | Yes |
V T Ragghianti, 2021 [44] | Other | Water Governance | Conceptual | Not Available | Not Available | No |
W Linjing et al., 2020 [40] | Book Chapter | Water Governance | Exploration | Not Available | Not Available | No |
W Liu et al., 2021 [104] | Journal Paper | Agricultural Water Management | Exploration | - | - | - |
W Xia., 2022 [45] | Journal Paper | Water Governance | Conceptual | Hybrid | Not Available | Yes |
Y Chang et al., 2021 [108] | Journal Paper | Agricultural Water Management | Conceptual | Not Available | Ethereum | Yes |
Y Lalle et al., 2020 [127] | Conference Paper | Urban Water Management | Conceptual | Private | Not Available | No |
Y Li et al., 2022 [82] | Journal Paper | Water Economics | Simulation | Private | Hyperledger | Yes |
Y Liu, C Shang, 2022 [81] | Journal Paper | Water Economics | Conceptual | Hybrid | - | Yes |
Y P Lin et al., 2020 [94] | Journal Paper | Water Quality Management | Simulation | Not Available | Not Available | Yes |
Y P Lin et al., 2017 [111] | Journal Paper | Agricultural Water Management | Conceptual | Hybrid | Ethereum | Yes |
Y P Ortiz, 2018 [87] | Working Paper | Water Quality Management | Exploration | - | - | - |
Y Zhang et al., 2020 [52] | Journal Paper | Water Governance | Conceptual | Hybrid | Not Available | Yes |
Ye Liu et al., 2020 [102] | Journal Paper | Agricultural Water Management | Exploration | - | - | - |
Z Shi et al., 2019 [100] | Journal Paper | Water Quality Management | Pilot Project | Private | Hyperledger | Yes |
Authors and Organization and Project | Publication Type | Year |
---|---|---|
Aqua Coin | Hackathon Project | 2019 |
Baarish | Hackathon Project | 2018 |
Basin Logix | Hackathon Project | 2020 |
Block Garden | Hackathon Project | 2022 |
Climeter | Hackathon Project | 2017 |
Decentralized Rainwater Harvesting | Hackathon Project | 2020 |
EnvChain | Hackathon Project | 2022 |
Environment Connect | Hackathon Project | 2022 |
ETH Water Dam | Hackathon Project | 2019 |
Flood Chain | Hackathon Project | 2019 |
H2O Chain | Hackathon Project | 2019 |
How to Save | Hackathon Project | 2021 |
HydroBlock | Hackathon Project | 2018 |
MaximizeWasteWaterRecovery | Hackathon Project | 2019 |
My Water Chain | Hackathon Project | 2020 |
Wastewater Reuse | Hackathon Project | 2019 |
Water Coin—Env. Sensor Data Sharing | Hackathon Project | 2018 |
Water Coin—WRC Trading | Hackathon Project | 2019 |
Water Guardians | Hackathon Project | 2018 |
Water Monitor Plus | Hackathon Project | 2022 |
Water Reuse Booster | Hackathon Project | 2020 |
WaterWizard | Hackathon Project | 2020 |
WeatherChainXM | Hackathon Project | 2021 |
Wyo Flow | Hackathon Project | 2018 |
Aditya K. Kaushik | Web Document | 2019 |
ARUP | Web Document | 2019 |
Atreides | Web Document | 2021 |
BANKEX | Web Document | 2018 |
C Stinson | Web Document | 2018 |
Crypto Water | Web Document | 2017 |
David Barbeler | Web Document | 2019 |
E Weisbord | Web Document | 2018 |
Fujitsu | Web Document | 2021 |
GSI | Web Document | 2022 |
Hypervine | Web Document | 2022 |
O Russell | Web Document | 2018 |
ODI | Web Document | 2018 |
OFWAT | Web Document | 2017 |
Origin Clear | Web Document | 2022 |
Robert Galarza | Web Document | 2022 |
Statecraft Tech | Web Document | 2019 |
Vottun | Web Document | 2022 |
Y Khatri | Web Document | 2019 |
AquaBit | Whitepaper | 2018 |
Baikalika | Whitepaper | 2017 |
Block-Squid | Whitepaper | 2020 |
Bluechain | Whitepaper | 2019 |
G Booman et al. | Whitepaper | 2021 |
Genesis Research and Technology Group | Whitepaper | 2017 |
h20 | Whitepaper | 2022 |
HydroChain | Whitepaper | 2021 |
Kojo | Whitepaper | 2022 |
PG Giampietro | Whitepaper | 2020 |
Pipeline System | Whitepaper | 2021 |
TrashTag | Whitepaper | 2021 |
Treelion | Whitepaper | 2021 |
Water Consortium | Whitepaper | 2020 |
References
- Beck, M.B.; Jiang, F.; Shi, F.; Walker, R.V.; Osidele, O.O.; Lin, Z.; Demir, I.; Hall, J.W. Re-engineering cities as forces for good in the environment. Proc. Inst. Civ. Eng.-Eng. Sustain. 2010, 163, 31–46. [Google Scholar] [CrossRef]
- Hu, A.; Demir, I. Real-Time Flood Mapping on Client-Side Web Systems Using HAND Model. Hydrology 2021, 8, 65. [Google Scholar] [CrossRef]
- Knell, M. The digital revolution and digitalized network society. Rev. Evol. Political Econ. 2021, 2, 9–25. [Google Scholar] [CrossRef]
- Savić, D. Digital water developments and lessons learned from automation in the car and aircraft industries. Engineering 2022, 9, 35–41. [Google Scholar] [CrossRef]
- Gautam, A.; Sit, M.; Demir, I. Realistic River Image Synthesis Using Deep Generative Adversarial Networks. Front. Water 2022, 4, 784441. [Google Scholar] [CrossRef]
- Ewing, G.; Mantilla, R.; Krajewski, W.; Demir, I. Interactive hydrological modelling and simulation on client-side web systems: An educational case study. J. Hydroinform. 2022, 24, 1194–1206. [Google Scholar] [CrossRef]
- Sermet, Y.; Demir, I. GeospatialVR: A web-based virtual reality framework for collaborative environmental simulations. Comput. Geosci. 2022, 159, 105010. [Google Scholar] [CrossRef]
- Erazo Ramirez, C.V.; Sermet, Y.; Molkenthin, F.; Demir, I. HydroLang: An open-source web-based programming framework for hydrological sciences. Environ. Model. Softw. 2022, 157, 105525. [Google Scholar] [CrossRef]
- Xiang, Z.; Demir, I. Flood Markup Language–A standards-based exchange language for flood risk communication. Environ. Model. Softw. 2022, 152, 105397. [Google Scholar] [CrossRef]
- Haltas, I.; Yildirim, E.; Oztas, F.; Demir, I. A comprehensive flood event specification and inventory: 1930–2020 Turkey case study. Int. J. Disaster Risk Reduct. 2021, 56, 102086. [Google Scholar] [CrossRef]
- Voogd, R.; Rudberg, P.M.; de Vries, J.R.; Beunen, R.; Espiritu, A.A.; Methner, N.; Larsen, R.K.; Fedreheim, G.E.; Goes, S.; Kruger, E. A systematic review on the role of trust in the water governance literature. Water Res. X 2022, 16, 100147. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 21 November 2022).
