Alleviating Cd Stress in Sunflower (Helianthus annuus) through the Sodium Silicate Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Conditions
2.2. The Estimation of Plant Growth and Biomass
2.3. Quantification of Cd in Plants
2.4. The Estimation of Chlorophyll Content and Photosynthetic Parameters
2.5. Analysis of Antioxidant Enzymes and Malondialdehyde
2.6. Data Analysis
3. Results and Discussion
3.1. Impact of Sodium Silicate on Growth Characteristics of Sunflower under Cd Stress
3.2. Impact of Sodium Silicate on the Biomass of Sunflower under Cd Stress
3.3. Impact of Sodium Silicate on Cd Uptake and Enrichment Characteristics of Sunflower under Cd Stress
3.4. Effect of Sodium Silicate on Photosynthesis of Sunflower under Cd Stress
3.5. Impact of Sodium Silicate on Antioxidant Enzyme Activities of Sunflower under Cd Stress
3.6. Heat Map and Correlation Analysis between Parameters of Sunflower
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamers, A.; Blust, R.; De Coen, W.; Griffin, J.L.; Jones, O.A.H. An Omics Based Assessment of Cadmium Toxicity in the Green Alga Chlamydomonas reinhardtii. Aquat. Toxicol. 2013, 126, 355–364. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal Variation of Soil Heavy Metals in China: The Pollution Status and Risk Assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Alizadeh, I.; Oliveri Conti, G.; Mohammadi, A. Investigation of Health and Ecological Risk Attributed to the Soil Heavy Metals in Iran: Systematic Review and Meta-Analysis. Sci. Total Environ. 2023, 857, 158925. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil Heavy Metal Pollution from Pb/Zn Smelting Regions in China and the Remediation Potential of Biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.; Johnson, V.C. Pollutant Source, Ecological and Human Health Risks Assessment of Heavy Metals in Soils from Coal Mining Areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S. Toxic Metal Accumulation, Responses to Exposure and Mechanisms of Tolerance in Plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Sidhu, G.P.S.; Bali, A.S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Insights into the Tolerance and Phytoremediation Potential of Coronopus didymus L. (Sm) Grown under Zinc Stress. Chemosphere 2020, 244, 125350. [Google Scholar] [CrossRef]
- Sangthong, C.; Setkit, K.; Prapagdee, B. Improvement of Cadmium Phytoremediation after Soil Inoculation with a Cadmium-Resistant micrococcus sp. Environ. Sci. Pollut. Res. 2016, 23, 756–764. [Google Scholar] [CrossRef]
- Lebeau, T.; Jézéquel, K.; Braud, A. Bioaugmentation-Assisted Phytoextraction Applied to Metal-Contaminated Soils: State of the Art and Future Prospects. In Microbes and Microbial Technology; Ahmad, I., Ahmad, F., Pichtel, J., Eds.; Springer: New York, NY, USA, 2011; pp. 229–266. [Google Scholar] [CrossRef]
- Jun, L.; Wei, H.; Aili, M.; Juan, N.; Hongyan, X.; Jingsong, H.; Yunhua, Z.; Cuiying, P. Effect of Lychee Biochar on the Remediation of Heavy Metal-Contaminated Soil Using Sunflower: A Field Experiment. Environ. Res. 2020, 188, 109886. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Wang, D. Phytoremediation of Uranium and Cadmium Contaminated Soils by Sunflower (Helianthus annuus L.) Enhanced with Biodegradable Chelating Agents. J. Clean. Prod. 2020, 263, 121491. [Google Scholar] [CrossRef]
