Global Value Chain Participation, Employment Structure, and Urban–Rural Income Gap in the Context of Sustainable Development
Abstract
:1. Introduction
2. Theoretical Background and Hypothesis Development
3. Data and Methods
3.1. Variable Selection and Data Sources
3.1.1. Dependent Variable
3.1.2. Independent Variable
3.1.3. Mediation Variable
3.1.4. Moderator Variable
3.1.5. Control Variables
3.1.6. Data Resources
3.2. Model Setting
4. Results and Discussion
4.1. Benchmark Regression Results
4.2. Robustness Test
4.3. Heterogeneity Test
4.4. Mediation Effect Analysis
4.5. Moderating Effect Analysis
4.6. Discussion
5. Conclusions and Implications of this Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, B.; Wang, Y.; He, J.; Li, W.; Chen, X. Spatio-Temporal Characteristics and Obstacle Factors of the Urban-Rural Integration of China’s Shrinking Cities in the Context of Sustainable Development. Sustainability 2021, 13, 4203. [Google Scholar] [CrossRef]
- Ye, C.; Ma, X.; Gao, Y.; Johnson, L. The lost countryside: Spatial production of rural culture in Tangwan village in Shanghai. Habitat Int. 2020, 98, 102137. [Google Scholar] [CrossRef]
- Yan, J.; Chen, H.; Xia, F. Toward improved land elements for urban–rural integration: A cell concept of an urban–rural mixed community. Habitat Int. 2018, 77, 110–120. [Google Scholar] [CrossRef]
- Allawi, A.H.; Al-Jazaeri, H.M.J. A new approach towards the sustainability of urban-rural integration: The development strategy for central villages in the Abbasiya District of Iraq using GIS techniques. Reg. Sustain. 2023, 4, 28–43. [Google Scholar] [CrossRef]
- Mayer, H.; Habersetzer, A.; Meili, R. Rural–Urban Linkages and Sustainable Regional Development: The Role of Entrepreneurs in Linking Peripheries and Centers. Sustainability 2016, 8, 745. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, M.; Zhu, Y.; Huang, X.; Xiong, X. Urbanization’s effects on the urban-rural income gap in China: A meta-regression analysis. Land Use Policy 2020, 99, 104995. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Z. The impact of industrial structure upgrades on the urban–rural income gap: An empirical study based on China’s provincial panel data. Growth Chang. 2021, 52, 1761–1782. [Google Scholar] [CrossRef]
- Boffy-Ramirez, E.; Moon, S. The role of China’s household registration system in the urban-rural income differential. China Econ. J. 2018, 11, 108–125. [Google Scholar] [CrossRef]
- Carpa, N.; Martínez-Zarzoso, I. The impact of global value chain participation on income inequality. Int. Econ. 2022, 169, 269–290. [Google Scholar] [CrossRef]
- Chiarvesio, M.; Di Maria, E.; Micelli, S. Global value chains and open networks: The case of Italian industrial districts. Eur. Plan. Stud. 2010, 18, 333–350. [Google Scholar] [CrossRef]
- Meschi, E.; Vivarelli, M. Trade and income inequality in developing countries. World Dev. 2009, 37, 287–302. [Google Scholar] [CrossRef]
- Pahl, S.; Timmer, M.P.; Gouma, R.; Woltjer, P.J. Jobs and Productivity Growth in Global Value Chains: New Evidence for Twenty-five Low- and Middle-Income Countries. World Bank Econ. Rev. 2022, 36, 670–686. [Google Scholar] [CrossRef]
