Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites
2.2. Sampling and Characterization of Soils
2.3. Statistical Procedures
2.4. Geostatistical Analysis
2.5. Principal Component Analysis
2.6. Fuzzy Clustering Algorithm
3. Results
3.1. Soil Characteristics Variation
3.2. Association between Soil Characteristics and Available Nutrients
3.3. Spatial Nature of Soil Parameters
3.4. Principal Component Analysis
3.5. Demarcating Management Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Safari, A.; Kavian, A.; Parsakhoo, A.; Saleh Jordan, I.A. Impact of different parts of skid trails on runoff and soil erosion in the Hyrcanian forest (northern Iran). Geoderma 2016, 63, 161–167. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sinha, N.K.; Tiwari, P.K.; Prakash, C.; Behera, S.K.; Lenka, N.K.; Siddiqui, S. Spatial distribution and management zones for sulfur and micronutrients in Shiwalik Himalayan region of India. Land Degrad. Dev. 2017, 28, 959–969. [Google Scholar] [CrossRef]
- Page, T.; Haygarth, P.M.; Beven, K.J.; Joynes, A.; Butler, T.; Keeler, C.; Freer, J.; Owens, P.N.; Wood, G.A. The spatial variability of soil phosphorus in relation to topographic indices and important source areas: Samples to assess the risks to water quality. J. Environ. Qual. 2005, 34, 2263–2277. [Google Scholar] [CrossRef] [PubMed]
- Ruffo, M.L.; Bollero, G.A.; Hoeft, R.G. Bullock, Spatial variability of the Illinois soil nitrogen test: Implications for soil sampling. Agron. J. 2005, 97, 1485–1492. [Google Scholar] [CrossRef]
- Reza, S.K.; Nayak, D.C.; Chattopadhyay, T.; Mukhopadhyay, S.; Singh, S.K.; Srinivasan, R. Spatial distribution of soil physical properties of alluvial soils: A geostatistical approach. Arch. Agron. Soil Sci. 2016, 62, 972–981. [Google Scholar] [CrossRef]
- Fathi, H.; Fathi, H.; Moradi, H. Spatial variability of soil characteristic for evaluation of agricultural potential in Iran. Merit Res. J. Agric. Sci. Soil Sci. 2014, 2, 24–31. [Google Scholar]
- Peralta, N.R.; Costa, J.L. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Comput. Electron. Agric. 2013, 99, 218–226. [Google Scholar] [CrossRef]
- Behera, S.K.; Mathur, R.K.; Shukla, A.K.; Suresh, K.; Prakash, C. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena 2018, 165, 251–259. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sinha, N.K.; Tiwari, P.K.; Prakash, C.; Behera, S.K.; Surendra Babu, P.; Patnaik, M.C.; Somasundaram, J.; Singh, P.; Dwivedi, B.S.; et al. Evaluation of spatial distribution and regional zone delineation for micronutrients in a semi-arid deccan plateau region of India. Land Degrad. Dev. 2018, 29, 2449–2459. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.C.; Huang, C.Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 2009, 150, 141–149. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, S.; Feng, L.; Hang Yi, L. Delineation site specific management zones using fuzzy clustering analysis in a coastal saline land. Comput. Electron. Agric. 2007, 56, 174–186. [Google Scholar]