- Turgut, C.; Katie Pepe, M.; Cutright, T.J. The Effect of EDTA and Citric Acid on Phytoremediation of Cd, Cr, and Ni from Soil Using Helianthus Annuus. Environ. Pollut. 2004, 131, 147–154. [Google Scholar] [CrossRef]
- Toromanović, M.; Jogić, V.; Ibrahimpašić, J.; Džaferović, A.; Dedić, S.; Makić, H. Phytoremediation of Soil Contaminated With Heavy Metals Using the Sunflower (Helianthus annuus L.). Qual. Life (Banja Luka) Apeiron 2021, 21, 77–84. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd Contaminated Soils by Using Sunflower (Helianthus annuus) Plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Chang, C.; Yin, R.; Zhang, H.; Yao, L. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil–Rice System in a Typical Seleniferous Area in Central China. Environ. Toxic. Chem. 2019, 38, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to Cope with Arsenic or Cadmium Excess in Plants. Curr. Opin. Plant Biol. 2009, 12, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; Willey, N.J.; Wilkins, J.C.; Baker, A.J.M.; Mead, A.; White, P.J. Phylogenetic Variation in Heavy Metal Accumulation in Angiosperms. New Phytol. 2001, 152, 9–27. [Google Scholar] [CrossRef]
- Clemens, S.; Aarts, M.G.M.; Thomine, S.; Verbruggen, N. Plant Science: The Key to Preventing Slow Cadmium Poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef]
- Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 641–664. [Google Scholar] [CrossRef]
- Ma, J.F.; Tamai, K.; Yamaji, N. A Silicon Transporter in Rice. Nature 2006, 440, 688–691. [Google Scholar] [CrossRef]
- Song, A.; Li, P.; Li, Z.; Fan, F.; Nikolic, M.; Liang, Y. The Alleviation of Zinc Toxicity by Silicon Is Related to Zinc Transport and Antioxidative Reactions in Rice. Plant Soil. 2011, 344, 319–333. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Zia-ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K. Mechanisms of Silicon-Mediated Alleviation of Heavy Metal Toxicity in Plants: A Review. Ecotoxicol. Environ. Saf. 2015, 119, 186–197. [Google Scholar] [CrossRef]
- Vaculík, M.; Lukačová, Z.; Bokor, B.; Martinka, M. Alleviation Mechanisms of Metal(Loid) Stress in Plants by Silicon: A Review. J. Exp. Bot. 2020, 71, 6744–6757. [Google Scholar] [CrossRef]
- Shanmugaiah, V.; Gauba, A.; Hari, S.K.; Prasad, R.; Ramamoorthy, V.; Sharma, M.P. Effect of Silicon Micronutrient on Plant’s Cellular Signaling Cascades in Stimulating Plant Growth by Mitigating the Environmental Stressors. Plant Growth Regul. 2023, 100, 391–408. [Google Scholar] [CrossRef]
- Liang, Y.; Sun, W.; Zhu, Y.-G.; Christie, P. Mechanisms of Silicon-Mediated Alleviation of Abiotic Stresses in Higher Plants: A Review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, S.; Cai, K.; Huang, F.; Pan, B.; Wang, W. Cd Accumulation, Biomass and Yield of Rice Are Varied with Silicon Application at Different Growth Phases under High Concentration Cadmium-Contaminated Soil. Chemosphere 2020, 242, 125128. [Google Scholar] [CrossRef]