- Akinbi, A.; MacDermott, Á.; Ismael, A.M. A Systematic Literature Review of Blockchain-Based Internet of Things (IoT) Forensic Investigation Process Models. Forensic Sci. Int. Digit. Investig. 2022, 42, 301470. [Google Scholar] [CrossRef]
- Hu, S.; Huang, S.; Qin, X. Exploring blockchain-supported authentication based on online and offline business in organic agricultural supply chain. Comput. Ind. Eng. 2022, 173, 108738. [Google Scholar] [CrossRef]
- Li, Q.; Ma, M.; Shi, T.; Zhu, C. Green investment in a sustainable supply chain: The role of blockchain and fairness. Transp. Res. Part E: Logist. Transp. Rev. 2022, 167, 102908. [Google Scholar] [CrossRef]
- Jing, N.; Liu, Q.; Sugumaran, V. A blockchain-based code copyright management system. Inf. Process. Manag. 2021, 58, 102518. [Google Scholar] [CrossRef]
- Gad, A.G.; Mosa, D.T.; Abualigah, L.; Abohany, A.A. Emerging trends in blockchain technology and applications: A review and outlook. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 6719–6742. [Google Scholar] [CrossRef]
- Castellini, G.; Lucini, L.; Rocchetti, G.; Lorenzo, J.M.; Graffigna, G. Determinants of consumer acceptance of new technologies used to trace and certify sustainable food products: A mini-review on blockchain technology. Curr. Opin. Environ. Sci. Health 2022, 30, 100403. [Google Scholar] [CrossRef]
- Merlo, V.; Pio, G.; Giusto, F.; Bilancia, M. On the exploitation of the blockchain technology in the healthcare sector: A systematic review. Expert Syst. Appl. 2022, 213, 118897. [Google Scholar] [CrossRef]
- Szabo, N. There Is No Universal Security Architecture. Phonetic Sciences, Amsterdam. 1998. Available online: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/universal.html (accessed on 21 November 2022).
- Buterin, V. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. Home|ethereum.org. 2014. Available online: https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf (accessed on 21 November 2022).
- Wang, X.; Ni, W.; Zha, X.; Yu, G.; Liu, R.P.; Georgalas, N.; Reeves, A. Capacity analysis of public blockchain. Comput. Commun. 2021, 177, 112–124. [Google Scholar] [CrossRef]
- Arooj, A.; Farooq, M.S.; Umer, T. Unfolding the blockchain era: Timeline, evolution, types and real-world applications. J. Netw. Comput. Appl. 2022, 207, 103511. [Google Scholar] [CrossRef]
- Hang, L.; Kim, D.-H. Optimal blockchain network construction methodology based on analysis of configurable components for enhancing Hyperledger Fabric performance. Blockchain Res. Appl. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Estevam, G.; Palma, L.M.; Silva, L.R.; Martina, J.E.; Vigil, M. Accurate and decentralized timestamping using smart contracts on the Ethereum blockchain. Inf. Process. Manag. 2021, 58, 102471. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, G.; Saha, R.; Conti, M.; Alazab, M.; Thomas, R. A survey and taxonomy of consensus protocols for blockchains. J. Syst. Archit. 2022, 127, 102503. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Water Governance in the Face of Global Change; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Stern, M.J.; Coleman, K.J. The multidimensionality of trust: Applications in collaborative natural resource management. Soc. Nat. Resour. 2014, 28, 117–132. [Google Scholar] [CrossRef]
- Bazrkar, M.H.; Adamowski, J.F.; Eslamian, S. Water System Modelling. In Mathematical Advances Towards Sustainable Environmental Systems; Springer International Publishing: Cham, Switzerland, 2016; pp. 61–88. [Google Scholar] [CrossRef]
- Wheeler, S.; Loch, A.; Zuo, A.; Bjornlund, H. Reviewing the adoption and impact of water markets in the Murray–Darling Basin, Australia. J. Hydrol. 2014, 518, 28–41. [Google Scholar] [CrossRef]
- Mitchell, M.E.; Newcomer-Johnson, T.; Christensen, J.; Crumpton, W.; Richmond, S.; Dyson, B.; Canfield, T.J.; Helmers, M.; Lemke, D.; Lechtenberg, M.; et al. Potential of water quality wetlands to mitigate habitat losses from agricultural drainage modernization. Sci. Total Environ. 2022, 838, 156358. [Google Scholar] [CrossRef]
- Shanmugasundharam, A.; Akhina, S.N.; Adhithya, R.P.; Singh, D.S.H.; Krishnakumar, S. Water quality index (WQI), multivariate statistical and GIS for assessment of surface water quality of Karamana river estuary, west coast of India. Total Environ. Res. Themes 2023, 6, 100031. [Google Scholar] [CrossRef]
- Bramer, W.M.; De Jonge, G.B.; Rethlefsen, M.L.; Mast, F.; Kleijnen, J. A systematic approach to searching: An efficient and complete method to develop literature searches. J. Med. Libr. Assoc. 2018, 106, 531. [Google Scholar] [CrossRef]
- Wang, J.K.; Roy, S.K.; Barry, M.; Chang, R.T.; Bhatt, A.S. Institutionalizing healthcare hackathons to promote diversity in collaboration in medicine. BMC Med. Educ. 2018, 18, 269. [Google Scholar] [CrossRef]
- Sobrinho, R.P.; Garcia, J.R.; Maia, A.G.; Romeiro, A.R. Inovação na governança da água. Rev. Bras. Inovação 2019, 18, 157–176. [Google Scholar] [CrossRef]
- Sriyono, E. Digitizing water management: Toward the innovative use of blockchain technologies to address sustainability. Cogent Eng. 2020, 7, 1769366. [Google Scholar] [CrossRef]
- Scozzari, A.; Mounce, S.; Han, D.; Soldovieri, F.; Solomatine, D. ICT for smart water systems: Measurements and data science. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–26. Available online: https://link.springer.com/book/10.1007/978-3-030-61973-2 (accessed on 10 March 2024).