- Han, J.; Liu, R.; Zhang, J. Globalization and wage inequality: Evidence from urban China. J. Int. Econ. 2012, 87, 288–297. [Google Scholar] [CrossRef]
- Aguiar de Medeiros, C.; Trebat, N. Inequality and Income Distribution in Global Value Chains. J. Econ. Issues 2017, 51, 401–408. [Google Scholar] [CrossRef]
- Chen, B.; Yu, M.; Yu, Z. Measured skill premia and input trade liberalization: Evidence from Chinese firms. J. Int. Econ. 2017, 109, 31–42. [Google Scholar] [CrossRef]
- Crinò, R. Service offshoring and the skill composition of labour demand. Oxf. Bull. Econ. Stat. 2012, 74, 20–57. [Google Scholar] [CrossRef]
- Foster-McGregor, N.; Stehrer, R.; de Vries, G.J. Offshoring and the skill structure of labour demand. Rev. World Econ. 2013, 149, 631–662. [Google Scholar] [CrossRef]
- Ndubuisi, G.; Owusu, S. Wage effects of global value chains participation and position: An industry-level analysis1. J. Int. Trade Econ. Dev. 2022, 31, 1086–1107. [Google Scholar] [CrossRef]
- Liu, X.; Li, J. FDI, Industrial Structure and Urban-rural Income Inequality: Analysis of Spatial Durbin Model Based on 11 Provinces(Cities) in the Yangtze River Economic Belt. J. Yunnan Agric. Univ. (Soc. Sci.) 2023, 17, 56–65. (In Chinese) [Google Scholar]
- Wang, W.; Thangavelu, S.; Lin, F. Global value chains, firms, and wage inequality: Evidence from China. China Econ. Rev. 2021, 66, 101585. [Google Scholar] [CrossRef]
- Grossman, G.M.; Rossi-Hansberg, E. Trading tasks: A simple theory of offshoring. Am. Econ. Rev. 2008, 98, 1978–1997. [Google Scholar] [CrossRef]
- Gonzalez, J.L.; Kowalski, P.; Achard, P. Trade, Global Value Chains and Wage-Income Inequality; OECD iLibrary: Berlin, Germany, 2015. [Google Scholar]
- Cai, L.; Zhang, Y.B.; Wang, Z.G.; Liu, Z.J. Does the rise of global value chain position increase or reduce domestic income inequality? Appl. Econ. 2023, 55, 5833–5845. [Google Scholar] [CrossRef]
- Lin, L.; Rong, J. Will GVC’s Participation Widen Income Gap—From the Perspective of Backward Participation. J. Int. Trade 2016, 65–75. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, L.; Wang, X. Does FDI Enlarge Income Gap between Urban and Rural within Provinces in China? An Empirical Analysis Based on Spatial Econometric Model. Macroeconomics 2018, 62–80. (In Chinese) [Google Scholar]
- Cerdeiro, D.A.; Komaromi, A. Trade and income in the long run: Are there really gains, and are they widely shared? Rev. Int. Econ. 2021, 29, 703–731. [Google Scholar] [CrossRef]
- Wang, X.; Yan, H.; E, L.; Huang, X.; Wen, H.; Chen, Y. The Impact of Foreign Trade and Urbanization on Poverty Reduction: Empirical Evidence from China. Sustainability 2022, 14, 1464. [Google Scholar] [CrossRef]
- Das, P. Econometrics in Theory and Practice; Springer: Singapore, 2019; pp. 51–58. [Google Scholar]
- Zhang, Z.; Lin, L.; Cao, S.; Zhou, Y. When is the Fixed Effect Estimator Credible under DiD Design? Some Useful Suggestions. J. Manag. World 2024, 40, 196–222. (In Chinese) [Google Scholar]
- Dehaan, E. Using and Interpreting Fixed Effects Models. Available at SSRN 3699777 2021. Available online: https://ssrn.com/abstract=3699777 (accessed on 24 March 2023).
