Reusing Thermal Insulation Materials: Reuse Potential and Durability Assessment of Stone Wool Insulation in Flat Roofs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Material Testing
3. Results
3.1. Damage Assessment
3.2. Performance Assessment
3.2.1. Thickness
3.2.2. Density
3.2.3. Short-Term Water Absorption (STWA)
3.2.4. Water Absorption Patterns with SW on a Steel Deck Flat Roof Structure
3.2.5. Long-Term Water Absorption (LTWA)
3.2.6. Compressive Stress at 10% Deformation
3.2.7. Point Load at 5 mm Deformation
3.2.8. Thermal Conductivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lederer, J.; Gassner, A.; Keringer, F.; Mollay, U.; Schremmer, C.; Fellner, J. Material Flows and Stocks in the Urban Building Sector: A Case Study from Vienna for the Years 1990–2015. Sustainability 2019, 12, 300. [Google Scholar] [CrossRef]
- Hoxha, D.; Ismail, B.; Rotaru, A.; Izabel, D.; Renaux, T. Assessment of the Usability of Some Bio-Based Insulation Materials in Double-Skin Steel Envelopes. Sustainability 2022, 14, 10797. [Google Scholar] [CrossRef]
- Zoure, A.N.; Genovese, P.V. Comparative Study of the Impact of Bio-Sourced and Recycled Insulation Materials on Energy Efficiency in Office Buildings in Burkina Faso. Sustainability 2023, 15, 1466. [Google Scholar] [CrossRef]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered Mycelium Composite Construction Materials from Fungal Biorefineries: A Critical Review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Bakatovich, A.; Gaspar, F.; Boltrushevich, N. Thermal Insulation Material Based on Reed and Straw Fibres Bonded with Sodium Silicate and Rosin. Constr. Build. Mater. 2022, 352, 129055. [Google Scholar] [CrossRef]
- Koh, C.H.; Gauvin, F.; Schollbach, K.; Brouwers, H.J.H. Upcycling Wheat and Barley Straws into Sustainable Thermal Insulation: Assessment and Treatment for Durability. Resour. Conserv. Recycl. 2023, 198, 107161. [Google Scholar] [CrossRef]
- Massoudinejad, M.; Amanidaz, N.; Santos, R.M.; Bakhshoodeh, R. Use of Municipal, Agricultural, Industrial, Construction and Demolition Waste in Thermal and Sound Building Insulation Materials: A Review Article. J. Env. Health Sci. Eng. 2019, 17, 1227–1242. [Google Scholar] [CrossRef] [PubMed]
- Cetiner, I.; Shea, A.D. Wood Waste as an Alternative Thermal Insulation for Buildings. Energy Build. 2018, 168, 374–384. [Google Scholar] [CrossRef]
- Briga-Sá, A.; Nascimento, D.; Teixeira, N.; Pinto, J.; Caldeira, F.; Varum, H.; Paiva, A. Textile Waste as an Alternative Thermal Insulation Building Material Solution. Constr. Build. Mater. 2013, 38, 155–160. [Google Scholar] [CrossRef]
- Malet-Damour, B.; Habas, J.-P.; Bigot, D. Is Loose-Fill Plastic Waste an Opportunity for Thermal Insulation in Cold and Humid Tropical Climates? Sustainability 2023, 15, 9483. [Google Scholar] [CrossRef]
- Benkreira, H.; Khan, A.; Horoshenkov, K.V. Sustainable Acoustic and Thermal Insulation Materials from Elastomeric Waste Residues. Chem. Eng. Sci. 2011, 66, 4157–4171. [Google Scholar] [CrossRef]
- Duong, H.M.; Ling, N.R.B.; Thai, Q.B.; Le, D.K.; Nguyen, P.T.T.; Goh, X.Y.; Phan-Thien, N. A Novel Aerogel from Thermal Power Plant Waste for Thermal and Acoustic Insulation Applications. Waste Manag. 2021, 124, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Debacker, W.; Vrijders, J.; Voorter, J.; Vergauwen, A.; Bergmans, J.; Stouthuysen, P.; OVAM. Urban Mining van Gebouwen; Vlaanderen Circulair: Mechelen, Belgium, 2021; Available online: https://vlaanderen-circulair.be/src/Frontend/Files/userfiles/files/FINAL%20Eindrapport%20Deelopdracht%201_versie%2020210329_hoge%20resolutie.pdf (accessed on 16 October 2023).