- Dogo, E.M.; Salami, A.F.; Nwulu, N.I.; Aigbavboa, C.O. Blockchain and internet of things-based technologies for intelligent water management system. In Artificial Intelligence in IoT; Springer International Publishing: Cham, Switzerland, 2019; pp. 129–150. [Google Scholar] [CrossRef]
- Poonia, V.; Goyal, M.K.; Gupta, B.B.; Gupta, A.K.; Jha, S.; Das, J. Drought occurrence in Different River Basins of India and blockchain technology based framework for disaster management. J. Clean. Prod. 2021, 312, 127737. [Google Scholar] [CrossRef]
- Linjing, W.; Xinyue, L.; Shihu, S. Blockchain application of iot for water industry and its security. In Security and Trust Issues in Internet of Things, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 301–328. [Google Scholar] [CrossRef]
- Hangan, A.; Chiru, C.-G.; Arsene, D.; Czako, Z.; Lisman, D.F.; Mocanu, M.; Pahontu, B.; Predescu, A.; Sebestyen, G. Advanced techniques for monitoring and management of urban water infrastructures—An overview. Water 2022, 14, 2174. [Google Scholar] [CrossRef]
- Iyer, L.S.; Giri, S.V. Harnessing technology for mitigating water woes in the city of Bengaluru. J. Phys. Conf. Ser. 2020, 1427, 012004. [Google Scholar] [CrossRef]
- Wu, G.; Li, E.; Wang, M. Application and prospect analysis of blockchain technology in water resources protection. In Proceedings of the 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS), Huaihua City, China, 15–17 July 2022. [Google Scholar] [CrossRef]
- Ragghianti, V.T. Tecnologia Blockchain: Instrumento de Gestão dos Recursos Hídricos em Santa Catarina. Universidade Federal De Santa Catarina. 2021. Available online: https://repositorio.ufsc.br/handle/123456789/224449 (accessed on 10 March 2024).
- Xia, W.; Chen, X.; Song, C. A framework of blockchain technology in intelligent water management. Front. Environ. Sci. 2022, 10, 909606. [Google Scholar] [CrossRef]
- Singh, M.; Goel, S. Development of 5G enabled IoT framework for flood disaster monitoring using Blockchain Technology. Solid State Technol. 2020, 63, 3283–3292. Available online: http://www.solidstatetechnology.us/index.php/JSST/article/view/4314 (accessed on 10 March 2024).
- Yasuno, T.; Ishii, A.; Amakata, M.; Fujii, J. Smart dam: Upstream sensing, hydro-blockchain, and flood feature extractions for dam inflow prediction. In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 139–158. [Google Scholar] [CrossRef]
- Lin, L.; Wang, B. Research on authentication and key negotiation based on smart water environment. In Proceedings of the 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 17–19 December 2021. [Google Scholar] [CrossRef]
- Asgari, M.; Nemati, M. Application of distributed ledger platforms in smart water systems—A literature review. Front. Water 2022, 4, 848686. [Google Scholar] [CrossRef]
- Stankovic, M.; Hasanbeigi, A.; Neftenov, N. Use of 4IR Technologies in Water and Sanitation in Latin America and the Caribbean; Basani, M., Núñez, A., Ortiz, R., Eds.; Inter-American Development Bank: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Guo, Z.; Xu, J.; Shen, Y.; Gao, X. Data-driven peer-to-peer blockchain framework for water consumption management. Peer-to-Peer Netw. Appl. 2021, 14, 2887–2900. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Yu, F. Construction of chinese smart water conservancy platform based on the blockchain: Technology integration and innovation application. Sustainability 2020, 12, 8306. [Google Scholar] [CrossRef]
- Youssef, S.B.H.; Rekhis, S.; Boudriga, N. A blockchain based secure iot solution for the dam surveillance. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar] [CrossRef]
- Majia, L. Innovative research of blockchain technology in the field of computer monitoring of hydropower station. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021. [Google Scholar] [CrossRef]
- Sukrutha, V.; Mohanty, S.P.; Kougianos, E.; Ray, C. G-DaM: A blockchain based distributed robust framework for ground water data management. In Proceedings of the 2021 IEEE International Symposium on Smart Electronic Systems (Ises), Jaipur, India, 18–22 December 2021. [Google Scholar] [CrossRef]
- Mohammadi, F.; Sanjari, M.; Saif, M. A real-time blockchain-based multifunctional integrated smart metering system. In Proceedings of the 2022 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 25–26 April 2022. [Google Scholar] [CrossRef]
- Dramski, M.; Seeber, C.; Krivorotova, E.; Thomas, J.; Ganis, M.R.; Leider, A.; Tappert, C.C. Proceedings of the Managing Weather Data with Environmental Blockchain Network, New York, USA, 3 May 2019; Pace University: Pleasantville, NY, USA, 2019. Available online: http://csis.pace.edu/~ctappert/srd2019/d4.pdf (accessed on 10 March 2024).
- Tiwari, S.; Gautam, J.; Gupta, V.; Malsa, N. Smart contract for decentralized water management system using blockchain technology. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 2046–2050. [Google Scholar] [CrossRef]
- Vernekar, A.G. Blockchain based water management system. Int. Res. J. Eng. Technol. 2020, 7, 7505–7507. [Google Scholar]
- Sapra, P.; Kalra, V.; Sejwal, S. Blockchain and iot for auto leak unearthing. In Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2021; pp. 381–390. [Google Scholar] [CrossRef]
- California Blockchain Working Group. Blockchain in California: A Roadmap; California Government Operation Agency: Sacramento, CA, USA, 2020. Available online: https://www.govops.ca.gov/wp-content/uploads/sites/11/2020/07/BWG-Final-Report-2020-July1.pdf (accessed on 10 March 2024).
- Mughal, M.H.; Shaikh, Z.A.; Ali, K.; Ali, S.; Hassan, S. IPFS and Blockchain based Reliability and availability improvement for integrated Rivers’ streamflow data. IEEE Access 2022, 1, 61101–61123. [Google Scholar] [CrossRef]
- Coli, P.; Pflueger, C.; Campbell, T.; Garcia, L.J. Blockchain Uses for Microfinance Institutions in the Water and Sanitation Sector: Pilot Study; Nalesso, M., Sasaki, K., Eds.; Inter-American Development Bank: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Bhaduri, A.; Dionisio Pérez-Blanco, C.; Rey, D.; Iftekhar, S.; Kaushik, A.; Escriva-Bou, A.; Calatrava, J.; Adamson, D.; Palomo-Hierro, S.; Jones, K.; et al. Economics of water security. In Handbook of Water Resources Management: Discourses, Concepts and Examples; Springer International Publishing: Cham, Switzerland, 2021; pp. 273–327. [Google Scholar] [CrossRef]
- Poberezhna, A. Addressing water sustainability with blockchain technology and green finance. In Transforming Climate Finance and Green Investment with Blockchains; Elsevier: Amsterdam, The Netherlands, 2018; pp. 189–196. [Google Scholar] [CrossRef]
- Ikeda, J.; Liffiton, K. Fintech for the Water Sector Advancing Financial Inclusion for More Equitable Access to Water; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2019; Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/31417/W18055.pdf (accessed on 10 March 2024).
