Maximum Entropy Analysis of Bird Diversity and Environmental Variables in Nanjing Megapolis, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environment Variables
2.2.1. Data Sources
2.2.2. Environment Variable Selection
2.3. Model Building
2.4. Model Evaluation
3. Results
3.1. Bird Species Composition in the Nanjing Urban Area
3.2. Spatial Distribution of Bird Diversity
3.3. The Importance of Environmental Variables
3.3.1. Permutation Importance of Environmental Variables
3.3.2. Contribution Rate of Environmental Variables
3.4. Effects of Environmental Variables
4. Discussion
5. Conclusions
- (1)
- Based on the distribution site data of 17 environmental variables and 79 bird species, the MaxEnt model was used to simulate the potential distribution of various birds in the Nanjing urban area. The validation result (AUC = 0.86) was very good and can be used to simulate the latent distribution of bird diversity in the Nanjing urban area.
- (2)
- The areas with the highest bird diversity are mainly concentrated in the mountains and hills and near the Nanjing urban area (such as Zhongshan and its northern part, Laoshan and its surrounding areas, Fangshan and its northeastern part, etc.), and resident birds are more distributed in high-diversity areas than migratory birds.
- (3)
- Based on the permutation importance and contribution rate, the five most important environmental variables for bird diversity distribution were ranked as MTWM > DEM > PWM > DF > FVC. MTWM, PWM, and DF were negatively correlated with bird diversity, while FVC and DEM were positively correlated with bird diversity. The disturbance of environmental variables had a greater impact on the distribution of resident birds than that of migratory birds.
- (4)
- The ranking of the contribution of the three major types of environmental variables is habitat environmental variables > meteorological environmental variables > disturbance environmental variables. The five most important environmental variables and three major environmental variables show that the habitat environment is very important to the diversity of urban birds. During the development of cities, sufficient habitats for birds should be retained, and disturbances from human activities should be reduced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity Conservation: Challenges Beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef]
- Zivanovic, A.J.; Luck, G.W. Social and environmental factors drive variation in plant and bird communities across urban greenspace in Sydney, Australia. J. Environ. Manag. 2016, 169, 210–222. [Google Scholar] [CrossRef]
- Hahs, A.K.; Fournier, B.; Aronson, M.F.J.; Nilon, C.H.; Herrera-Montes, A.; Salisbury, A.B.; Threlfall, C.G.; Rega-Brodsky, C.C.; Lepczyk, C.A.; La Sorte, F.A.; et al. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat. Commun. 2023, 14, 4751. [Google Scholar] [CrossRef]
- Silva, J.L.S.; de Oliveira, M.T.P.; Cruz-Neto, O.; Tabarelli, M.; Lopes, A.V. Plant–pollinator interactions in urban ecosystems worldwide: A comprehensive review including research funding and policy actions. Ambio 2021, 50, 884–900. [Google Scholar] [CrossRef]
- Gregory, R.; Noble, D.; Field, R.; Marchant, J.; Raven, M.J.; Gibbons, D. Using birds as indicators of biodiversity. Ornis Hung. 2003, 12, 11–24. [Google Scholar]
- Panwar, H.; Dhote, M. Toolkit for Conservation of Urban Biodiversity: A Web or Mobile App-Based Tool for Conserving Biodiversity in Urban Areas. In Handbook of Research on Sustainable Development Goals, Climate Change, and Digitalization; Castanho, R.A., Ed.; IGI Global: Hershey, PA, USA, 2022; pp. 506–519. [Google Scholar]