- Füchsl, S.; Rheude, F.; Röder, H. Life Cycle Assessment (LCA) of Thermal Insulation Materials: A Critical Review. Clean. Mater. 2022, 5, 100119. [Google Scholar] [CrossRef]
- Wiprächtiger, M.; Haupt, M.; Heeren, N.; Waser, E.; Hellweg, S. A Framework for Sustainable and Circular System Design: Development and Application on Thermal Insulation Materials. Resour. Conserv. Recycl. 2020, 154, 104631. [Google Scholar] [CrossRef]
- Eurima: How is Mineral Wool Insulation Made? Available online: https://www.eurima.org/how-is-mineral-wool-insulation-made (accessed on 19 December 2023).
- NIBE. Milieuclassificaties. Available online: https://www.nibe.info/nl (accessed on 19 December 2023).
- Milieubewust Isoleren. Platdak Isolatie—Massiefbouw. Available online: https://www.milieubewustisoleren.be/milieu-impact/platdak-isolatie-massiefbouw (accessed on 19 December 2023).
- De La Hera, G.; Muñoz-Díaz, I.; Cifrian, E.; Vitorica, R.; Gutierrez San Martin, O.; Viguri, J.R. Comparative Environmental Life Cycle Analysis of Stone Wool Production Using Traditional and Alternative Materials. Waste Biomass Valor. 2017, 8, 1505–1520. [Google Scholar] [CrossRef]
- Giama, E.; Mamaloukakis, M.; Papadopoulos, A.M. Circularity in Production Process as a Tool to Reduce Energy, Environmental Impacts and Operational Cost: The Case of Insulation Materials. In 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech); IEEE: Split, Croatia, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Kubiliute, R.; Kaminskas, R.; Kazlauskaite, A. Mineral Wool Production Waste as an Additive for Portland Cement. Cem. Concr. Compos. 2018, 88, 130–138. [Google Scholar] [CrossRef]
- Straub, A.; van Nunen, H.; Janssen, R.; Liebregts, M.A.A.M. Levensduur van Bouwproducten: Methode voor Referentiewaarden; Stichting Bouwresearch: Rotterdam, The Netherlands, 2011. [Google Scholar]
- Väntsi, O.; Kärki, T. Mineral Wool Waste in Europe: A Review of Mineral Wool Waste Quantity, Quality, and Current Recycling Methods. Mater. Cycles Waste Manag. 2014, 16, 62–72. [Google Scholar] [CrossRef]
- Potting, J.; Hekkert, M.; Worrell, E.; Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain; Policy Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2017; Available online: https://www.pbl.nl/sites/default/files/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf (accessed on 19 December 2023).