- De Assis Silva, S.; Oliveirados Santos, R.; Marçalde Queiroz, D.; Soaresde Souza Lima, J.; FragaPajehú, L.; Car alho Medauar, C. Apparent soil electrical conductivity in the delineation of management zones for cocoa cultivation. Inf. Process. Agric. 2022, 9, 443–455. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvão, L.S.; Dalagnol, R.; Dauve, C.E.; Parraga, A.; Santi, A.L.; Della Flora, D.P.; Chen, S. Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102004. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Bakhshandeh, E.; Emadi, M.; Li, T.; Xu, M. Integration of PCA and fuzzy clustering for delineation of soil management zones and cost-efficiency analysis in a citrus plantation. Sustainability 2020, 12, 5809. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Bottega, E.L.; Bakhshandeh, E.; Owliaie, H.R.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Scholten, T.; Xu, M. Spatial variability of soil quality within management zones: Homogeneity and purity of delineated zones. Catena 2022, 209, 105835. [Google Scholar] [CrossRef]
- Reyniers, M.; Maertens, K.; Vrindts, E.; De Baerdemaeker, J. Yield variability related to landscape properties of a loamy soil in central Belgium. Soil Tillage Res. 2006, 88, 262–273. [Google Scholar] [CrossRef]
- Flowers, M.; Weisz, R.; White, J.G. Yield-based management zones and grid sampling strategies: Describing soil test and nutrient availability. Agron. J. 2005, 97, 968–982. [Google Scholar] [CrossRef]
- Hornung, A.; Khosla, R.; Reich, R.; Inman, D.; Westfall, D.G. Comparison of site-specific management zones: Soil-color-based and yield-based. Agron. J. 2006, 98, 407–415. [Google Scholar] [CrossRef]
- Jena, R.K.; Duraisami, V.P.; Sivasamy, R.; Shanmugasundaram, R.; Krishnan, R.; Padua, S. Spatial variability of soil fertility parameters in Jirang Block of Ri-Bhoi District, Meghalaya. Clay Res. 2015, 34, 35–45. [Google Scholar]
- Moharana, P.C.; Jena, R.K.; Pradhan, U.K.; Nogiya, M.; Tailor, B.L.; Singh, R.S. Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precis. Agric. 2020, 21, 426–448. [Google Scholar] [CrossRef]
- Jaynes, D.B.; Kaspar, T.C.; Colvin, T.S.; James, D.E. Cluster analysis of spatiotemporal corn yield patterns in an Iowa field. Agron. J. 2003, 95, 574–586. [Google Scholar] [CrossRef]
- Speranza, E.A.; Naime, J.D.; Vaz, C.M.; Santos, J.C.; Inamasu, R.Y.; Lopes, I.D.; Queirós, L.R.; Rabelo, L.M.; Jorge, L.A.; Chagas, S.D.; et al. Delineating Management Zones with Different Yield Potentials in Soybean–Corn and Soybean–Cotton Production Systems. AgriEngineering 2023, 5, 1481–1497. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, P. Fuzzy K-Means and Principal Component Analysis for Classifying Soil Properties for Efficient Farm Management and Maintaining Soil Health. Sustainability 2023, 15, 13144. [Google Scholar] [CrossRef]
- Maleki, S.; Karimi, A.; Mousavi, A.; Kerry, R. Delineation of Soil Management Zone Maps at the Regional Scale Using Machine Learning. Agronomy 2023, 13, 445. [Google Scholar] [CrossRef]
- Rodríguez, C.A.; Mancera, J.J. Viability Analysis of Tidal Turbine Installation Using Fuzzy Logic: Case Study and Design Considerations. Axioms 2023, 12, 778. [Google Scholar] [CrossRef]
- Jena, R.K.; Bandyopadhyay, S.; Pradhan, U.K.; Moharana, P.C.; Kumar, N.; Sharma, G.K.; Roy, P.D.; Ghosh, D.; Ray, S.P.; Padua, S.; et al. Geospatial Modelling for Delineation of Crop Management Zones Using Local Terrain Attributes and Soil Properties. Remote Sens. 2022, 14, 2101. [Google Scholar] [CrossRef]