- Lavinsky, A.O.; Detmann, K.C.; Reis, J.V.; Ávila, R.T.; Sanglard, M.L.; Pereira, L.F.; Sanglard, L.M.V.P.; Rodrigues, F.A.; Araújo, W.L.; DaMatta, F.M. Silicon Improves Rice Grain Yield and Photosynthesis Specifically When Supplied during the Reproductive Growth Stage. J. Plant Physiol. 2016, 206, 125–132. [Google Scholar] [CrossRef]
- Tripathi, P.; Tripathi, R.D.; Singh, R.P.; Dwivedi, S.; Goutam, D.; Shri, M.; Trivedi, P.K.; Chakrabarty, D. Silicon Mediates Arsenic Tolerance in Rice (Oryza sativa L.) through Lowering of Arsenic Uptake and Improved Antioxidant Defence System. Ecol. Eng. 2013, 52, 96–103. [Google Scholar] [CrossRef]
- He, S.; Lian, X.; Zhang, B.; Liu, X.; Yu, J.; Gao, Y.; Zhang, Q.; Sun, H. Nano Silicon Dioxide Reduces Cadmium Uptake, Regulates Nutritional Homeostasis and Antioxidative Enzyme System in Barley Seedlings (Hordeum vulgare L.) under Cadmium Stress. Environ. Sci. Pollut. Res. 2023, 30, 67552–67564. [Google Scholar] [CrossRef]
- Tuna, A.L.; Kaya, C.; Higgs, D.; Murillo-Amador, B.; Aydemir, S.; Girgin, A.R. Silicon Improves Salinity Tolerance in Wheat Plants. Environ. Exp. Bot. 2008, 62, 10–16. [Google Scholar] [CrossRef]
- Wu, J.; Geilfus, C.-M.; Pitann, B.; Mühling, K.-H. Silicon-Enhanced Oxalate Exudation Contributes to Alleviation of Cadmium Toxicity in Wheat. Environ. Exp. Bot. 2016, 131, 10–18. [Google Scholar] [CrossRef]
- Liang, Y.; Wong, J.W.C.; Wei, L. Silicon-Mediated Enhancement of Cadmium Tolerance in Maize (Zea mays L.) Grown in Cadmium Contaminated Soil. Chemosphere 2005, 58, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, F.; Liu, S.; Du, Y.; Li, F.; Du, R.; Wen, D.; Zhao, J. Comparative Responses to Silicon and Selenium in Relation to Cadmium Uptake, Compartmentation in Roots, and Xylem Transport in Flowering Chinese Cabbage (Brassica campestris L. ssp. Chinensis Var. Utilis) under Cadmium Stress. Environ. Exp. Bot. 2016, 131, 173–180. [Google Scholar] [CrossRef]
- Wu, J.; Guo, J.; Hu, Y.; Gong, H. Distinct Physiological Responses of Tomato and Cucumber Plants in Silicon-Mediated Alleviation of Cadmium Stress. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhuang, P.; Li, Z.; Tai, Y.; Zou, B.; Li, Y.; McBride, M.B. Contrasting Effects of Silicates on Cadmium Uptake by Three Dicotyledonous Crops Grown in Contaminated Soil. Environ. Sci. Pollut. Res. 2014, 21, 9921–9930. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh-rad, K.; Motesharezadeh, B.; Alikhani, H.A.; Jalali, M.; Etesami, H.; Javadzarin, I. Morphophysiological and Nutritional Responses of Canola and Wheat to Water Deficit Stress by the Application of Plant Growth-Promoting Bacteria, Nano-Silicon, and Silicon. J. Plant Growth Regul. 2023, 42, 3615–3631. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, J.; Teng, Y.; He, J.; Christie, P.; Zhu, L.; Ren, W.; Zhang, M.; Deng, S. Effect of Silicon on Growth, Physiology, and Cadmium Translocation of Tobacco (Nicotiana Tabacum L.) in Cadmium-Contaminated Soil. Pedosphere 2018, 28, 680–689. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Savant, N.K.; Korndörfer, G.H.; Datnoff, L.E.; Snyder, G.H. Silicon Nutrition and Sugarcane Production: A Review. J. Plant Nutr. 1999, 22, 1853–1903. [Google Scholar] [CrossRef]