- Bou Abdo, J.; Zeadally, S. Multi-utility framework: Blockchain exchange platform for sustainable development. Int. J. Pervasive Comput. Commun. ahead-of-print. 2020. [Google Scholar] [CrossRef]
- Thomason, J.; Ahmad, M.; Bronder, P.; Hoyt, E.; Pocock, S.; Bouteloupe, J.; Donaghy, K.; Huysman, D.; Willenberg, T.; Joakim, B.; et al. Blockchain—Powering and empowering the poor in developing countries. In Transforming Climate Finance and Green Investment with Blockchains; Elsevier: Amsterdam, The Netherlands, 2018; pp. 137–152. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Zecchini, M. Data Collection, Storage and Processing for Water Monitoring Based on Iot and Blockchain Technologies. Master’s Thesis, University of Rome, Rome, Italy, 2019. Available online: http://ichatz.me/thesis/msc-uniroma/2019-zecchini.pdf (accessed on 10 March 2024).
- Grigoras, G.; Bizon, N.; Enescu, F.M.; Lopez Guede, J.M.; Salado, G.F.; Brennan, R.; O’Driscoll, C.; Dinka, M.O.; Alalm, M.G. ICT based smart management solution to realize water and energy savings through energy efficiency measures in water distribution systems. In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June 2018. [Google Scholar] [CrossRef]
- Angara, J.S.V.; Saripalle, R.S. Towards a virtual water currency for industrial products using blockchain technology. Water Policy 2022, 24, 923–941. [Google Scholar] [CrossRef]
- Sivaramakrishnan, V. Peer to Peer Energy and Water Trading in the Wheatbelt: A Sustainable Move towards Achieving Energy and Water Independence for Farm Communities. Master’s Thesis, Murdoch University, Perth, Australia, 2020. Available online: https://researchrepository.murdoch.edu.au/id/eprint/61269/1/Sivaramakrishnan2020.pdf (accessed on 10 March 2024).
- Belliera, A.; Galeotti, M.; Pagano, A.J.; Rabitti, G.; Romagnoli, F.; Vannucci, E. Flood risk insurance: The blockchain approach to a bayesian adaptive design of the contract. In Proceedings of the Colloquium 2019 Innovating Actuarial Research on Financial Risk and ERM, Florence, Italy, 21 May 2019; Riga Technical University: Riga, Latvia, 2019. Available online: https://ortus.rtu.lv/science/en/publications/31935 (accessed on 10 March 2024).
- Vannucci, E.; Pagano, A.J.; Romagnoli, F. Climate change management: A resilience strategy for flood risk using Blockchain tools. Decis. Econ. Financ. 2021, 44, 177–190. [Google Scholar] [CrossRef]
- Zhang, R. Research on financial development of water resources enterprises based on blockchain technology. Mob. Inf. Syst. 2022, 2022, 3289301. [Google Scholar] [CrossRef]
- Miller, B. Application of Blockchain Capabilities to the Management of Water Rights and Water Markets; Information Systems Water and Catchment Group Department of Environment Land Water and Planning Victoria, Australia: Victoria, Australia, 2021.
- Ramsey, E.; Pesantez, J.; Fasaee, M.A.K.; DiCarlo, M.; Monroe, J.; Berglund, E.Z. A smart water grid for micro-trading rainwater: Hydraulic feasibility analysis. Water 2020, 12, 3075. [Google Scholar] [CrossRef]
- Pee, S.J.; Nans, J.H.; Jans, J.W. A simple blockchain-based peer-to-peer water trading system leveraging smart contracts. In Proceedings of the Proceedings on the International Conference on Internet Computing (ICOMP), Las Vegas, NV, USA, 30 July–2 August 2018; Available online: https://www.proquest.com/docview/2139488800/fulltext/A79F2817F47446AFPQ/1?accountid=196244 (accessed on 10 March 2024).
- Alcarria, R.; Bordel, B.; Robles, T.; Martín, D.; Manso-Callejo, M.-Á. A blockchain-based authorization system for trustworthy resource monitoring and trading in smart communities. Sensors 2018, 18, 3561. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shang, C. Application of blockchain technology in agricultural water rights trade management. Sustainability 2022, 14, 7017. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Yang, J.; Ren, J.; Zhai, N. Application of blockchain technology in water rights trading in the irrigation area under the internet-of-things environment. Secur. Commun. Netw. 2022, 2022, 8700730. [Google Scholar] [CrossRef]
- Abu-Amara, F.; Alrammal, M.; Al Hammadi, H.; Alhameli, S.; Mohamed, I.; Alaydaroos, M.; Alnuaimi, Z. A Blockchain Solution for Water and Electricity Management. Mater. Today Proc. 2022, 63, 731–736. [Google Scholar] [CrossRef]
- Crcna. Improving Water Markets and Trading through New Digital Technologies; The Cooperative Research Centre for Developing Northern Australia: November 2020. Available online: https://crcna.com.au/research/projects/improving-water-markets-and-trading-through-new-digital-technologies (accessed on 10 March 2024).
- Kassou, M.; Bourekkadi, S.; Khoulji, S.; Slimani, K.; Chikri, H.; Kerkeb, M.L. Blockchain-based medical and water waste management conception. In Proceedings of the The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020), Kenitra, Moroccco,, 25 December 2020; Ibn Tofail University: Kenitra, Morocco, 2020. Available online: https://www.e3s-conferences.org/articles/e3sconf/abs/2021/10/e3sconf_icies2020_00070/e3sconf_icies2020_00070.html (accessed on 10 March 2024).
- Damania, R.; Desbureaux, S.; Rodella, A.-S.; Russ, J.; Zaveri, E. Quality Unknown: The Invisible Water Crisis; World Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Ortiz, Y.P. How Blockchain Technology Could Improve the Quality of Drinking Water in Puerto Rico. SSRN. 2018. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3266166 (accessed on 10 March 2024).