- Lajili, A.; Cambouris, A.N.; Chokmani, K.; Duchemin, K.; Perron, M.; Zebarth, B.J.; Biswas, A.; Adamchuk, V.I. Analysis of Four Delineation Methods to Identify Potential Management Zones in a Commercial Potato Field in Eastern Canada. Agronomy 2021, 11, 432. [Google Scholar] [CrossRef]
- Shukla, A.K.; Behera, S.K.; Singh, V.K.; Prakash, C.; Sachan, A.K.; Dhaliwal, S.S. Premonsoon spatial distribution of available micronutrients and sulphur in surface soils and their management zones in Indian Indo-Gangetic Plain. PLoS ONE 2020, 15, e0234053. [Google Scholar] [CrossRef]
- Alagaiah Venu, U.; Velmayil, P. Texture, mineralogy and geochemistry of Teri sediments from the Kuthiraimozhi deposit, Southern Tamilnadu, India: Implications on provenance, weathering and palaeoclimate. Arab. J. Geosci. 2021, 14, 364. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.K.; Shahid, M.; Lal, B.; Gautam, P.; Raja, R.; Mohanty, S.; Kumar, A.; Panda, B.B.; Sahoo, R.N. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 2015, 133, 128–136. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis, Indian ed.; Prentice Hall of India: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, C.L. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. In Circular; United States Department of Agriculture: Washington, DC, USA, 1954; Volume 939, pp. 1–19. [Google Scholar]
- Stanford, S.; English, L. Use of flame photometer in rapid soil test of K and Ca. Agron. J. 1949, 41, 446–447. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–448. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John & Wiley & Sons: New York, NY, USA, 1984; p. 680. [Google Scholar]
- Krig, D.G. Lognormal-de Wijsian Geostatistics for Ore Evaluation; Printpak (Cape) Ltd.: Johannesburg, South Africa, 1981. [Google Scholar]
- Schepers, A.R.; Shanaham, J.F.; Liebig, M.A.; Schepers, J.S.; Johnson, S.H.; Luchiari, J.A. Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agron. J. 2004, 96, 195–203. [Google Scholar] [CrossRef]
- De Gruijter, J.J.; Mc Bratney, A.B. A modified fuzzy K-means for predictive classification. In Classification and Related Methods of Data Analysis; Bock, H.H., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1988; pp. 97–104. [Google Scholar]
- Xin-Zhang, W.; Guo-Shun, L.; Hong-Chao, H.; Zhen-Hai, W.; Qing-Hua, L.; Xu-Feng, L.; Wai Hang, H.; Yan-Tao, L. Determination of management zones for a tobacco field based on soil fertility. Comput. Electron. Agric. 2009, 65, 168–175. [Google Scholar] [CrossRef]
- Boydell, B.; Mc Bratney, A.B. Identifying potential within field management zones from cotton yield estimates. In Precision Agriculture, Proceedings of the 2nd European Conference on Precision Agriculture, Odense, Denmark, 11–15 July 1999; Stafford, J.V., Ed.; SCI: London, UK, 1999; pp. 331–341. [Google Scholar]
- Mc Bratney, A.B.; Moore, A.W. Application of fuzzy sets to climatic classification. Agric. For. Meteorol. 1985, 35, 165–185. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum: New York, NY, USA, 1981. [Google Scholar]