- Coelho, A.; De Brito, J. Influence of Construction and Demolition Waste Management on the Environmental Impact of Buildings. Waste Manag. 2012, 32, 532–541. [Google Scholar] [CrossRef]
- Superti, V.; Forman, T.V.; Houmani, C. Recycling Thermal Insulation Materials: A Case Study on More Circular Management of Expanded Polystyrene and Stonewool in Switzerland and Research Agenda. Resources 2021, 10, 104. [Google Scholar] [CrossRef]
- Piña Ramírez, C.; Del Río Merino, M.; Viñas Arrebola, C.; Vidales Barriguete, A.; Kosior-Kazberuk, M. Analysis of the Mechanical Behaviour of the Cement Mortars with Additives of Mineral Wool Fibres from Recycling of CDW. Constr. Build. Mater. 2019, 210, 56–62. [Google Scholar] [CrossRef]
- Piña Ramírez, C.; Atanes Sánchez, E.; Del Río Merino, M.; Viñas Arrebola, C.; Vidales Barriguete, A. Feasibility of the Use of Mineral Wool Fibres Recovered from CDW for the Reinforcement of Conglomerates by Study of Their Porosity. Constr. Build. Mater. 2018, 191, 460–468. [Google Scholar] [CrossRef]
- Väntsi, O.; Kärki, T. Utilization of Recycled Mineral Wool as Filler in Wood–Polypropylene Composites. Constr. Build. Mater. 2014, 55, 220–226. [Google Scholar] [CrossRef]
- Ji, R.; Zheng, Y.; Zou, Z.; Chen, Z.; Wei, S.; Jin, X.; Zhang, M. Utilization of Mineral Wool Waste and Waste Glass for Synthesis of Foam Glass at Low Temperature. Constr. Build. Mater. 2019, 215, 623–632. [Google Scholar] [CrossRef]
- Pontinha, A.D.R.; Mäntyneva, J.; Santos, P.; Durães, L. Thermomechanical Performance Assessment of Sustainable Buildings’ Insulating Materials under Accelerated Ageing Conditions. Gels 2023, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Landolfi, R.; Nicolella, M. Durability Assessment of ETICS: Comparative Evaluation of Different Insulating Materials. Sustainability 2022, 14, 980. [Google Scholar] [CrossRef]
- Belayachi, N.; Hoxha, D.; Slaimia, M. Impact of Accelerated Climatic Aging on the Behavior of Gypsum Plaster-Straw Material for Building Thermal Insulation. Constr. Build. Mater. 2016, 125, 912–918. [Google Scholar] [CrossRef]
- Bomberg, M.T.; Kumaran, M.K. Progress Report on Long-Term Thermal Performance of Polyisocyanurate Boardstock Materials; National Research Council of Canada: Ottawa, ON, Canada, 1991; p. 28. [Google Scholar] [CrossRef]
- Montanari, G.C.; Mazzanti, G. Ageing of Polymeric Insulating Materials and Insulation System Design. Polym. Int. 2002, 51, 1151–1158. [Google Scholar] [CrossRef]
- Murphy, J. Long-Term Aging of Closed-Celled Foam Insulation. Cell. Polym. 2010, 29, 313–326. [Google Scholar] [CrossRef]
- Berardi, U. The Impact of Aging and Environmental Conditions on the Effective Thermal Conductivity of Several Foam Materials. Energy 2019, 182, 777–794. [Google Scholar] [CrossRef]
- Wilkes, K.E.; Yarbrough, D.W.; Gabbard, W.A.; Nelson, G.E.; Booth, J.R. Aging of Polyurethane Foam Insulation in Simulated Refrigerator Panels–Three-Year Results with Third-Generation Blowing Agents. J. Cell. Plast. 2002, 38, 317–339. [Google Scholar] [CrossRef]
- Langmans, J.; Roels, S. Durability Assessment of Mineral Wool Insulation: What Are the Thermal Properties after 20 Years? 2017. In Proceedings of the 14th International Conference on Durability of Building Materials and Components, Ghent, Belgium, 29–31 May 2017. [Google Scholar]
- The Durability of Mineral Wool Products. 2016. Available online: https://www.eurima.org/uploads/files/modules/articles/1669726579_2017-02-21%20Eurima%20Position%20Paper_Durability%20MW_Nov%202016.pdf (accessed on 16 October 2023).
- E3.3-2016/01; Durability Project Mineral Wool. FIW München: Gräfelfing, Germany, 2016; p. 49. Available online: https://fivra.it/images/documenti/approfondimenti/durabilita-lane/2016-04-27%20FIW%20-%20E3%203-2016_01%20EURIMA%20Brussels%20-%20Durability%20Project%20Miner....pdf (accessed on 16 October 2023).