- Gu, H.-H.; Qiu, H.; Tian, T.; Zhan, S.-S.; Deng, T.-H.-B.; Chaney, R.L.; Wang, S.-Z.; Tang, Y.-T.; Morel, J.-L.; Qiu, R.-L. Mitigation Effects of Silicon Rich Amendments on Heavy Metal Accumulation in Rice (Oryza sativa L.) Planted on Multi-Metal Contaminated Acidic Soil. Chemosphere 2011, 83, 1234–1240. [Google Scholar] [CrossRef]
- Cui, J.; Jin, Q.; Li, F.; Chen, L. Silicon Reduces the Uptake of Cadmium in Hydroponically Grown Rice Seedlings: Why Nanoscale Silica Is More Effective than Silicate. Environ. Sci. Nano 2022, 9, 1961–1973. [Google Scholar] [CrossRef]
- Gong, H.; Chen, K.; Chen, G.; Wang, S.; Zhang, C. Effects of Silicon on Growth of Wheat Under Drought. J. Plant Nutr. 2003, 26, 1055–1063. [Google Scholar] [CrossRef]
- Ngugi, M.M.; Gitari, H.I.; Muui, C.W.; Gweyi-Onyango, J.P. Growth Tolerance, Concentration, and Uptake of Heavy Metals as Ameliorated by Silicon Application in Vegetables. Int. J. Phytoremediation 2022, 24, 1543–1556. [Google Scholar] [CrossRef]
- Vieira-Filho, L.O.; Monteiro, F.A. Silicon Improves Photosynthetic Activity and Induces Antioxidant Enzyme Activity in Tanzania Guinea Grass under Copper Toxicity. Plant Stress. 2022, 3, 100045. [Google Scholar] [CrossRef]
- Bokor, B.; Vaculík, M.; Slováková, Ľ.; Masarovič, D.; Lux, A. Silicon Does Not Always Mitigate Zinc Toxicity in Maize. Acta Physiol. Plant 2014, 36, 733–743. [Google Scholar] [CrossRef]
- Al-Jobori, K.M.; Kadhim, A.K. Evaluation of Sunflower (Helianthus annuus L.) for Phytoremediation of Lead Contaminated Soil. J. Pharm. Sci. Res. 2019, 11, 847–854. [Google Scholar]
- Kabir, A.H.; Hossain, M.M.; Khatun, M.A.; Mandal, A.; Haider, S.A. Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago Sativa L.). Front. Plant Sci. 2016, 7, 1117. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.F.; Ghosal, A.; Alam, M.F.; Kabir, A.H. Remediation of Cadmium Toxicity in Field Peas (Pisum sativum L.) through Exogenous Silicon. Ecotoxicol. Environ. Saf. 2017, 135, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Vaculík, M.; Lux, A.; Luxová, M.; Tanimoto, E.; Lichtscheidl, I. Silicon Mitigates Cadmium Inhibitory Effects in Young Maize Plants. Environ. Exp. Bot. 2009, 67, 52–58. [Google Scholar] [CrossRef]
- Ehsan, S.; Ali, S.; Noureen, S.; Mahmood, K.; Farid, M.; Ishaque, W.; Shakoor, M.B.; Rizwan, M. Citric Acid Assisted Phytoremediation of Cadmium by Brassica napus L. Ecotoxicol. Environ. Saf. 2014, 106, 164–172. [Google Scholar] [CrossRef]
- Attia, E.A.; Elhawat, N. Combined Foliar and Soil Application of Silica Nanoparticles Enhances the Growth, Flowering Period and Flower Characteristics of Marigold (Tagetes erecta L.). Sci. Hortic. 2021, 282, 110015. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ali, S.; Hameed, A.; Ishaque, W.; Mahmood, K.; Iqbal, Z. Alleviation of Cadmium Toxicity by Silicon Is Related to Elevated Photosynthesis, Antioxidant Enzymes; Suppressed Cadmium Uptake and Oxidative Stress in Cotton. Ecotoxicol. Environ. Saf. 2013, 96, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Zhang, L.; Zhang, S.; Cui, B. Physiological Response of Four Widely Cultivated Sunflower Cultivars to Cadmium Stress. Horticulturae 2023, 9, 320. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Nie, Q.; Zhang, W.; Zhang, F. Long-Term Effects of Exogenous Silicon on Cadmium Translocation and Toxicity in Rice (Oryza sativa L.). Environ. Exp. Bot. 2008, 62, 300–307. [Google Scholar] [CrossRef]