- Tong, T.; Mei, S.; Cao, C.; Legesse, N.; Chang, J.; Ying, C.; Ma, Y.; Wang, Q. Delineation of Productive Zones in Eastern China Based on Multiple Soil Properties. Agronomy 2023, 13, 2869. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soil. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Davatgar, N.; Neishabouri, M.R.; Sepaskhah, A.R. Delineation of site-specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 2012, 173, 111–118. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Li, L.; Miao, Z.H.; Ma, W.H.; Song, C.C.; Jia, M.M. Soil organic carbon in the Sanjiang plain of China: Storage, distribution and controlling factors. Biogeosciences 2015, 12, 1635–1645. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Majumdar, K.; Singh, V.K. Nutrient Management in Indian Agriculture with Special Reference to Nutrient Mining—A Relook. J. Indian Soc. Soil Sci. 2014, 62, 307–325. [Google Scholar]
- Metwally, M.S.; Sameh Shaddad, M.; Liu, M.; Yao, R.J.; Abdo, A.I.; Li, P.; Jiao, J.; Chen, X. Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China. Sustainability 2019, 11, 70–84. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, G.; Wang, X.; Song, W.; Zhang, R.; Zhang, R.; Hu, H.; Li, L. Delineation of site-specific management zones based on soil properties for a hillside field in central China. Arch. Agron. Soil Sci. 2012, 58, 1075–1090. [Google Scholar] [CrossRef]
- Liu, G.S.; Wang, X.Z.; Zhang, Z.Y.; Zhang, C.H. Spatial variability of soil properties in a tobacco field of central China. Soil Sci. 2008, 173, 659–667. [Google Scholar]
S.No | Soil Properties | Min | Max | SD | Median | Mean | CV (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
1 | pH | 6.2 | 8.9 | 0.72 | 7.58 | 7.40 | 9.72 | −0.22 | −1.12 |
2 | EC (dS m−1) | 0.08 | 1.2 | 0.18 | 0.18 | 0.24 | 74.60 | 2.53 | 8.51 |
3 | K (Kg ha−1) | 105 | 832 | 148.12 | 310.00 | 357.90 | 41.40 | 1.44 | 2.30 |
4 | P (Kg ha−1) | 2.2 | 21.4 | 4.50 | 12.20 | 12.80 | 35.00 | 0.04 | −0.40 |
5 | N (Kg ha−1) | 85.6 | 275 | 46.16 | 212.80 | 210.00 | 22.00 | −0.80 | 0.31 |
6 | SOC (%) | 0.09 | 0.9 | 0.24 | 0.45 | 0.45 | 53.02 | 0.17 | −1.31 |
7 | Fe (mg kg−1) | 1.10 | 9.98 | 2.31 | 4.82 | 5.00 | 46.50 | 0.33 | −0.80 |
8 | Zn (mg kg−1) | 0.03 | 3.14 | 0.70 | 1.09 | 1.13 | 60.62 | 0.48 | 0.26 |
9 | Cu (mg kg−1) | 0.10 | 4.78 | 0.93 | 1.56 | 1.74 | 53.32 | 0.46 | −0.22 |
10 | Mn (mg kg−1) | 0.08 | 7.86 | 2.14 | 2.91 | 3.27 | 65.40 | 0.58 | −0.48 |
pH | EC | AK | AP | AN | SOC | Fe | Zn | Cu | Mn | |
---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||
EC | 0.451 ** | 1 | ||||||||
K | 0.502 ** | 0.622 ** | 1 | |||||||
P | 0.179 * | 0.126 | 0.411 ** | 1 | ||||||
N | 0.196 * | −0.173 * | 0.099 | 0.342 ** | 1 | |||||
SOC | 0.082 | −0.001 | 0.056 | 0.297 ** | 0.347 ** | 1 | ||||
Fe | 0.350 ** | 0.170 * | 0.294 ** | 0.225 ** | 0.240 ** | 0.193 * | 1 | |||
Zn | 0.325 ** | 0.109 | 0.273 ** | 0.280 ** | 0.359 ** | 0.111 | 0.371 ** | 1 | ||
Cu | 0.075 | 0.058 | 0.157 * | 0.148 | 0.289 ** | 0.157 * | 0.133 | 0.253 ** | 1 | |
Mn | −0.277 ** | −0.154 * | 0.188 * | 0.234 ** | 0.261 ** | 0.028 | 0.113 | 0.092 | 0.175 * | 1 |
Soil Property | Model | Partial Sill | Sill | Nugget | Nugget/Sill | Range (m) | RMSE | Spatial Dependence Class |
---|---|---|---|---|---|---|---|---|