- Li, X. Global market and income gaps between industries: Evidence from finance industry and manufacturing industry. J. Chin. Sociol. 2019, 6, 10. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, Z. Opening to the Outside World and Income Gap between Urban and Rural Areas Based on Panel Data of 30 Provinces and Cities. Front. Bus. Econ. Manag. 2022, 5, 161–166. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, D. Global Value Chains Embedding, Domestic Market Integration and Interprovincial Income Gap. J. China Univ. Geosci. (Soc. Sci. Ed.) 2024, 24, 128–142. (In Chinese) [Google Scholar]
- Lipsey, R.E.; Sjöholm, F. Foreign direct investment, education and wages in Indonesian manufacturing. J. Dev. Econ. 2004, 73, 415–422. [Google Scholar] [CrossRef]
- Wu, D. Research on employment effect of induced technological progress in China’s manufacturing industry. Stud. Sci. Sci. 2023, 1–15. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, C.; Deng, X.Z.; Dong, J.N.; Hu, P.Y. Urbanization and Sustainability: Comparison of the Processes in “BIC” Countries. Sustainability 2016, 8, 400. [Google Scholar] [CrossRef]
- Zhai, F.; Wang, Z. WTO accession, rural labour migration and urban unemployment in China. Urban Stud. 2002, 39, 2199–2217. [Google Scholar] [CrossRef]
- Fan, J.; Wang, L.; Shen, L. Industrial Concentration and the Trans—Regional Flow of RuraI Labor Forces. J. Manag. World 2004, 22–29+155. (In Chinese) [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The wrong kind of AI? Artificial intelligence and the future of labour demand. Camb. J. Reg. Econ. Soc. 2020, 13, 25–35. [Google Scholar] [CrossRef]
- Yuan, D.; Wei, H.; Yang, H. Trade Openness, Improvement of Trade Commodity Composition and Urban-rural Income Inequality: An Empirical Study Based on Provincial Panel Data in China. China Soft Sci. 2011, 47–56. (In Chinese) [Google Scholar] [CrossRef]
- Cao, G.; Feng, C.; Tao, R. Local “land finance” in China’s urban expansion: Challenges and solutions. China World Econ. 2008, 16, 19–30. [Google Scholar] [CrossRef]
- Erten, B.; Leight, J. Exporting Out of Agriculture: The Impact of WTO Accession on Structural Transformation in China. Rev. Econ. Stat. 2021, 103, 364–380. [Google Scholar] [CrossRef]
- Feenstra, R.C.; Hanson, G.H. Globalization, outsourcing, and wage inequality. Am. Econ. Rev. 1996, 86, 240–245. [Google Scholar]
- Brambilla, I.; Porto, G.G. High-income export destinations, quality and wages. J. Int. Econ. 2016, 98, 21–35. [Google Scholar] [CrossRef]
- Dai, X.; Xu, L.; Ren, Z. Research on the Influence Mechanism of Global Value Chain Participation on the Quality of Economic Growth. Int. Bus. 2020, 20–34. (In Chinese) [Google Scholar] [CrossRef]
- Xiao, W.; Wang, J.; Zhao, X. Industrial Structure, Employment Structure and Urban-rural Income Disparity. Macroeconomics 2022, 78–86+96. (In Chinese) [Google Scholar] [CrossRef]
- Pavcnik, N. Globalization and within-country income inequality. In Making Globalization Socially Sustainable; WTO iLibrary: Geneva, Switzerland, 2011; pp. 233–259. [Google Scholar]
- Bernard, A.B.; Jensen, J.B. Exporters, skill upgrading, and the wage gap. J. Int. Econ. 1997, 42, 3–31. [Google Scholar] [CrossRef]
- Zhao, J. Trade and Employment: Literature Review of International Studies on the Latest Progress and Policy Orientation—On the Policy Choice of Resolving the Impact of Sino-US Trade Conflicts on China’s Employment. Financ. Trade Econ. 2019, 40, 5–18. (In Chinese) [Google Scholar]
- Sharma, C.; Mishra, R.K. International trade and performance of firms: Unraveling export, import and productivity puzzle. Q. Rev. Econ. Financ. 2015, 57, 61–74. [Google Scholar] [CrossRef]