- Jawon, L. Lesson for New Urbanism from the Traditional Space in East Asia. Int. J. Adv. Cult. Technol. 2018, 6, 143–151. [Google Scholar] [CrossRef]
- Chace, J.F.; Walsh, J.J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 2006, 74, 46–69. [Google Scholar] [CrossRef]
- Gaston, K.J.; Blackburn, T.M. Mapping biodiversity using surrogates for species richness: Macro-scales and New World birds. Proc. R. Soc. London. Ser. B Biol. Sci. 1995, 262, 335–341. [Google Scholar] [CrossRef]
- Khera, N.; Mehta, V.; Sabata, B.C. Interrelationship of birds and habitat features in urban greenspaces in Delhi, India. Urban For. Urban Green. 2009, 8, 187–196. [Google Scholar] [CrossRef]
- Tiwary, N.K.; Urfi, A.J. Spatial variations of bird occupancy in Delhi: The significance of woodland habitat patches in urban centres. Urban For. Urban Green. 2016, 20, 338–347. [Google Scholar] [CrossRef]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Ma, L.; Conradie, S.R.; Crawford, C.L.; Gardner, A.S.; Kearney, M.R.; Maclean, I.M.D.; McKechnie, A.E.; Mi, C.R.; Senior, R.A.; Wilcove, D.S. Global patterns of climate change impacts on desert bird communities. Nat. Commun. 2023, 14, 211. [Google Scholar] [CrossRef]
- Martinez-Ruiz, M.; Dykstra, C.R.; Booms, T.L.; Henderson, M.T. Conservation Letter: Effects of Global Climate Change on Raptors. J. Raptor Res. 2023, 57, 92–105. [Google Scholar] [CrossRef]
- Lemoine, N.; Schaefer, H.C.; Böhning-Gaese, K. Species Richness of Migratory Birds Is Influenced by Global Climate Change. Glob. Ecol. Biogeogr. 2007, 16, 55–64. [Google Scholar] [CrossRef]
- Williams, S.E.; Middleton, J. Climatic Seasonality, Resource Bottlenecks, and Abundance of Rainforest Birds: Implications for Global Climate Change. Divers. Distrib. 2008, 14, 69–77. [Google Scholar] [CrossRef]
- Wilsey, C.; Taylor, L.; Bateman, B.; Jensen, C.; Michel, N.; Panjabi, A.; Langham, G. Climate Policy Action Needed to Reduce Vulnerability of Conservation-Reliant Grassland Birds in North America. Conserv. Sci. Pract. 2019, 1, e21. [Google Scholar] [CrossRef]
- Grande, T.; Aguiar, L.; Machado, R. Heating a Biodiversity Hotspot: Connectivity Is More Important Than Remaining Habitat. Landsc. Ecol. 2020, 35, 639–657. [Google Scholar] [CrossRef]
- Quesnelle, P.E.; Fahrig, L.; Lindsay, K.E. Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biol. Conserv. 2013, 160, 200–208. [Google Scholar] [CrossRef]
- Zorzal, R.R.; Diniz, P.; Oliveira, R.d.; Duca, C. Drivers of avian diversity in urban greenspaces in the Atlantic Forest. Urban For. Urban Green. 2021, 59, 126908. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, L. The spatial-temporal patterns of bird diversity and its determinants in the small wetlands in Hefei City. Biodivers. Sci. 2022, 30, 21445. [Google Scholar] [CrossRef]
- Tzortzakaki, O.; Kati, V.; Kassara, C.; Tietze, D.T.; Giokas, S. Seasonal patterns of urban bird diversity in a Mediterranean coastal city: The positive role of open green spaces. Urban Ecosyst. 2018, 21, 27–39. [Google Scholar] [CrossRef]
- Gopal, B. Does inland aquatic biodiversity have a future in Asian developing countries? Hydrobiologia 2005, 542, 69–75. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Yang, H.; Liu, Z. Urban green infrastructure affects bird biodiversity in the coastal megalopolis region of Shenzhen city. Appl. Geogr. 2023, 151, 102860. [Google Scholar] [CrossRef]
- Hou, P.; Bai, J.; Chen, Y.; Hou, J.; Zhao, J.; Ma, Y.; Zhai, J. Analysis on the hotspot characteristics of bird diversity distribution along the continental coastline of China. Front. Mar. Sci. 2022, 9, 1007442. [Google Scholar] [CrossRef]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The influence of urban park characteristics on bird diversity in Nanjing, China. Avian Res. 2020, 11, 45. [Google Scholar] [CrossRef]