- Thind, S.; Hussain, I.; Ali, S.; Hussain, S.; Rasheed, R.; Ali, B.; Hussain, H.A. Physiological and Biochemical Bases of Foliar Silicon-Induced Alleviation of Cadmium Toxicity in Wheat. J. Soil. Sci. Plant Nutr. 2020, 20, 2714–2730. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and Future Prospects on the Action Mechanisms in Alleviating Biotic and Abiotic Stresses in Plants. Ecotoxicol. Environ. Saf. 2018, 147, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.; Zhang, Y.; Chai, T. Silicon Attenuates Cadmium Toxicity in Solanum nigrum L. by Reducing Cadmium Uptake and Oxidative Stress. Plant Physiol. Biochem. 2013, 68, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nwugo, C.C.; Huerta, A.J. The Effect of Silicon on the Leaf Proteome of Rice ( Oryza sativa L.) Plants under Cadmium-Stress. J. Proteome Res. 2011, 10, 518–528. [Google Scholar] [CrossRef]
- Nwugo, C.C.; Huerta, A.J. Effects of Silicon Nutrition on Cadmium Uptake, Growth and Photosynthesis of Rice Plants Exposed to Low-Level Cadmium. Plant Soil. 2008, 311, 73–86. [Google Scholar] [CrossRef]
- Li, L.; Ai, S.; Li, Y.; Wang, Y.; Tang, M. Exogenous Silicon Mediates Alleviation of Cadmium Stress by Promoting Photosynthetic Activity and Activities of Antioxidative Enzymes in Rice. J. Plant Growth Regul. 2018, 37, 602–611. [Google Scholar] [CrossRef]
- ur Rahman, S.; Xuebin, Q.; Zhao, Z.; Du, Z.; Imtiaz, M.; Mehmood, F.; Hongfei, L.; Hussain, B.; Ashraf, M.N. Alleviatory Effects of Silicon on the Morphology, Physiology, and Antioxidative Mechanisms of Wheat (Triticum aestivum L.) Roots under Cadmium Stress in Acidic Nutrient Solutions. Sci. Rep. 2021, 11, 19–58. [Google Scholar] [CrossRef]
- Huang, H.; Rizwan, M.; Li, M.; Song, F.; Zhou, S.; He, X.; Ding, R.; Dai, Z.; Yuan, Y.; Cao, M.; et al. Comparative Efficacy of Organic and Inorganic Silicon Fertilizers on Antioxidant Response, Cd/Pb Accumulation and Health Risk Assessment in Wheat (Triticum aestivum L.). Environ. Pollut. 2019, 255, 113146. [Google Scholar] [CrossRef]
- Gao, M.; Zhou, J.; Liu, H.; Zhang, W.; Hu, Y.; Liang, J.; Zhou, J. Foliar Spraying with Silicon and Selenium Reduces Cadmium Uptake and Mitigates Cadmium Toxicity in Rice. Sci. Total Environ. 2018, 631–632, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mei, X.; Lv, Y.; Gao, S.; Li, N.; Liu, Y.; Cheng, H.; Xu, K. Silicon Actively Mitigates the Negative Impacts of Soil Cadmium Contamination on Garlic Growth, Yield, Quality and Edible Safety. Sci. Hortic. 2023, 309, 111625. [Google Scholar] [CrossRef]