- Tang, D. The Impact of Globalization on China’s Employment Structure. J. World Econ. 2011, 34, 95–117. (In Chinese) [Google Scholar]
- Perry, G.; Olarreaga, M. Trade liberalization, inequality, and poverty reduction in Latin America. In Annual World Bank Conference on Development Economics, Regional. Beyond Transition; The World Bank Group: Washington, DC, USA, 2007; pp. 103–139. [Google Scholar]
- Xu, B.; Li, W. Trade, technology, and China’s rising skill demand1. Econ. Transit. 2008, 16, 59–84. [Google Scholar] [CrossRef]
- Chen, D.; Ma, Y. Effect of industrial structure on urban–rural income inequality in China. China Agric. Econ. Rev. 2022, 14, 547–566. [Google Scholar] [CrossRef]
- Su, B.; Heshmati, A. Analysis of the determinants of income and income gap between urban and rural China. China Econ. Policy Rev. 2013, 2, 1350002. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H. The role of narrowing the urban-rural income gap in sustainable socio-economic development. Chin. J. Popul. Sci. 2005, 211–215. (In Chinese) [Google Scholar]
- Wang, S.; Ouyang, Z. The Rural-urban Income Disparity and Its Effects to Economic Growth in the Case of China. Econ. Res. J. 2007, 42, 44–55. (In Chinese) [Google Scholar]
- Theil, H. Economics and Information Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Hummels, D.; Ishii, J.; Yi, K.-M. The nature and growth of vertical specialization in world trade. J. Int. Econ. 2001, 54, 75–96. [Google Scholar] [CrossRef]
- Koopman, R.; Wang, Z.; Wei, S.-J. Estimating domestic content in exports when processing trade is pervasive. J. Dev. Econ. 2012, 99, 178–189. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Liu, Y. Measuring the Domestic Value Added in China’s Exports and the Mechanism of Change. Econ. Res. J. 2013, 48, 124–137. (In Chinese) [Google Scholar]
- Shao, C.; Su, D. The Spatial Spillover Effect of Global Value Chain on Productivity. China Ind. Econ. 2017, 94–114. (In Chinese) [Google Scholar] [CrossRef]
- Tang, D. How Vertical Specialization Trade Influences China’s Employment Structure? Econ. Res. J. 2012, 47, 118–131. (In Chinese) [Google Scholar]
- Wang, Y.; Shen, Z. Endowment Structures, lncome lnequality and lndustrial Upgrading. China Econ. Q. 2018, 17, 801–824. (In Chinese) [Google Scholar]
- Xu, M.; Jiang, Y. Can the China’s lndustrial Structure Upgrading Narrow the Gap between Urban and RuraI Consumption? J. Quant. Technol. Econ. 2015, 32, 3–21. (In Chinese) [Google Scholar]
- Cheng, X.; Zhang, M.; Xu, J.; Xu, J.; Tang, D. Research on the Impact of Sustainable Urbanization on Urban Rural Income Disparity in China. Sustainability 2023, 15, 5274. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, D. Does the Digital Economy Promote Coordinated Urban–Rural Development? Evidence from China. Sustainability 2023, 15, 5460. [Google Scholar]
- Chanieabate, M.; He, H.; Guo, C.; Abrahamgeremew, B.; Huang, Y. Examining the Relationship between Transportation Infrastructure, Urbanization Level and Rural-Urban Income Gap in China. Sustainability 2023, 15, 8410. [Google Scholar] [CrossRef]
- Liu, J.; Puah, C.-H.; Arip, M.A.; Jong, M.-C. Impacts of Digital Financial Inclusion on Urban–Rural Income Disparity: A Comparative Research of the Eastern and Western Regions in China. Economies 2023, 11, 282. [Google Scholar]
- Song, Y.; Zhang, Y.; Wang, Y.; Zhang, B.; Su, J. The influence of foreign direct investment on the urban–rural income gap: Evidence from China. Kybernetes 2021, 51, 466–484. [Google Scholar] [CrossRef]