- Stazi, F.; Di Perna, C.; Munafò, P. Durability of 20-Year-Old External Insulation and Assessment of Various Types of Retrofitting to Meet New Energy Regulations. Energy Build. 2009, 41, 721–731. [Google Scholar] [CrossRef]
- Stazi, F.; Tittarelli, F.; Politi, G.; Di Perna, C.; Munafò, P. Assessment of the Actual Hygrothermal Performance of Glass Mineral Wool Insulation Applied 25 Years Ago in Masonry Cavity Walls. Energy Build. 2014, 68, 292–304. [Google Scholar] [CrossRef]
- Tittarelli, F.; Stazi, F.; Politi, G.; di Perna, C.; Munafò, P. Degradation of Glass Mineral Wool Insulation after 25 Years in Masonry Cavity Walls. In Proceedings of the International Journal Conference on Humanities, Bio-Science, Chemical and Environmental Engineering (HBCEE’2014), Dubai, United Arab Emirates, 6–7 January 2014; pp. 9–13. [Google Scholar]
- Nagy, B.; Simon, T.K.; Nemes, R. Effect of Built-in Mineral Wool Insulations Durability on Its Thermal and Mechanical Performance. Therm. Anal. Calorim. 2020, 139, 169–181. [Google Scholar] [CrossRef]
- ATG 11/2413; Technische Goedkeuring ATG met Certificatie: Isolatiesysteem voor Warm Dak Taurox DUO NP, Taurox DUO NP Bitufilm, Taurox DUO Bitumen. BUtgB: Zaventem, Belgium; BCCA: Diegem, Belgium; Rockwool: Wijnegem, Belgium, 2011.
- ATG 04/2413; Technische Goedkeuring met Certificatie: Isolatiesysteem voor Warm Dak Taurox DUO NP, Taurox DUO NP Bitufilm, Taurox DUO Bitumen. BUtgB: Zaventem, Belgium; BCCA: Diegem, Belgium; Rockwool: Wijnegem, Belgium, 2004.
- ATG 11/2601; Technische Goedkeuring ATG met Certificatie: Isolatiesysteem voor Warm Dak Rhinox, Rhinox Film, Rhinox Afschot en Rhinox Afschot Film. BUtgB: Zaventem, Belgium; BCCA: Diegem, Belgium; Rockwool: Wijnegem, Belgium, 2011.
- ATG 94/1685; Technische Goedkeuring met Certificaat: Isolatiesysteem voor Warm Dak Rockwool Serie 340 Type 341, 345, 348 en 349. BUtgB: Zaventem, Belgium; BCCA: Diegem, Belgium; Rockwool: Wijnegem, Belgium, 1994.
- ATG 03/H577-2; Productgoedkeuring met Certificatie: Minerale Wol—Rotswol (MW). BUtgB: Zaventem, Belgium; BCCA: Diegem, Belgium; Rockwool: Wijnegem, Belgium, 2003.
- EN 13162+A1; Thermal Insulation Products for Buildings–Factory Made Mineral Wool (MW) Products. Slovenian Institute for Standardization (SIST): Ljubljana, Slovenia, 2015.
- EN ISO 29767; Thermal Insulating Products for Building Applications—Determination of Short-Term Water Absorption by Partial Immersion. International Organization for Standardization: Geneva, Switzerland, 2019.
- EN 12087; Thermal Insulating Products for Building Applications—Determination of Long Term Water Absorption by Immersion. Slovenian Institute for Standardization (SIST): Ljubljana, Slovenia, 2013.
- EN ISO 29469; Thermal Insulating Products for Building Applications—Determination of Compression Behaviour. International Organization for Standardization: Geneva, Switzerland, 2022.
- Thermal Insulating Products for Building Applications—Determination of Behaviour under Point Load. EN 12430. Slovenian Institute for Standardization (SIST): Ljubljana, Slovenia, 2013.
- EN 12667; Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance. British Standard: London, UK, 2001.
- EN 1602; Thermal Insulating Products for Building Applications—Determination of the Apparent Density. Slovenian Institute for Standardization (SIST): Ljubljana, Slovenia, 2013.