- Khan, Z.S.; Rizwan, M.; Hafeez, M.; Ali, S.; Adrees, M.; Qayyum, M.F.; Khalid, S.; ur Rehman, M.Z.; Sarwar, M.A. Effects of Silicon Nanoparticles on Growth and Physiology of Wheat in Cadmium Contaminated Soil under Different Soil Moisture Levels. Environ. Sci. Pollut. Res. 2020, 27, 4958–4968. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.; Xiao, G.Z.; Guo, W.E.; Yuan, J.B.; Li, J.; Chao, Y.H.; Han, L.B. Expression of an Alfalfa (Medicago sativa L.) Peroxidase Gene in Transgenic Arabidopsis Thaliana Enhances Resistance to NaCl and H2O2. Genet. Mol. Res. 2016, 2, 15. [Google Scholar] [CrossRef]
- Huang, F.; Wen, X.-H.; Cai, Y.-X.; Cai, K.-Z. Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages. Int. J. Environ. Res. Public. Health 2018, 15, 2193. [Google Scholar] [CrossRef]
Soil Characteristics | Value | Soil Characteristics | Value |
---|---|---|---|
Total Cd content (mg·kg−1) | 0.29 | Quick-acting phosphorus content (mg·kg−1) | 58.88 |
Effective Cd content (mg·kg−1) | 0.02 | Quick-acting potassium content (mg·kg−1) | 489.48 |
pH | 7.89 | Organic matter content (g·kg−1) | 13.74 |
Alkaline nitrogen content (mg·kg−1) | 43.43 |
Growth Period | Cd (mg/kg DW Soil) | Si (mg/kg DW Soil) | Plant Height (cm) | Stem Thickness (mm) | Leaf Blade Area (cm2) | Number of Branches (One) | Number of Leaf Blades (Pieces) |
---|---|---|---|---|---|---|---|
11.80 | 0 | 19.17 ± 0.60 cB | 0.37 ± 0.06 cB | 12.44 ± 2.91 bB | 17.67 ± 1.15 abB | 20.33 ± 2.52 abB | |
11.80 | 50 | 20.57 ± 2.86 bcB | 0.49 ± 0.05 bB | 13.13 ± 2.60 bB | 15.67 ± 1.15 bB | 17.67 ± 1.53 bB | |
Seedling | 11.80 | 250 | 21.73 ± 1.72 bcB | 0.46 ± 0.04 bB | 14.57 ± 3.24 abB | 16.00 ± 1.73 bB | 18.00 ± 1.73 bB |
11.80 | 500 | 23.63 ± 0.71 abB | 0.60 ± 0.05 aB | 18.02 ± 3.32 abB | 16.67 ± 1.15 bB | 19.00 ± 1.00 abB | |
11.80 | 1500 | 25.93 ± 2.79 aB | 0.66 ± 0.02 aB | 19.68 ± 2.34 aB | 19.33 ± 0.58 aB | 21.33 ± 0.58 aB | |
11.80 | 0 | 40.53 ± 4.01 cA | 0.72 ± 0.03 cA | 20.24 ± 1.05 bA | 25.33 ± 1.53 aA | 26.67 ± 1.53 aA | |
11.80 | 50 | 42.40 ± 1.45 bcA | 0.75 ± 0.05 bcA | 24.22 ± 4.14 abA | 25.67 ± 3.21 aA | 27.67 ± 2.52 aA | |
Blooming | 11.80 | 250 | 46.87 ± 3.33 abA | 0.81 ± 0.01 abA | 24.32 ± 3.41 abA | 23.67 ± 2.08 aA | 25.33 ± 1.53 aA |
11.80 | 500 | 46.27 ± 3.44 abA | 0.80 ± 0.05 abA | 25.53 ± 1.60 aA | 25.67 ± 3.06 aA | 28.33 ± 2.52 aA | |
11.80 | 1500 | 48.70 ± 0.85 aA | 0.84 ± 0.06 aA | 28.68 ± 1.96 aA | 23.33 ± 1.53 aA | 25.67 ± 1.15 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Wang, X.; Gao, H.; Chen, J.; Zhang, T. Alleviating Cd Stress in Sunflower (Helianthus annuus) through the Sodium Silicate Application. Sustainability 2024, 16, 2037. https://doi.org/10.3390/su16052037
Wu H, Wang X, Gao H, Chen J, Zhang T. Alleviating Cd Stress in Sunflower (Helianthus annuus) through the Sodium Silicate Application. Sustainability. 2024; 16(5):2037. https://doi.org/10.3390/su16052037
Chicago/Turabian StyleWu, Haoying, Xiyuan Wang, Haifeng Gao, Jiao Chen, and Tingting Zhang. 2024. "Alleviating Cd Stress in Sunflower (Helianthus annuus) through the Sodium Silicate Application" Sustainability 16, no. 5: 2037. https://doi.org/10.3390/su16052037
APA StyleWu, H., Wang, X., Gao, H., Chen, J., & Zhang, T. (2024). Alleviating Cd Stress in Sunflower (Helianthus annuus) through the Sodium Silicate Application. Sustainability, 16(5), 2037. https://doi.org/10.3390/su16052037