- Deng, X.; Guo, M.; Liu, Y. Digital economy development and the urban-rural income gap: Evidence from Chinese cities. PLoS ONE 2023, 18, e0280225. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H. Can Global Value Chain Participation Drive Green Upgrade in China’s Manufacturing Industry? Int. J. Environ. Res. Public Health 2022, 19, 12013. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Yang, J. Urban Agglomeration and the GVC Status of Chinese Manufacturing Enterprises. Econ. Rev. 2023, 3–16. (In Chinese) [Google Scholar] [CrossRef]
- Hartmann, D.; Guevara, M.R.; Jara-Figueroa, C.; Aristarán, M.; Hidalgo, C.A. Linking Economic Complexity, Institutions, and Income Inequality. World Dev. 2017, 93, 75–93. [Google Scholar] [CrossRef]
- Zhang, J.; Peck, J. Variegated Capitalism, Chinese Style: Regional Models, Multi-scalar Constructions. Reg. Stud. 2016, 50, 52–78. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, P.; Hu, H.; Zeng, L.; Wu, K.S.; Lv, D. Transport infrastructure and urban-rural income disparity: A municipal-level analysis in China. J. Transp. Geogr. 2022, 99, 103292. [Google Scholar] [CrossRef]
- Wang, W. Human Capital Accumulation and ReIative Poverty AIIeviation Driven by Financial Support for Agriculture: Theoretical Analysis and Empirical Evidence. Inq. Into Econ. Issues 2023, 44, 115–134. (In Chinese) [Google Scholar]
- Yang, Z.; Jiang, Y. Foreign Direct lnvestment, lndustrial Characteristics and Economic Growth: Statistical Analysis and lndustrial Comparison. Econ. Probl. 2014, 23–28. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, J. Internet Popularization and Urban-rural lncome Gap: A Theoretical and Empirical Analysis. Chin. Rural. Econ. 2019, 19–41. (In Chinese) [Google Scholar]
- Zhang, B.; Dong, W.; Yao, J.; Cheng, X. Digital Economy, Factor Allocation Efficiency of Dual-Economy and Urban-Rural Income Gap. Sustainability 2023, 15, 13514. [Google Scholar] [CrossRef]
- Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1995, 45, 25–37. [Google Scholar]
- Meng, S.; Yan, H.; Yu, J. Global Value Chain Participation and Green Innovation: Evidence from Chinese Listed Firms. Int. J. Environ. Res. Public Health 2022, 19, 8403. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, C.; He, C. Export structures, income inequality and urban-rural divide in China. Appl. Geogr. 2020, 115, 102150. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of Mediating Effects: The Development of Methods and ModeIs. Adv. Psychol. Sci. 2014, 22, 731–745. (In Chinese) [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Symbols | Application Equation |
---|---|---|---|
Dependent Variable | Urban–rural income gap | TL | (5), (7) |
Independent Variable | Global value chain participation | GVC | (5)–(9) |
Mediation Variable | Employment structure | ES | (6)–(9) |
Moderator Variable | Factor endowment structure | FE | (8) |
Industrial structure upgrading | IS | (9) | |
Control Variables | The degree of openness to the outside world | Open | (5)–(9) |
Research investment intensity | RI | (5)–(9) | |
Infrastructure level | Infra | (5)–(9) | |
Fiscal support for agriculture | FSA | (5)–(9) | |
Foreign direct investment | FDI | (5)–(9) | |
Financial development efficiency | Fin | (5)–(9) |
Variable | Sample Size | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
TL | 300 | 0.117 | 0.051 | 0.021 | 0.248 |
GVC | 300 | 0.333 | 0.215 | 0.021 | 1.000 |
ES | 300 | 0.149 | 0.149 | 0.035 | 1.036 |
FE | 300 | 2.404 | 0.721 | 1.155 | 4.882 |
IS | 300 | 2.317 | 0.122 | 2.132 | 2.779 |
Open | 300 | 0.350 | 0.409 | 0.045 | 1.639 |
RI | 300 | 1.345 | 1.023 | 0.215 | 5.885 |
Infra | 300 | 0.781 | 0.452 | 0.067 | 1.941 |
FSA | 300 | 0.021 | 0.015 | 0.002 | 0.067 |
FDI | 300 | 0.027 | 0.023 | 0.001 | 0.106 |
Fin | 300 | 0.715 | 0.103 | 0.508 | 0.969 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Variables | TL | TL | TL | TL | TL | TL | TL |
GVC | 0.0062 ** | 0.0070 *** | 0.0079 *** | 0.0076 *** | 0.0072 *** | 0.0071 *** | 0.0071 *** |