- Zhao, Z.; Borzée, A.; Li, J.; Chen, S.; Shi, H.; Zhang, Y. Urban Bird Community Assembly Mechanisms and Driving Factors in University Campuses in Nanjing, China. Animals 2023, 13, 673. [Google Scholar] [CrossRef] [PubMed]
- Busby, J. BIOCLIM—A bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; An, Q.; Sun, Z.; Wang, H. Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China. Sci. Rep. 2022, 12, 15614. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guan, L.; Zhao, H.; Huang, Y.; Mou, Q.; Liu, K.; Chen, T.; Wang, X.; Zhang, Y.; Wei, B.; et al. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol. Inform. 2021, 63, 101324. [Google Scholar] [CrossRef]
- Bai, X.; Wang, W.; Jiang, W.; Shi, H.; Chen, K.; Chen, M. Simulation of Potential Suitable Distribution of Endangered Waterfowl and Its Gap Analysis of National Nature Reserves in Beijing-Tianjin-Hebei Region under Climate Change Scenarios. Res. Environ. Sci. 2019, 32, 1001. [Google Scholar] [CrossRef]
- Kane, M.E.; Brewer, D.E.; Gehring, T.M.; Shirkey, B.T.; Pangle, K.L.; Uzarski, D.G.; Picciuto, M.A.; Simpson, J.W. King Rail (Rallus elegans) presence in the Midwestern United States is predicted by local-scale factors and avian community. Ecol. Evol. 2023, 13, e10732. [Google Scholar] [CrossRef]
- Moreno, R.; Zamora, R.; Molina, J.R.; Vasquez, A.; Herrera, M.Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecol. Inform. 2011, 6, 364–370. [Google Scholar] [CrossRef]
- Venne, S.; Currie, D.J. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers. Distrib. 2021, 27, 873–886. [Google Scholar] [CrossRef]
- Virkkala, R.; Leikola, N.; Kujala, H.; Kivinen, S.; Hurskainen, P.; Kuusela, S.; Valkama, J.; Heikkinen, R.K. Developing fine-grained nationwide predictions of valuable forests using biodiversity indicator bird species. Ecol. Appl. 2022, 32, e2505. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Li, H.; Wu, J.; Liu, Y. Spatial distribution pattern in mammal and bird richness and their relationship with ecosystem services in Sanjiangyuan National Park, China. J. Mt. Sci. 2021, 18, 1662–1677. [Google Scholar] [CrossRef]
- Qin, X.; Wei, Y.; Yu, Z.; Xiong, N. Urbanization, Suburbanization, and Population Redistribution in Urban China: A Case Study of Nanjing. J. Urban Plan. Dev. 2022, 148, 05022034. [Google Scholar] [CrossRef]
- Ding, Z.; Cao, J.; Wang, Y. The Construction and Optimization of Habitat Networks for Urban–Natural Symbiosis: A Case Study of the Main Urban Area of Nanjing. Forests 2023, 14, 133. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2021); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2021); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Na, X.; Zang, S.; Zhang, Y.; Li, W. Assessing Breeding Habitat Suitability for the Endangered red-Crowned Crane (Grus japonensis) Based on Multi-Source Remote Sensing Data. Wetlands 2015, 35, 955–967. [Google Scholar] [CrossRef]
- Zhao, N.; Xia, S.; Yu, X.; Duan, H.; Li, J.; Chen, Y. Habitat suitability assessment of shorebirds in Bohai Bay coast using MaxEnt Model. Chin. J. Ecol. 2020, 39, 194–205. [Google Scholar]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K.; Henrici, O.M.F.E. VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1896, 187, 253–318. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, X.; Yang, Z.; Zhang, S. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander Jr, J.A. A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R. Making better MAXENT models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2013, 41, 629–643. [Google Scholar] [CrossRef]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Braunisch, V.; Suchant, R. Predicting species distributions based on incomplete survey data: The trade-off between precision and scale. Ecography 2010, 33, 826–840. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Hao, W.; Wei, Y.; Yong, D.; Jianchao, L.; Huijian, H.; Sheng-Rong, Q. Analysis on the hotspot and conservation gaps of bird biodiversity in Guangdong Province based on MaxEnt model. Biodivers. Sci. 2021, 29, 1097. [Google Scholar]
- Zhang, D.; Zeng, J.; Namaiti, A. Identification of bird conservation gaps of protected areas in high-intensity development area: A case study of Tianjin, China. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2023, 34, 1621–1629. [Google Scholar] [CrossRef]
- Zheng, M.; Deng, W.; Ding, P.; Ding, C.; Dong, L.; Jia, C.; Lei, F.; Liang, W.; LU, X.; Ma, M.; et al. Checklist on the Classification and Distribution of the Birds of China, 3rd ed.; Science Press: Beijing, China, 2017. [Google Scholar]
- Fisher, R.A. Statistical Methods for Research Workers. In Breakthroughs in Statistics: Methodology and Distribution; Kotz, S., Johnson, N.L., Eds.; Springer: New York, NY, USA, 1992; pp. 66–70. [Google Scholar]
- Chen, S.; Yin, D.; Li, Y.; Sun, Y.; Li, c. Analysis of differences of rainfall between urban and rural regions in Nanjing. J. Meteorol. Environ. 2016, 32, 27–33. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Q.; Li, G.; Doronzo, D. Response of land cover types to land surface temperature derived from Landsat-5 TM in Nanjing Metropolitan Region, China. Environ. Earth Sci. 2016, 75, 1386. [Google Scholar] [CrossRef]
- Tu, L.; Qin, Z.; Li, W.; Geng, J.; Yang, L.; Zhao, S.; Zhan, W.; Wang, F. Surface urban heat island effect and its relationship with urban expansion in Nanjing, China. J. Appl. Remote Sens. 2016, 10, 026037. [Google Scholar] [CrossRef]
- Yuan, Y.; Zou, X.; Shi, F.; Gao, X.; Hu, L.; Zhang, Z. Bird Habitat Suitability Distribution in Dongting Lake Basin Under Different Climate Change Scenarios. J. Hydroecol. 2022, 43, 56–62. [Google Scholar] [CrossRef]
- Hume, R.A. Reactions of birds to heavy rain. Br. Birds 1986, 79, 326–329. [Google Scholar]
- Liu, J.; Niu, J.; Zou, Y.; Lu, S.; Wang, T. Changes in the Waterbird Community of the Ecological Restored Wetlands in Pudong Dongtan, Shanghai. Resour. Environ. Yangtze Basin 2015, 24, 219–226. [Google Scholar]
- Zhu, G.; Wang, X.; Zhang, W.; Wu, Y.; Yong, F.; Li, C.; Cui, p. Eflects of Urban Landscape Pattern on Bird Community: A Case Study of Lishui District, Nanjing. J. Ecol. Rural. Environ. 2022, 38, 327–333. [Google Scholar] [CrossRef]
- Pizo, M.A. Frugivory and habitat use by fruit-eating birds in a fragmented landscape of southeast Brazil. Ornitol. Neotrop. 2004, 15, 117–126. [Google Scholar] [CrossRef]
- Reidy, J.L.; Thompson, F.R.; Kendrick, S.W. Breeding bird response to habitat and landscape factors across a gradient of savanna, woodland, and forest in the Missouri Ozarks. For. Ecol. Manag. 2014, 313, 34–46. [Google Scholar] [CrossRef]
- Dai, S.; Feng, D.; Xu, B. Monitoring potential geographical distribution of four wild bird species in China. Environ. Earth Sci. 2016, 75, 34–46. [Google Scholar] [CrossRef]
- Farashi, A.; Shariati, M. Biodiversity hotspots and conservation gaps in Iran. J. Nat. Conserv. 2017, 39, 37–57. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Wu, Y.; Zhang, W.; Yang, X.; Lv, H.; Xia, S.; Zhao, S.; Tian, J.; Cui, P.; et al. Selection of Flagship Species and Their Use as Umbrellas in Bird Conservation: A Case Study in Lishui, Zhejiang Province, China. Animals 2023, 13, 1825. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Y.; Wu, X. Recognition and Characteristics of Bird Habitat in Wuhan Based on MaxEnt Model. J. Chin. Urban For. 2021, 19, 60–65. [Google Scholar] [CrossRef]
