Processing of Agricultural Residues with a High Concentration of Structural Carbohydrates into Biogas Using Selective Biological Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Characteristics
2.2. Characteristics of Biological Product (BP)
2.3. Methodology for the Preparation of the Studied Biological Product without pH Regulation
2.4. Methodology for the Preparation of the Studied Biological Product with pH Regulation
2.4.1. Influence of BP on the Development of Microorganism Cultures
2.4.2. BBP Tests
2.4.3. Periodic Loading Studies
2.5. Research Equipment
2.6. Determination of Biogas Yield and Energy Value of Feedstock
3. Results and Discussion
3.1. Influence of the BP on the Development of Microorganism Cultures
3.2. The BBP Tests
3.3. Results of the Processing of Straw Treated with the BP into Biogas in the Continuous Load Mode
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DNV. Energy Transition Outlook 2020—A Global and Regional Forecast to 2050; DNV: Høvik, Norway, 2023. [Google Scholar]
- Motola, V.; Scarlat, N.; Hurtig, O.; Buffi, M.; Georgakaki, A.; Letout, S.; Mountraki, A.J.G. Clean Energy Technology Observatory: Bioenergy in the European Union—2022 Status Report on Technology Development, Trends, Value Chains and Markets; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Nicoli, F.; van der Duin, D.; Burgoon, B. Which Energy Security Union? An experiment on public preferences for energy union alternatives in 5 western European countries. Energy Policy 2023, 183, 113734. [Google Scholar] [CrossRef]
- Raina, D.; Kumar, V.; Saran, S. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Chemosphere 2022, 294, 133712. [Google Scholar] [CrossRef]
- Calero, M.; Godoy, V.; Heras, C.G.; Lozano, E.; Arjandas, S.; Martín-Lara, M.A. Current state of biogas and biomethane production and its implications for Spain. Sustain. Energy Fuels 2023, 7, 3584–3602. [Google Scholar] [CrossRef]
- Shrestha, S.; Fonoll, X.; Khanal, S.K.; Raskin, L. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. Bioresour. Technol. 2017, 245, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- De Meester, S.; Demeyer, J.; Velghe, F.; Peene, A.; Van Langenhove, H.; Dewulf, J. The environmental sustainability of anaerobic digestion as a biomass valorization technology. Bioresour. Technol. 2012, 121, 396–403. [Google Scholar] [CrossRef]
- Börjesson, P.; Tufvesson, L.M. Agricultural crop-based biofuels—Resource efficiency and environmental performance including direct land use changes. J. Clean. Prod. 2011, 19, 108–120. [Google Scholar] [CrossRef]
- Deng, Y.; Dai, B.; Xu, J.; Liu, X.; Xu, J. Anaerobic co-digestion of rice straw and soybean straw to increase biogas production by pretreatment with trichoderma reesei RUT C30. Environ. Prog. Sustain. Energy 2018, 37, 1050–1057. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, B.; Li, A.; Zhang, L.; Li, R.; Yang, T.; Xing, W. Mechanism of process imbalance of long-term anaerobic digestion of food waste and role of trace elements in maintaining anaerobic process stability. Bioresour. Technol. 2019, 275, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Croce, S.; Wei, Q.; D’Imporzano, G.; Dong, R.; Adani, F. Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 2016, 34, 1289–1304. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Gu, Y.; Liu, Z.; Shen, Z.; Chu, H.; Zhou, X. Enhancing methane production from rice straw by extrusion pretreatment. Appl. Energy 2014, 122, 34–41. [Google Scholar] [CrossRef]
- Loughrin, J.H.; Parekh, R.R.; Agga, G.E.; Silva, P.J.; Sistani, K.R. Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound. Microorganisms 2023, 11, 2349. [Google Scholar] [CrossRef] [PubMed]