- Noirfalisse, E. Het Platte Dak; Technische Voorlichting 280; Buildwise: Ottignies-Louvain-la-Neuve, Belgium, 2022; p. 160. [Google Scholar]
- Transmissie Referentie Document. 2018. Available online: https://assets.vlaanderen.be/image/upload/v1675177215/MB_van_28_december_2018_Bijlage_4_voor_bouwaanvragen_vanaf_1_januari_2023_draft_wogkau.pdf (accessed on 1 March 2023).
Case | Roof Structure | Vapor Barrier | Attachment | Original Thickness (mm) | Density Type | Age (Years) | Technical Approval (ATG) |
---|---|---|---|---|---|---|---|
C1a 1 | Concrete | - | glued | 110–140 | Triple 2 | 12 | 11/2601 [48] |
C1b 1 | Concrete | yes | glued | 70 | Dual 3 | 12 | 11/2413 [46] |
C2 | Concrete | yes | glued | 60 | Triple 2 | 12 | 11/2601 [48] |
S1 | Steel deck | no | mechanical | 40 | Mono 4 | 28 | 94/1685 [49] |
S2 | Steel deck | no | mechanical | 60 | Mono 4 | 25 | 03/H577-2 [50] |
S3 | Steel deck | no | mechanical | 60 | Mono 4 | 22 | 03/H577-2 [50] |
S4 | Steel deck | no | mechanical | 80 | Dual 3 | 17 | 04/2413 [47] |
Case | t0 (mm) | t (mm) | Δt (mm) |
---|---|---|---|
C1a | 110–140 | - 1 | - 1 |
C1b | 70 | 68 | 2 |
C2 | 60 | 58 | 2 |
S1 | 40 | 39 | 1 |
S2 | 60 | 58 | 2 |
S3 | 60 | 54 | 6 |
S4 | 80 | 76 | 4 |
Case | ρmean (kg/m3) | Δρ (kg/m3) | Δρ (%) |
---|---|---|---|
C1a | 158 | +3 | +1.9 |
C1b | 171 | +16 | +10.3 |
C2 | 204 | +49 | +31.6 |
S1 | 154 | −1 | −0.6 |
S2 | 155 | 0 | 0.0 |
S3 | 160 | +5 | +3.2 |
S4 | 164 | +9 | +5.8 |
Case | ld (W/m.K) | lm (W/m.K) | Δl (%) | lm + 2% (W/m.K) | Δl (%) |
---|---|---|---|---|---|
C1a | 0.040 | - | - | - | - |
C1b | 0.040 | 0.0372 | −7.1 | 0.0379 | −5.2 |
C2 | 0.040 | 0.0388 | −3.0 | 0.0396 | −1.1 |
S1 | 0.040 | 0.0357 | −10.7 | 0.0364 | −8.9 |
S2 | 0.040 | 0.0390 | −2.5 | 0.0398 | −0.5 |
S3 | 0.040 | 0.0381 | −4.8 | 0.0389 | −2.8 |
S4 | 0.040 | 0.0378 | −5.5 | 0.0386 | −3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acar, G.; Steeman, M.; Van Den Bossche, N. Reusing Thermal Insulation Materials: Reuse Potential and Durability Assessment of Stone Wool Insulation in Flat Roofs. Sustainability 2024, 16, 1657. https://doi.org/10.3390/su16041657
Acar G, Steeman M, Van Den Bossche N. Reusing Thermal Insulation Materials: Reuse Potential and Durability Assessment of Stone Wool Insulation in Flat Roofs. Sustainability. 2024; 16(4):1657. https://doi.org/10.3390/su16041657
Chicago/Turabian StyleAcar, Gentiel, Marijke Steeman, and Nathan Van Den Bossche. 2024. "Reusing Thermal Insulation Materials: Reuse Potential and Durability Assessment of Stone Wool Insulation in Flat Roofs" Sustainability 16, no. 4: 1657. https://doi.org/10.3390/su16041657
APA StyleAcar, G., Steeman, M., & Van Den Bossche, N. (2024). Reusing Thermal Insulation Materials: Reuse Potential and Durability Assessment of Stone Wool Insulation in Flat Roofs. Sustainability, 16(4), 1657. https://doi.org/10.3390/su16041657