- Chen, X.; Lei, Y.; Zhang, X.; Jia, H. Effects of sample sizes on accuracy and stability of maximum entropy model inpredicting species distribution. Sci. Silvae Sin. 2012, 48, 53–59. [Google Scholar] [CrossRef]
Environmental Variables | Abbreviation | Source of Original Data | Included in Model |
---|---|---|---|
Meteorological environmental variables | |||
Annual mean temperature (°C) | AMT | Institute of Tibetan Plateau Research | No |
Temperature seasonality (°C) | TS | Institute of Tibetan Plateau Research | No |
Maximum temperature of the warmest month (°C) | MTWM | Institute of Tibetan Plateau Research | Yes |
Minimum temperature of the coldest month (°C) | MTCM | Institute of Tibetan Plateau Research | No |
Temperature annual range (°C) | TAR | Institute of Tibetan Plateau Research | Yes |
Annual precipitation (mm) | AP | Institute of Tibetan Plateau Research | Yes |
Precipitation of the wettest month (mm) | PWM | Institute of Tibetan Plateau Research | Yes |
Precipitation of the driest month (mm) | PDM | Institute of Tibetan Plateau Research | No |
Precipitation seasonality (mm) | PS | Institute of Tibetan Plateau Research | No |
Habitat environmental variables | |||
Distance to the nearest forest (m) | DF | GlobeLand30 2020 | Yes |
Distance to the nearest surface water (m) | DW | GlobeLand30 2020 | Yes |
Fractional Vegetation Cover index | FVC | MODIS EVI data | Yes |
Digital Elevation Model (m) | DEM | STRM DEM | Yes |
Topographic relief | TR | STRM DEM | No |
Interference environmental variables | |||
Night light index | NLI | NPP-VIIRS night light index | Yes |
Road network density (m/hm2) | RND | Baidu map road data | Yes |
Population density (/hm2) | PD | WorldPop Population Data | Yes |
Order | Number of Families | Number of Genera | Number of Species | Percentage of Total Number of Species |
---|---|---|---|---|
Accipitriformes | 1 | 5 | 9 | 11.39% |
Anseriformes | 1 | 2 | 2 | 2.53% |
Columbiformes | 2 | 2 | 2 | 2.53% |
Coraciiformes | 1 | 3 | 3 | 3.80% |
Cuculiformes | 1 | 3 | 4 | 5.06% |
Galliformes | 1 | 1 | 1 | 1.27% |
Gruiformes | 1 | 2 | 2 | 2.53% |
Passeriformes | 20 | 33 | 44 | 55.70% |
Pelecaniformes | 2 | 4 | 4 | 5.06% |
Piciformes | 1 | 3 | 4 | 5.06% |
Podicipediformes | 1 | 1 | 1 | 1.27% |
Strigiformes | 1 | 3 | 3 | 3.80% |
Environmental Variables | Correlation Coefficient (p < 0.01) |
---|---|
MTWM | −0.59 |
PWM | −0.04 |
DF | −0.30 |
FVC | 0.42 |
DEM | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.; Wang, Y.; Huang, T.; Lyu, Y.; Zhao, Y.; Liu, J. Maximum Entropy Analysis of Bird Diversity and Environmental Variables in Nanjing Megapolis, China. Sustainability 2024, 16, 2139. https://doi.org/10.3390/su16052139
Lai J, Wang Y, Huang T, Lyu Y, Zhao Y, Liu J. Maximum Entropy Analysis of Bird Diversity and Environmental Variables in Nanjing Megapolis, China. Sustainability. 2024; 16(5):2139. https://doi.org/10.3390/su16052139
Chicago/Turabian StyleLai, Jingcheng, Yong Wang, Tengjie Huang, Yanyan Lyu, Yuhui Zhao, and Jishuang Liu. 2024. "Maximum Entropy Analysis of Bird Diversity and Environmental Variables in Nanjing Megapolis, China" Sustainability 16, no. 5: 2139. https://doi.org/10.3390/su16052139
APA StyleLai, J., Wang, Y., Huang, T., Lyu, Y., Zhao, Y., & Liu, J. (2024). Maximum Entropy Analysis of Bird Diversity and Environmental Variables in Nanjing Megapolis, China. Sustainability, 16(5), 2139. https://doi.org/10.3390/su16052139