pH | Exponential | 0.296 | 0.493 | 0.198 | 40.11 | 6378 | 0.57 | Moderate |
EC | Spherical | 0.233 | 0.267 | 0.034 | 12.81 | 1911 | 0.13 | Strong |
K | Spherical | 0.134 | 0.137 | 0.003 | 2.12 | 8170 | 0.90 | Strong |
P | Exponential | 15.312 | 19.178 | 3.866 | 20.16 | 4634 | 3.65 | Strong |
N | Spherical | 1633.625 | 1900.684 | 267.059 | 14.05 | 4050 | 3.40 | Strong |
SOC | Spherical | 267.059 | 6.054 | 2.970 | 49.06 | 4700 | 2.05 | Moderate |
Fe | Spherical | 2.205 | 5.653 | 3.448 | 60.99 | 6196 | 2.06 | Moderate |
Zn | Spherical | 0.256 | 0.465 | 0.256 | 55.05 | 3693 | 2.12 | Moderate |
Cu | Spherical | 0.629 | 0.874 | 0.629 | 71.96 | 3641 | 0.61 | Moderate |
Mn | Spherical | 0.322 | 1.035 | 0.322 | 31.08 | 4601 | 2.19 | Moderate |
Principal Component | Eigen Value | Component Variability (%) | Cumulative Loading % |
---|---|---|---|
PC1 | 2.902 | 29.017 | 29.017 |
PC2 | 1.898 | 18.980 | 47.998 |
PC3 | 1.041 | 10.408 | 58.406 |
PC4 | 0.915 | 9.146 | 67.551 |
PC5 | 0.834 | 8.337 | 75.889 |
PC6 | 0.731 | 7.308 | 83.197 |
PC7 | 0.539 | 5.387 | 88.584 |
PC8 | 0.509 | 5.087 | 93.670 |
PC9 | 0.349 | 3.493 | 97.163 |
PC10 | 0.284 | 2.837 | 100.000 |
Parameters | pH | EC | K | P | N | SOC | Fe | Zn | Cu | Mn |
---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.639 | 0.468 | 0.714 | 0.619 | 0.521 | 0.389 | 0.610 | 0.631 | 0.400 | 0.171 |
PC2 | −0.480 | −0.672 | −0.419 | 0.244 | 0.550 | 0.427 | 0.023 | 0.123 | 0.295 | 0.627 |
PC3 | −0.309 | 0.327 | 0.348 | 0.392 | −0.297 | 0.090 | −0.238 | −0.383 | −0.069 | 0.510 |
Management Zone | pH | EC (dS m−1) | K (Kg ha−1) | P (Kg ha−1) | N (Kg ha−1) | SOC (%) | Fe (mg kg−1) | Zn (mg kg−1) | Cu (mg kg−1) | Mn (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 6.72 d | 0.17 c | 111.68 d | 4.95 c | 103.89 d | 0.17 c | 1.54 b | 0.17 c | 0.39 b | 0.20 c |
2 | 7.68 b | 0.26 b | 434.24 b | 14.07 a | 235.51 a | 0.50 a | 5.71 a | 1.50 a | 1.91 a | 3.27 a |
3 | 8.21 a | 0.57 a | 739.88 a | 16.13 a | 180.01 c | 0.39 b | 5.73 a | 1.20 b | 1.76 a | 2.90 b |
4 | 7.24 c | 0.20 c | 300.75 c | 12.59 b | 214.46 b | 0.46 ab | 4.87 a | 1.09 b | 1.81 a | 3.61 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venugopal, A.; Kannan, B.; Ganapati, P.S.; Krishnan, A.; Manikandan, K.; Mathiyazhagan, V.; Jayaraman, S. Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India. Sustainability 2024, 16, 2095. https://doi.org/10.3390/su16052095
Venugopal A, Kannan B, Ganapati PS, Krishnan A, Manikandan K, Mathiyazhagan V, Jayaraman S. Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India. Sustainability. 2024; 16(5):2095. https://doi.org/10.3390/su16052095
Chicago/Turabian StyleVenugopal, Arunkumar, Balaji Kannan, Patil Santosh Ganapati, Ananthi Krishnan, Kaniyaiah Manikandan, Vijayakumar Mathiyazhagan, and Somasundaram Jayaraman. 2024. "Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India" Sustainability 16, no. 5: 2095. https://doi.org/10.3390/su16052095
APA StyleVenugopal, A., Kannan, B., Ganapati, P. S., Krishnan, A., Manikandan, K., Mathiyazhagan, V., & Jayaraman, S. (2024). Nutrient Variability Mapping and Demarcating Management Zones by Employing Fuzzy Clustering in Southern Coastal Region of Tamil Nadu, India. Sustainability, 16(5), 2095. https://doi.org/10.3390/su16052095