- Yan, J.; Zhang, F.; Ma, J.; An, X.; Li, Y.; Huang, Y. Environmental monitoring system based on blockchain. In Proceedings of the ICCSE’19: The 4th International Conference on Crowd Science and Engineering, Jinan, China, 18–21 October 2019; ACM: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Wan, K.; Guo, Z.; Wang, J.; Zeng, W.; Gao, X.; Shen, Y.; Yu, K. Deep learning-based management for wastewater treatment plants under blockchain environment. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Chongqing, China, 9–11 August 2020. [Google Scholar] [CrossRef]
- Hakak, S.; Khan, W.Z.; Gilkar, G.A.; Haider, N.; Imran, M.; Alkatheiri, M.S. Industrial wastewater management using blockchain technology: Architecture, requirements, and future directions. IEEE Internet Things Mag. 2020, 3, 38–43. [Google Scholar] [CrossRef]
- Quist-Aphetsi, K.; Blankson, H. A hybrid data logging system using cryptographic hash blocks based on SHA-256 and MD5 for water treatment plant and distribution line. In Proceedings of the 2019 International Conference on Cyber Security and Internet of Things (Icsiot), Accra, Ghana, 29–31 May 2019. [Google Scholar] [CrossRef]
- Kaur, E.; Oza, A. Blockchain-based multi-organization taxonomy for smart cities. SN Appl. Sci. 2020, 2, 440. [Google Scholar] [CrossRef]
- Iyer, S.; Thakur, S.; Dixit, M.; Katkam, R.; Agrawal, A.; Kazi, F. Blockchain and anomaly detection based monitoring system for enforcing wastewater reuse. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Mukhtar, H.; Huang, K.-T.; Petway, J.R.; Lin, C.-M.; Chou, C.-F.; Liao, S.-W. Real-Time identification of irrigation water pollution sources and pathways with a wireless sensor network and blockchain framework. Sensors 2020, 20, 3634. [Google Scholar] [CrossRef]
- Berman, I.; Zereik, E.; Kapitonov, A.; Bonsignorio, F.; Khassanov, A.; Oripova, A.; Lonshakov, S.; Bulatov, V. Trustable environmental monitoring by means of sensors networks on swarming autonomous marine vessels and distributed ledger technology. Front. Robot. AI 2020, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Niya, S.R.; Jha, S.S.; Bocek, T.; Stiller, B. Design and implementation of an automated and decentralized pollution monitoring system with blockchains, smart contracts, and LoRaWAN. In Proceedings of the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018. [Google Scholar] [CrossRef]
- Crawford, J.; Folsom, A.; Vo, V.; Tante, A.D.; Yu, J.P.; Lei, C. California oilfield underground aquifer injection monitoring by blockchain technology. In Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, 10–12 May 2021. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Hougaard, J.L. River Pollution Abatement: Decentralized Solutions and Smart Contracts; IFRO Working Paper, No. 2021/07; University of Copenhagen, Department of Food and Resource Economics (IFRO): Copenhagen, Denmark, 2021; Available online: https://www.econstor.eu/bitstream/10419/244335/1/ifro-wp2021-07update.pdf (accessed on 10 March 2024).
- Alharbi, N.; Althagafi, A.; Alshomrani, O.; Almotiry, A.; Alhazmi, S. A blockchain based secure iot solution for water quality management. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July 2021. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, J.; Pan, J.; Chen, J. How iot and blockchain protect direct-drinking water in schools. IEEE Internet Things Mag. 2019, 2, 2–4. [Google Scholar] [CrossRef]
- Dong, N.; Fu, J. Development path of smart agriculture based on blockchain. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Trans. Ind. Inform. 2020, 17, 4322–4334. [Google Scholar] [CrossRef]
- Kumar, M.S.; Maheshwari, V.; Prabhu, J.; Prasanna, M.; Jothikumar, R. Applying blockchain in agriculture: A study on blockchain technology, benefits, and challenges. In Deep Learning and Edge Computing Solutions for High Performance Computing; Springer International Publishing: Cham, Switzerland, 2021; pp. 167–181. [Google Scholar] [CrossRef]
- Liu, W.; Shao, X.-F.; Wu, C.-H.; Qiao, P. A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. J. Clean. Prod. 2021, 298, 126763. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and privacy for green iot-based agriculture: Review, blockchain solutions, and challenges. IEEE Access 2020, 8, 32031–32053. [Google Scholar] [CrossRef]
- Dragulinescu, A.-M.; Balaceanu, C.; Osiac, F.E.; Roscaneanu, R.; Chedea, V.S.; Suciu, G.; Paun, M.C.; Bucuci, S. IoT-based smart water management systems. In Proceedings of the 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, Romania, 27–30 October 2021. [Google Scholar] [CrossRef]
- Dragulinescu, A.-M.; Constantin, F.; Orza, O.; Bosoc, S.; Streche, R.; Negoita, A.; Osiac, F.; Balaceanu, C.; Suciu, G. Smart watering system security technologies using blockchain. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021. [Google Scholar] [CrossRef]
- Chang, Y.; Xu, J.; Ghafoor, K.Z. An IOT and blockchain approach for the smart water management system in agriculture. Scalable Comput. Pract. Exp. 2021, 22, 105–116. [Google Scholar] [CrossRef]
- Krishna, K.M.; Borole, Y.D.; Rout, S.; Negi, P.; Deivakani, M.; Dilip, R. Inclusion of cloud, blockchain and iot based technologies in agriculture sector. In Proceedings of the 2021 9th International Conference on Cyber and IT Service Management (CITSM), Bengkulu, Indonesia, 22–23 September 2021. [Google Scholar] [CrossRef]
- Sakthi, U.; DafniRose, J. Blockchain-Enabled smart agricultural knowledge discovery system using edge computing. Procedia Comput. Sci. 2022, 202, 73–82. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Petway, J.; Anthony, J.; Mukhtar, H.; Liao, S.-W.; Chou, C.-F.; Ho, Y.-F. Blockchain: The evolutionary next step for ICT e-agriculture. Environments 2017, 4, 50. [Google Scholar] [CrossRef]
- RajaRajeswari, T.S.; Chinnasamy, P.; Pushparani, K.; Thulasichitra, N.; Rani, N.S.; Sivaprakasam, T. IoT based smart gardening for smart cities using blockchain technology. In Proceedings of the 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 25–27 January 2022. [Google Scholar] [CrossRef]
- Munir, M.S.; Bajwa, I.S.; Cheema, S.M. An intelligent and secure smart watering system using fuzzy logic and blockchain. Comput. Electr. Eng. 2019, 77, 109–119. [Google Scholar] [CrossRef]
- Ting, L.; Khan, M.; Sharma, A.; Ansari, M.D. A secure framework for IoT-based smart climate agriculture system: Toward blockchain and edge computing. J. Intell. Syst. 2022, 31, 221–236. [Google Scholar] [CrossRef]