(0.0029) | (0.0026) | (0.0025) | (0.0025) | (0.0025) | (0.0025) | (0.0025) | |
Open | −0.0395 *** | −0.0227 *** | −0.0217 *** | −0.0182 *** | −0.0182 *** | −0.0186 *** | |
(0.0056) | (0.0060) | (0.0060) | (0.0061) | (0.0061) | (0.0064) | ||
RI | 0.0187 *** | 0.0204 *** | 0.0190 *** | 0.0184 *** | 0.0183 *** | ||
(0.0032) | (0.0033) | (0.0034) | (0.0035) | (0.0035) | |||
Infra | −0.0087 * | −0.0129 ** | −0.0128 ** | −0.0128 ** | |||
(0.0052) | (0.0054) | (0.0054) | (0.0054) | ||||
FSA | −0.2603 ** | −0.2721 ** | −0.2708 ** | ||||
(0.1128) | (0.1142) | (0.1145) | |||||
FDI | −0.0439 | −0.0440 | |||||
(0.0635) | (0.0636) | ||||||
Fin | −0.0036 | ||||||
(0.0137) | |||||||
_cons | 0.1308 *** | 0.1463 *** | 0.1187 *** | 0.1202 *** | 0.1249 *** | 0.1269 *** | 0.1298 *** |
(0.0017) | (0.0027) | (0.0053) | (0.0054) | (0.0057) | (0.0064) | (0.0129) | |
Fixed individuals | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Fixed time | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
R2 | 0.7727 | 0.8098 | 0.8321 | 0.8339 | 0.8373 | 0.8376 | 0.8377 |
Robustness Test 1 | Robustness Test 2 | Robustness Test 3 | Robustness Test 4 | Robustness Test 5 | |
---|---|---|---|---|---|
Substitution of Dependent Variable | Replacement of Regression Models | Addition of Control Variable | Winsorize | GMM | |
Variables | Urban–Rural Income Ratio | TL | TL | TL | TL |
L.TL | 0.8845 *** | ||||
(0.0570) | |||||
GVC | 0.1086 *** | 0.0101 *** | 0.0060 ** | 0.0070 ** | 0.0064 *** |
(0.0392) | (0.0034) | (0.0024) | (0.0029) | (0.0016) | |
lnEdu | −0.0989 *** | ||||
(0.0254) | |||||
Control variable | Yes | Yes | Yes | Yes | Yes |
Fixed individuals | Yes | Yes | Yes | Yes | Yes |
Fixed time | Yes | Yes | Yes | Yes | Yes |
AR (1) | 0.078 | ||||
AR (2) | 0.522 | ||||
Sargan Test | 0.472 | ||||
N | 300 | 300 | 300 | 300 | 270 |
R2 | 0.7205 | 0.8469 | 0.8079 |
Eastern Region | Central and Western Region | |
---|---|---|
Variables | TL | TL |
GVC | 0.0103 *** | 0.0069 ** |
(0.0032) | (0.0031) | |
Control variable | Yes | Yes |
Fixed individuals | Yes | Yes |
Fixed time | Yes | Yes |
N | 120 | 180 |
R2 | 0.8134 | 0.8970 |
(1) | (2) | |
---|---|---|
Variables | ES | TL |
GVC | 0.0684 *** | 0.0052 ** |
(0.0142) | (0.0026) | |
ES | 0.0280 ** | |
(0.0108) | ||
Control variable | Yes | Yes |
Fixed individuals | Yes | Yes |
Fixed time | Yes | Yes |
N | 300 | 300 |
R2 | 0.6744 | 0.8473 |
Variables | (1) | (2) |
---|---|---|
ES | ES | |
GVC | 0.0486 *** | 0.0578 *** |
(0.0120) | (0.0140) | |
FE | −0.1468 *** | |
(0.0264) | ||
GVC·FE | 0.0393 *** | |
(0.0150) | ||
IS | −0.0416 | |
(0.1091) | ||
GVC·IS | 0.7439 *** | |
(0.0695) | ||
Control variable | Yes | Yes |
Fixed individuals | Yes | Yes |
Fixed time | Yes | Yes |
N | 300 | 300 |
R2 | 0.7764 | 0.7164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Tang, X.; Zhao, Y. Global Value Chain Participation, Employment Structure, and Urban–Rural Income Gap in the Context of Sustainable Development. Sustainability 2024, 16, 1931. https://doi.org/10.3390/su16051931
Liu S, Tang X, Zhao Y. Global Value Chain Participation, Employment Structure, and Urban–Rural Income Gap in the Context of Sustainable Development. Sustainability. 2024; 16(5):1931. https://doi.org/10.3390/su16051931
Chicago/Turabian StyleLiu, Shuguang, Xiaowen Tang, and Yubin Zhao. 2024. "Global Value Chain Participation, Employment Structure, and Urban–Rural Income Gap in the Context of Sustainable Development" Sustainability 16, no. 5: 1931. https://doi.org/10.3390/su16051931
APA StyleLiu, S., Tang, X., & Zhao, Y. (2024). Global Value Chain Participation, Employment Structure, and Urban–Rural Income Gap in the Context of Sustainable Development. Sustainability, 16(5), 1931. https://doi.org/10.3390/su16051931