- Redlinger-Pohn, J.D.; Petkovšek, M.; Gordeyeva, K.; Zupanc, M.; Gordeeva, A.; Zhang, Q.; Dular, M.; Söderberg, L.D. Cavitation Fibrillation of Cellulose Fiber. Biomacromolecules 2022, 23, 847–862. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Chandel, M.K. Enhancement of biogas production from organic fraction of municipal solid waste using hydrothermal pretreatment. Bioresour. Technol. Rep. 2019, 7, 100281. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Appl. Energy 2012, 94, 129–140. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef] [PubMed]
- Pellera, F.-M.; Gidarakos, E. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 2018, 71, 689–703. [Google Scholar] [CrossRef]
- Jaffar, M.; Pang, Y.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Korai, R.M.; Li, X. Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion. Chin. J. Chem. Eng. 2016, 24, 404–409. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef]
- Kumar, R.; Kim, T.H.; Basak, B.; Patil, S.M.; Kim, H.H.; Ahn, Y.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Jeon, B.-H. Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocesses for sustainable biofuels production. J. Clean. Prod. 2022, 333, 130180. [Google Scholar] [CrossRef]
- Arevalo-Gallegos, A.; Ahmad, Z.; Asgher, M.; Parra-Saldivar, R.; Iqbal, H.M.N. Lignocellulose: A sustainable material to produce value-added products with a zero waste approach—A review. Int. J. Biol. Macromol. 2017, 99, 308–318. [Google Scholar] [CrossRef]
- Ziemiński, K.; Romanowska, I.; Kowalska, M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 2012, 32, 1131–1137. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Rajesh Banu, J.; Rao, C.V.; Kim, Y.-G.; Yang, Y.-H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, X.; Li, Z.; Wang, X.; Sun, J. Effects of liquid digestate pretreatment on biogas production for anaerobic digestion of wheat straw. Bioresour. Technol. 2019, 280, 345–351. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresour. Technol. 2016, 199, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Outeiriño, D.; Costa-Trigo, I.; Pinheiro de Souza Oliveira, R.; Pérez Guerra, N.; Salgado, J.M.; Domínguez, J.M. Biorefinery of Brewery Spent Grain by Solid-State Fermentation and Ionic Liquids. Foods 2022, 11, 3711. [Google Scholar] [CrossRef] [PubMed]
- Kasinath, A.; Fudala-Ksiazek, S.; Szopinska, M.; Bylinski, H.; Artichowicz, W.; Remiszewska-Skwarek, A.; Luczkiewicz, A. Biomass in biogas production: Pretreatment and codigestion. Renew. Sustain. Energy Rev. 2021, 150, 111509. [Google Scholar] [CrossRef]
- Buivydas, E.; Navickas, K.; Venslauskas, K.; Žalys, B.; Župerka, V.; Rubežius, M. Biogas Production Enhancement through Chicken Manure Co-Digestion with Pig Fat. Appl. Sci. 2022, 12, 4652. [Google Scholar] [CrossRef]
- Mignogna, D.; Ceci, P.; Cafaro, C.; Corazzi, G.; Avino, P. Production of Biogas and Biomethane as Renewable Energy Sources: A Review. Appl. Sci. 2023, 13, 10219. [Google Scholar] [CrossRef]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants 2021, 10, 1734. [Google Scholar] [CrossRef] [PubMed]
- Tilvikienė, V.; Šlepetienė, A.; Kadžiulienė, Ž. Effects of 5 years of digestate application on biomass production and quality of cocksfoot (Dactylis glomerata L.). Grass Forage Sci. 2018, 73, 206–217. [Google Scholar] [CrossRef]
- Wonglom, P.; Ito, S.; Sunpapao, A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol. 2020, 43, 100867. [Google Scholar] [CrossRef]
- Dumas, C.; Silva Ghizzi Damasceno, G.; Barakat, A.; Carrère, H.; Steyer, J.-P.; Rouau, X. Effects of grinding processes on anaerobic digestion of wheat straw. Ind. Crops Prod. 2015, 74, 450–456. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kumar, V. Optimal Physical Parameters for Growth of Trichoderma Species at Varying pH, Temperature and Agitation. Virol. Mycol. 2013, 3, 1000127. [Google Scholar] [CrossRef]