- Zeng, H.; Dhiman, G.; Sharma, A.; Sharma, A.; Tselykh, A. An IoT and Blockchain -based approach for the smart water management system in agriculture. Expert Syst. 2023, 40, e12892. [Google Scholar] [CrossRef]
- Giaffreda, R.; Antonelli, F.; Spada, P. Promoting sustainable agricultural practices through incentives. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (Metroagrifor), Portici, Italy, 24–26 October 2019. [Google Scholar] [CrossRef]
- Bordel, B.; Martin, D.; Alcarria, R.; Robles, T. A blockchain-based water control system for the automatic management of irrigation communities. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019. [Google Scholar] [CrossRef]
- Pincheira, M.; Vecchio, M.; Giaffreda, R.; Kanhere, S.S. Cost-effective IoT devices as trustworthy data sources for a blockchain-based water management system in precision agriculture. Comput. Electron. Agric. 2021, 180, 105889. [Google Scholar] [CrossRef]
- Enescu, F.M.; Bizon, N.; Onu, A.; Răboacă, M.S.; Thounthong, P.; Mazare, A.G.; Șerban, G. Implementing blockchain technology in irrigation systems that integrate photovoltaic energy generation systems. Sustainability 2020, 12, 1540. [Google Scholar] [CrossRef]
- Alnahari, M.S.; Ariaratnam, S.T. The application of blockchain technology to smart city infrastructure. Smart Cities 2022, 5, 979–993. [Google Scholar] [CrossRef]
- Lukić, I.; Miličević, K.; Köhler, M.; Vinko, D. Possible blockchain solutions according to a smart city digitalization strategy. Appl. Sci. 2022, 12, 5552. [Google Scholar] [CrossRef]
- Makani, S.; Pittala, R.; Alsayed, E.; Aloqaily, M.; Jararweh, Y. A survey of blockchain applications in sustainable and smart cities. Clust. Comput. 2022, 25, 3915–3936. [Google Scholar] [CrossRef]
- Kim, S.; Zhang, A.; Liao, R.; Zheng, W.; Hu, Z.; Sun, Z. Sampling blockchain-enabled smart city applications among South Korea, the United States and China. J. Smart Cities Soc. 2022, 1, 53–70. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, V.; Sharma, B.; Chatterjee, J.M.; Shrestha, R. (Eds.) Smart City Infrastructure: The Blockchain Perspective; Wiley: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Mahmoud, H.H.M.; Wu, W.; Wang, Y. Secure data aggregation mechanism for water distribution system using blockchain. In Proceedings of the 2019 25th International Conference on Automation and Computing (ICAC), Lancaster, UK, 5–7 September 2019. [Google Scholar] [CrossRef]
- Mahmoud, H.H.; Wu, W.; Wang, Y. WDSchain: A toolbox for enhancing the security using blockchain technology in water distribution system. Water 2021, 13, 1944. [Google Scholar] [CrossRef]
- Lalle, Y.; Fourati, L.C.; Fourati, M.; Barraca, J.P. A privacy-protection scheme for smart water grid based on blockchain and machine learning. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020. [Google Scholar] [CrossRef]
- Zecchini, M.; Bracciali, A.; Chatzigiannakis, I.; Vitaletti, A. On refining design patterns for smart contracts. In Euro-Par 2019: Parallel Processing Workshops; Springer International Publishing: Cham, Switzerland, 2020; pp. 228–239. [Google Scholar] [CrossRef]
- Sundaresan, S.; Suresh Kumar, K.; Ananth Kumar, T.; Ashok, V.; Golden Julie, E. Blockchain architecture for intelligent water management system in smart cities. In Blockchain for Smart Cities; Elsevier: Amsterdam, The Netherlands, 2021; pp. 57–80. [Google Scholar] [CrossRef]
- Thakur, T.; Mehra, A.; Hassija, V.; Chamola, V.; Srinivas, R.; Gupta, K.K.; Singh, A.P. Smart water conservation through a machine learning and blockchain-enabled decentralized edge computing network. Appl. Soft Comput. 2021, 106, 107274. [Google Scholar] [CrossRef]
- Arsene, D.; Pahontu, B.; Predescu, A.; Mocanu, M.; Lupu, C. A Hyperledger integration for audit-enhanced decision support in a smart water distribution system. In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September 2020. [Google Scholar] [CrossRef]
- Pahontu, B.; Arsene, D.; Predescu, A.; Mocanu, M. Application and challenges of Blockchain technology for real-time operation in a water distribution system. In Proceedings of the 2020 24th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 8–10 October 2020. [Google Scholar] [CrossRef]
- Rottondi, C.; Verticale, G. A privacy-friendly gaming framework in smart electricity and water grids. IEEE Access 2017, 5, 14221–14233. [Google Scholar] [CrossRef]
- Predescu, A.; Arsene, D.; Pahonțu, B.; Mocanu, M.; Chiru, C. A serious gaming approach for crowdsensing in urban water infrastructure with blockchain support. Appl. Sci. 2021, 11, 1449. [Google Scholar] [CrossRef]
- Mora, H.; Mendoza-Tello, J.C.; Varela-Guzmán, E.G.; Szymanski, J. Blockchain technologies to address smart city and society challenges. Comput. Hum. Behav. 2021, 122, 106854. [Google Scholar] [CrossRef]
- Le Sève, M.D.; Mason, N.; Nassiry, D. Delivering Blockchain’s Potential for Environmental Sustainability; ODI: London, UK, 2018; Available online: https://cdn.odi.org/media/documents/12439.pdf (accessed on 10 March 2024).
- Parmentola, A.; Petrillo, A.; Tutore, I.; De Felice, F. Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the perspective of Sustainable Development Goals (SDGs). Bus. Strategy Environ. 2021, 31, 194–217. [Google Scholar] [CrossRef]
- Mattila, V.; Dwivedi, P.; Gauri, P.; Ahbab, M. Blockchain for environmentally sustainable economies: Case study on 5irechain. Int. J. Soc. Sci. Manag. Rev. 2022, 5, 50–62. [Google Scholar] [CrossRef]
- Ofwat. Unlocking the Value in Customer Data: A Report for Water Companies in England and Wales. 2017. Available online: https://www.ofwat.gov.uk/wp-content/uploads/2017/06/Unlocking-the-value-in-customer-data-5.pdf (accessed on 10 March 2024).
- Bankex. First Blockchain-Based Public Access Clean Water System in Kenya. 13 June 2018. Available online: https://blog.bankex.org/first-blockchain-based-public-access-clean-water-system-in-kenya-454637af1d6d (accessed on 22 November 2022).
- Fujitsu. Fujitsu’s Blockchain Solution Applied to New Water Trading Platform to Tackle Global Water Shortages. Fujitsu Global. 2021. Available online: https://www.fujitsu.com/global/about/resources/news/press-releases/2021/1118-01.html (accessed on 22 November 2022).
- Russell, O. Blockchain And Water: Everything You Need To Know.|HackerNoon. HackerNoon-Read, Write and Learn about Any Technology, 31 October 2018. Available online: https://hackernoon.com/blockchain-and-water-everything-you-need-to-know-b7e753108715 (accessed on 22 November 2022).
