Optimal Capacity Model for Battery Swapping Station of Electric Taxis: A Case Study in Chengdu
Abstract
:1. Introduction
2. Operation Analysis of a BSS
2.1. Data Mining of Taxi Operation
2.2. Operation Analysis of a BSS
- Pattern I: Electric taxis run all day
- Pattern II: Not all electric taxis operate all day
2.3. Operation Analysis of a BSS
3. Capacity Optimization for a BSS
4. Case Study
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sukkrajang, K.; Duangsoithong, R.; Chalermyannont, K. Trade Distance and Price Model for Electric Vehicle Charging Using Blockchain-Based Technology. In Proceedings of the 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 19–22 May 2021; IEEE: Chiang Mai, Thailand, 2021; pp. 964–967. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, S.-Z.; Tang, Z.; Tian, L.; Xiong, T. An Electric Vehicle Charging Method Considering Multiple Power Exchange Modes’ Coordination. Sustainability 2023, 15, 10520. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, K.; Qin, X.; Li, Y.; Liu, H.; Cheng, X. Annual Report on Electric Vehicle Charging Infrastructure Development in China 2016-2017; China Electric Vehicle Charging Infrastructure Promotion Alliance (EVCIPA): Beijing, China, 2020. Available online: https://www.nea.gov.cn/136376732_14978397401671n.pdf (accessed on 16 November 2023).
- Sandhya, P.; Nisha, G.K. Review of Battery Charging Methods for Electric Vehicle. In Proceedings of the 2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Thiruvananthapuram, India, 10–12 March 2022; IEEE: Thiruvananthapuram, India, 2022; pp. 395–400. [Google Scholar] [CrossRef]
- Rajkumar, S.; Nagaveni, P.; Amudha, A.; Siva Ramkumar, M.; Emayavaramban, G.; Selvaganapathy, T. Optimizing EV Charging in Battery Swapping Stations with CSO-PSO Hybrid Algorithm. In Proceedings of the 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 1–3 June 2023; IEEE: Coimbatore, India, 2023; pp. 1566–1571. [Google Scholar] [CrossRef]
- Sarker, M.; Pandzic, H.; Ortega-Vazquez, M. Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; IEEE: Denver, CO, USA, 2015; pp. 901–910. [Google Scholar] [CrossRef]
- Worley, O.; Klabjan, D. Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; IEEE: Chicago, IL, USA, 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, H.; Guo, C.; Ren, J.; Sheng, J. A Coordinated Charging Strategy on Battery Swapping Station in Microgrid Considering Battery to Grid. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; IEEE: Chengdu, China, 2019; pp. 3322–3326. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, W.; Huang, L.; Wei, Z.; Liu, H.; Stankovic, J.A. Toward Urban Electric Taxi Systems in Smart Cities: The Battery Swapping Challenge. IEEE Trans. Veh. Technol. 2018, 67, 1946–1960. [Google Scholar] [CrossRef]
- Dai, Q.; Cai, T.; Duan, S.; Zhao, F. Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station. IEEE Trans. Power Deliv. 2014, 29, 1909–1917. [Google Scholar] [CrossRef]
- Tan, X.; Qu, G.; Sun, B.; Li, N.; Tsang, D.H.K. Optimal Scheduling of Battery Charging Station Serving Electric Vehicles Based on Battery Swapping. IEEE Trans. Smart Grid 2019, 10, 1372–1384. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, X. Battery Swap Pricing and Charging Strategy for Electric Taxis in China. Energy 2018, 147, 561–577. [Google Scholar] [CrossRef]
- Azeem, F.; Irshad, B.; Zidan, H.A.; Narejo, G.B.; Hussain, M.I.; Manzoor, T. Design and Analysis of a Peak Time Estimation Framework for Vehicle Occurrences at Solar Photovoltaic and Grid-Based Battery-Swappable Charging Stations. Sustainability 2023, 15, 16153. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Yu, Z.; Zhu, X.; Shi, D. A Monte Carlo Simulation Approach to Evaluate Service Capacities of EV Charging and Battery Swapping Stations. IEEE Trans. Ind. Inform. 2018, 14, 3914–3923. [Google Scholar] [CrossRef]