- Stinson, C. How Blockchain, AI and Other Emerging Technologies Could End Water Insecurity|Greenbiz. GreenBiz, 2 April 2018. Available online: https://www.greenbiz.com/article/how-blockchain-ai-and-other-emerging-technologies-could-end-water-insecurity (accessed on 22 November 2022).
- Khatri, Y. Colorado Lawmakers Eye Blockchain Tech for Water Rights Management. CoinDesk: Bitcoin, Ethereum, Crypto News and Price Data, 7 March 2019. Available online: https://www.coindesk.com/markets/2019/03/07/olorado-lawmakers-eye-blockchain-tech-for-water-rights-management/ (accessed on 22 November 2022).
- Kaushik, A.K. The Promise of Public Interest Technology: In India and the United States. New America. 2019. Available online: https://www.newamerica.org/fellows/reports/anthology-working-papers-new-americas-us-india-fellows/the-development-of-smart-water-markets-using-blockchain-technology-aditya-k-kaushik/ (accessed on 22 November 2022).
- Arup. Blockchain and the Built Environment. February 2019. Available online: https://www.arup.com/-/media/arup/files/publications/b/blockchain-and-the-built-environment.pdf (accessed on 10 March 2024).
- CryptoWater. CryptoWater-Water on Blockchain. CryptoWater.si–Water on Blockchain. 2022. Available online: https://www.cryptowater.si/ (accessed on 22 November 2022).
- Vottun. Vottun-Sustainability. Vottun-The Wordpress of Web3. 2022. Available online: https://vottun.com/solutions/vottunsustainability/ (accessed on 22 November 2022).
- OriginClear. OriginClear. OriginClear-The Clean Water Innovation Hub™. 2022. Available online: https://www.originclear.com (accessed on 22 November 2022).
- Hypervine. Hypervine. 2022. Available online: https://hypervine.io (accessed on 22 November 2022).
- Hydrochain. A Blockchain and IOT Based System to Decentralize the Conventional Water Consumption Analysis and Billing Process. 2020. Available online: https://github.com/UltimateRoman/Hydro-chain (accessed on 10 March 2024).
- Weisbord, E. Demystifying Blockchain for Water Professionals: Part 1. International Water Association. 2018. Available online: https://iwa-network.org/demystifying-blockchain-for-water-professionals-part-1/ (accessed on 22 November 2022).
- Galarza, R. Blockchain: Verifying, Validating and Standardizing Water Purity. 22 April 2022. Available online: https://www.watertechonline.com/water-reuse/article/14274926/blockchain-verifying-validating-and-standardizing-water-purity (accessed on 22 November 2022).
- Gsi. Gsi: The Blockchain Solution to the Problem of Water Pollution. 2022. Available online: https://www.gsi.finance/gsi-the-blockchain-solution-to-the-problem-of-water-pollution/ (accessed on 22 November 2022).
- Statecraft Tech. Applying Blockchain Technology to Control Flooding. Medium, 4 June 2019. Available online: https://medium.com/ktrade/applying-blockchain-technology-to-control-flooding-e5fe12e2f8cc (accessed on 22 November 2022).
- Barbeler, D. Blockchain Technology Provides a New Way of Valuing Water. Australian Water Association Homepage|AWA, 23 April 2019. Available online: https://www.awa.asn.au/resources/latest-news/technology/innovation/blockchain-technology-provides-a-new-way-of-valuing-water (accessed on 22 November 2022).
- Genesis Research & Technology Group. Genesis Research & Technology Group Whitepaper. 2022. Available online: http://watertoken.io/assets/images/white-paper.pdf?pdf=Whitepaper (accessed on 10 March 2024).
- Regen Network. Regen Network Whitepaper15 February 2021. Available online: https://holbrook.no/share/papers/regen_whitepaper.pdf (accessed on 10 March 2024).
- Giampietro, P.G. Tengo-Blockchain Technology Platform with a Direct Positive Impact on the Environment. 17 August 2020. Available online: https://tengocoin.net/docs/Tengo-Research-Foundation-Whitepaper-Draft05.pdf (accessed on 10 March 2024).
- Atreides. A Blockchain-Based Approach to Water Resource Management. 2022. Available online: https://atreideswater.com (accessed on 10 March 2024).
- H2o Securities. H2o-the Water Network Utility Token. 2022. Available online: https://h2o-securities.com/assets/docs/H2OsecuritiesWhitePaper.pdf (accessed on 10 March 2024).
- Treelion. TREELION Whitepaper. 2022. Available online: https://www.allcryptowhitepapers.com/treelion-whitepaper/ (accessed on 10 March 2024).
- AquaBit. AquaBit Whitepaper. 2022. Available online: http://aquabit.io/pdf/aquabit_whitepaper_v1.22.pdf (accessed on 10 March 2024).
- HydroBlock. HydroBlock: Water Management Supply Chain DApp. 2018. Available online: https://github.com/arnabuchiha/HydroBlock (accessed on 10 March 2024).
- Water Wizard. WRC Hackathon Organised by World Bank Group: Water. 2020. Available online: https://github.com/Sharma-Hrishabh/WRC-Hackathon-App/blob/master/README.md (accessed on 10 March 2024).
- Block-Squid. Block-Squid-Managing Waste Water with Blockchain. 2020. Available online: https://github.com/sedhha/blocksquid/blob/master/README.md (accessed on 10 March 2024).
- Water Consortium. Experimental Consortium Framework Which Explores the Possibility of Self-Organising Governments and Mutable Contracts to Automate Intergovernmental Communication. 2020. Available online: https://github.com/daganherceg/waterconsortium (accessed on 10 March 2024).
- Decentralized-Rain-Water-Harvesting. Decentralized-Rain-Water-Harvesting Hackathon Project. 2020. Available online: https://github.com/sidrakshe28/Decentralized-Rain-Water-Harvesting (accessed on 10 March 2024).
- Kojo. Kojo Blockchain Project. 2022. Available online: https://github.com/wowtvds/kojo-blockchain-project (accessed on 10 March 2024).
- TrashTag. TrashTag-Blockchain Job to Clean Up Environment and Protect Water Supplies. 2021. Available online: https://github.com/adrian-blockchain/Trash-Tag-decentralized-application (accessed on 10 March 2024).
- Water Reuse Booster. Water Reuse Booster-An End-to-End Solution (Decentralized Funding for Decentralized Water). 2020. Available online: https://github.com/josiaharkson/water-reuse-booster (accessed on 10 March 2024).
- HydroChain. Validating Hydropower data with Blockchain Technology. 2020. Available online: https://www.hydrochain.io/ (accessed on 10 March 2024).
- Baikalikal. Baikalikal-Blockchain Technology for the Extraction and Distribution of Baikal Drinking Water. 2017. Available online: https://github.com/baikalikaICO/baikalika (accessed on 10 March 2024).
- Bluechain. Bluechain for Bytom-A Smart-Contract Based System for Industrial Water & Waste Resource Management. Powered by the BYTOM Blockchain. 2019. Available online: https://github.com/d-sfounis/Bluechain (accessed on 10 March 2024).
- Pipeline-System. Pipline-Sytem-Water Pipeline Distribution Where the Data Is Stored on a Decentralized Blockchain. 2021. Available online: https://github.com/Fredpwol/Pipline-Sytem (accessed on 10 March 2024).
- WaterCoin-WRC Trading. Devpost. 2019. Available online: https://devpost.com/software/watercoin-hfa401 (accessed on 10 March 2024).
- How to Save. Devpost. 2021. Available online: https://devpost.com/software/how-to-save-water-online (accessed on 10 March 2024).
- Water Guardians. Devpost. 2018. Available online: https://devpost.com/software/water-guardians (accessed on 10 March 2024).
- EnvironmentConnect. Devpost. 2022. Available online: https://devpost.com/software/environmentconnect-tjvfdo (accessed on 10 March 2024).
- My Water Chain-Waste Water Management System. Devpost. 2020. Available online: https://devpost.com/software/my-water-chain-waste-water-management-system (accessed on 10 March 2024).
- Water Monitor Plus. Devpost. 2022. Available online: https://devpost.com/software/water-monitor-plus (accessed on 10 March 2024).
- Baarish. Devpost. 2018. Available online: https://devpost.com/software/baarish (accessed on 10 March 2024).
- EnvChain: An Initiative to Avoid Environmental Crisis. Devpost. 2022. Available online: https://devpost.com/software/envchain-an-initiative-to-avoid-environmental-crisis (accessed on 10 March 2024).
- WyoFlow. Devpost. 2018. Available online: https://devpost.com/software/wyoflow (accessed on 10 March 2024).
- Water Monitor. Devpost. 2022. Available online: https://devpost.com/software/polymonitor (accessed on 10 March 2024).
- Block-Garden. Devpost. 2022. Available online: https://devpost.com/software/block-garden (accessed on 10 March 2024).
- WeatherChainXM. Devpost. 2021. Available online: https://devpost.com/software/weatherchainxm (accessed on 10 March 2024).
- Aqua Coin (AQUA). Devpost. 2019. Available online: https://devpost.com/software/aquacoin (accessed on 10 March 2024).
- Flood Chain. Devpost. 2019. Available online: https://devpost.com/software/flood-chain-mg7rdi (accessed on 10 March 2024).
- H2O Chain. Devpost. 2019. Available online: https://devpost.com/software/h2o-chain (accessed on 10 March 2024).
- MaximizeWasteWaterRecovery. Devpost. 2019. Available online: https://devpost.com/software/maximizewastewaterrecovery (accessed on 10 March 2024).
- WaterCoin-Environmental Sensor Data Sharing. Devpost. 2018. Available online: https://devpost.com/software/watercoin (accessed on 10 March 2024).
- Climeter. Devpost. 2017. Available online: https://devpost.com/software/climater (accessed on 10 March 2024).
- Nelaturu, K.; Beillahi, S.M.; Long, F.; Veneris, A. Smart contracts refinement for gas optimization. In Proceedings of the 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Paris, France, 27–30 September 2021. [Google Scholar] [CrossRef]
- Lo, S.K.; Xu, X.; Staples, M.; Yao, L. Reliability analysis for blockchain oracles. Comput. Electr. Eng. 2020, 83, 106582. [Google Scholar] [CrossRef]
- Shinde, R.; Patil, S.; Kotecha, K.; Ruikar, K. Blockchain for securing AI applications and open innovations. J. Open Innov. Technol. Mark. Complex. 2021, 7, 189. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Gerlak, A.K. Beyond the basin: Water security in transboundary environments. Water Secur. 2022, 17, 100124. [Google Scholar] [CrossRef]
- Delpasand, M.; Bozorg-Haddad, O.; Goharian, E.; Loáiciga, H.A. Virtual water trade: Economic development and independence through optimal allocation. Agric. Water Manag. 2023, 275, 108022. [Google Scholar] [CrossRef]
- Flick, D.C. A Critical Professional Ethical Analysis of Non-Fungible Tokens (NFTs). J. Responsible Technol. 2022, 12, 100054. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Kisi, O. Applications of hybrid wavelet–artificial intelligence models in hydrology: A review. J. Hydrol. 2014, 514, 358–377. [Google Scholar] [CrossRef]
- Volpi, E.; Kim, J.S.; Jain, S.; Shrestha, S. Artificial intelligence in hydrology. Hydrol. Res. 2023, 54, iii–v. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, W.; Li, N.; Li, H. Typical advances of artificial intelligence in civil engineering. Adv. Struct. Eng. 2022, 25, 3405–3424. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H.; Su, L. Blockchain-driven incentive mechanism for agricultural water-saving: A tripartite game model. J. Clean. Prod. 2024, 434, 140197. [Google Scholar] [CrossRef]
- Huseynov, F.; Mitchell, J. Blockchain for environmental peacebuilding: Application in water management. Digit. Policy Regul. Gov. 2024, 26, 55–71. [Google Scholar] [CrossRef]
- Bolton, E.R.; Berglund, E.Z. Agent-based modelling to assess decentralized water systems: Micro-trading rainwater for aquifer recharge. J. Hydrol. 2023, 618, 129151. [Google Scholar] [CrossRef]
- Naqash, M.T.; Syed, T.A.; Alqahtani, S.S.; Siddiqui, M.S.; Alzahrani, A.; Nauman, M. A blockchain based framework for efficient water management and leakage detection in urban areas. Urban Sci. 2023, 7, 99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satilmisoglu, T.K.; Sermet, Y.; Kurt, M.; Demir, I. Blockchain Opportunities for Water Resources Management: A Comprehensive Review. Sustainability 2024, 16, 2403. https://doi.org/10.3390/su16062403
Satilmisoglu TK, Sermet Y, Kurt M, Demir I. Blockchain Opportunities for Water Resources Management: A Comprehensive Review. Sustainability. 2024; 16(6):2403. https://doi.org/10.3390/su16062403
Chicago/Turabian StyleSatilmisoglu, Talat Kemal, Yusuf Sermet, Musa Kurt, and Ibrahim Demir. 2024. "Blockchain Opportunities for Water Resources Management: A Comprehensive Review" Sustainability 16, no. 6: 2403. https://doi.org/10.3390/su16062403