- You, P.; Yang, Z.; Zhang, Y.; Low, S.H.; Sun, Y. Optimal Charging Schedule for a Battery Switching Station Serving Electric Buses. IEEE Trans. Power Syst. 2016, 31, 3473–3483. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Zhao, K.-X.; Wang, C. Economic Dispatch Containing Wind Power and Electric Vehicle Battery Swap Station. In Proceedings of the PES Transmission and Distribution Conference and Exposition 2012, Orlando, FL, USA, 7–10 May 2012; IEEE: Orlando, FL, USA, 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Ni, X.; Zeng, W. Revealing Spatial-Temporal Characteristics and Patterns of Urban Travel: A Large-Scale Analysis and Visualization Study with Taxi GPS Data. ISPRS Int. J. Geo-Inf. 2019, 8, 257. [Google Scholar] [CrossRef]
- Adegbohun, F.; Von Jouanne, A.; Lee, K. Autonomous Battery Swapping System and Methodologies of Electric Vehicles. Energies 2019, 12, 667. [Google Scholar] [CrossRef]
- Amiri, S.S.; Jadid, S.; Saboori, H. Multi-Objective Optimum Charging Management of Electric Vehicles through Battery Swapping Stations. Energy 2018, 165, 549–562. [Google Scholar] [CrossRef]
- Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H.G. Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 2–10. [Google Scholar] [CrossRef]
- Alhijawi, B.; Awajan, A. Genetic Algorithms: Theory, Genetic Operators, Solutions, and Applications. Evol. Intell. 2023. [Google Scholar] [CrossRef]
- Guzman Razo, D.E.; Müller, B.; Madsen, H.; Wittwer, C. A Genetic Algorithm Approach as a Self-Learning and Optimization Tool for PV Power Simulation and Digital Twinning. Energies 2020, 13, 6712. [Google Scholar] [CrossRef]
200 ETs | 400 ETs | 600 ETs | 800 ETs | 1000 ETs | |
---|---|---|---|---|---|
Total demand | 420 | 829 | 1236 | 1646 | 2052 |
Average demand | 18 | 35 | 52 | 69 | 86 |
Timeline | 200 ETs | 400 ETs | 600 ETs | 800 ETs | 1000 ETs |
---|---|---|---|---|---|
Total demand | 336 | 664 | 990 | 1315 | 1640 |
Average demand | 14 | 28 | 42 | 55 | 69 |
Parameter | Value |
---|---|
Number of Populations | 20–100 |
Number of Iterations | 100–500 |
Possibility of Crossover | 0.4–0.99 |
Possibility of Mutation | 0.0001–0.1 |
Pattern I | Pattern II | |||
---|---|---|---|---|
The Number of ETs | The Optimal Capacity of BSS | Profits of BSS (Thousand USD) | The Optimal Capacity of BSS | Profits of BSS (Thousand USD) |
200 | 29 | 887.1 | 33 | 208.6 |
400 | 57 | 1843.7 | 64 | 432.3 |
600 | 86 | 2539.7 | 96 | 592.1 |
800 | 115 | 3368.0 | 130 | 720.8 |
1000 | 141 | 4222.1 | 160 | 924.0 |
The Number of ETs | Pattern I | Pattern II |
---|---|---|
200 | 100% | 100% |
400 | 100% | 100% |
600 | 100% | 100% |
800 | 100% | 100% |
1000 | 100% | 100% |
Pattern I | Pattern II | |||
---|---|---|---|---|
The Number of ETs | The Optimal Capacity of BSS | Profits of BSS (Thousand USD) | The Optimal Capacity of BSS | Profits of BSS (Thousand USD) |
200 | 27 | 822.8 | 30 | 159 |
400 | 53 | 1495.8 | 60 | 367.4 |
600 | 79 | 2178 | 90 | 468.2 |
800 | 105 | 2827.4 | 121 | 582.4 |
1000 | 131 | 3624.6 | 151 | 658.6 |
ETs Numbers | 200 | 400 | 600 | 800 | 1000 |
---|---|---|---|---|---|
Pattern I | 94.29% | 94.45% | 94.58% | 93.39% | 94.54% |
Pattern II | 92.56% | 94.57% | 94.74% | 94.52% | 94.70% |
Pattern I | Pattern II | |||
---|---|---|---|---|
ET Numbers | Difference in Battery Number | Difference in Profits (Thousand USD) | Difference in Battery Number | Difference in Profits (Thousand USD) |
200 | 2 | 64.7 | 3 | 50.6 |
400 | 4 | 232.2 | 4 | 64.7 |
600 | 7 | 361.7 | 6 | 123.9 |
800 | 10 | 540.7 | 9 | 137.5 |
1000 | 10 | 597.6 | 9 | 265.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Wang, G.; Zhang, Y.; Li, B.; Zhao, J. Optimal Capacity Model for Battery Swapping Station of Electric Taxis: A Case Study in Chengdu. Sustainability 2024, 16, 1676. https://doi.org/10.3390/su16041676
Xie S, Wang G, Zhang Y, Li B, Zhao J. Optimal Capacity Model for Battery Swapping Station of Electric Taxis: A Case Study in Chengdu. Sustainability. 2024; 16(4):1676. https://doi.org/10.3390/su16041676
Chicago/Turabian StyleXie, Siyu, Guangyan Wang, Yiyi Zhang, Bo Li, and Junhui Zhao. 2024. "Optimal Capacity Model for Battery Swapping Station of Electric Taxis: A Case Study in Chengdu" Sustainability 16, no. 4: 1676. https://doi.org/10.3390/su16041676
APA StyleXie, S., Wang, G., Zhang, Y., Li, B., & Zhao, J. (2024). Optimal Capacity Model for Battery Swapping Station of Electric Taxis: A Case Study in Chengdu. Sustainability, 16(4), 1676. https://doi.org/10.3390/su16041676