- Žalys, B.; Venslauskas, K.; Navickas, K.; Buivydas, E.; Rubežius, M. The Influence of CO2 Injection into Manure as a Pretreatment Method for Increased Biogas Production. Sustainability 2023, 15, 3670. [Google Scholar] [CrossRef]
- Rubežius, M.; Venslauskas, K.; Navickas, K.; Bleizgys, R. Influence of aerobic pretreatment of poultry manure on the biogas production process. Processes 2020, 8, 1109. [Google Scholar] [CrossRef]
- Kavan Kumar, V.; Mahendiran, R.; Subramanian, P.; Karthikeyan, S.; Surendrakumar, A.; Kumargouda, V.; Ravi, Y.; Choudhary, S.; Singh, R.; Verma, A.K. Optimization of biogas potential using kinetic models, response surface methodology, and instrumental evidence for biodegradation of tannery fleshings during anaerobic digestion. Open Life Sci. 2023, 18, 20220721. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, J.; Xiaowei, C. Application of Modified Gompertz Model to Study on Biogas production from middle temperature co-digestion of pig manure and dead pigs. E3S Web Conf. 2019, 118, 03022. [Google Scholar] [CrossRef]
- Gomes, C.S.; Strangfeld, M.; Meyer, M. Diauxie Studies in Biogas Production from Gelatin and Adaptation of the Modified Gompertz Model: Two-Phase Gompertz Model. Appl. Sci. 2021, 11, 1067. [Google Scholar] [CrossRef]
- Ilo, O.P.; Nkomo, S.L.; Mkhize, N.M.; Mutanga, O.; Simatele, M.D. The effects of Trichoderma atroviride pretreatment on the biogas production from anaerobic digestion of water hyacinth. Energy Environ. 2022, 0958305X2211413. [Google Scholar] [CrossRef]
- Lodha, A.; Pawar, S.; Rathod, V. Optimised cellulase production from fungal co-culture of Trichoderma reesei NCIM 1186 and Penicillium citrinum NCIM 768 under solid state fermentation. J. Environ. Chem. Eng. 2020, 8, 103958. [Google Scholar] [CrossRef]
- Lesteur, M.; Latrille, E.; Maurel, V.B.; Roger, J.M.; Gonzalez, C.; Junqua, G.; Steyer, J.P. First step towards a fast analytical method for the determination of Biochemical Methane Potential of solid wastes by near infrared spectroscopy. Bioresour. Technol. 2011, 102, 2280–2288. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Poulsen, T.G.; Sheng, K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 2016, 180, 661–671. [Google Scholar] [CrossRef]
- Sahil, S.; Karvembu, P.; Kaur, R.; Katyal, P.; Phutela, U.G. Enhanced biogas production from rice straw through pretreatment with cellulase producing microbial consortium. Energy Nexus 2023, 12, 100246. [Google Scholar] [CrossRef]
- Mutschlechner, M.; Illmer, P.; Wagner, A.O. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride. Waste Manag. 2015, 43, 98–107. [Google Scholar] [CrossRef]
Research Parameter | Unit | Research Results | Standard, Method |
---|---|---|---|
In natural matter | |||
Total solids (TS) | % | 92.215 | LST EN 13040:2008 |
Organic matter (VS) | % | 88.000 | LST EN 13039:2012 |
Total nitrogen (N) | % | 0.520 | LST EN 13654-1:2002, ISO 11261:1995 |
Total phosphorus (P) | % | 0.038 | LST EN 13650:2006, LST ISO 6878:2004 |
Total potassium (K) | % | 1.237 | LST EN 13650:2006, LST ISO 9964-3:1998 |
In total solids | |||
Total nitrogen (N) | % | 0.564 | LST EN 13654-1:2002, ISO 11261:1995 |
Total phosphorus (P) | % | 0.041 | LST EN 13650:2006, LST ISO 6878:2004 |
Total potassium (K) | % | 1.341 | LST EN 13650:2006, LST ISO 9964-3:1998 |
Magnesium (Mg) | mg/kg | 1020 | LST EN 13650:2006, LST EN ISO 7980:2000 |
Sulfur (S) | mg/kg | 813 | LST EN 13650:2006, AOAC 973.57 |
Selenium (Se) | mg/kg | <0.167 | LST EN 13650:2006, LST EN ISO 15586:2004 |
Chromium (Cr) | mg/kg | 1.067 | LST EN 13650:2006, LST EN ISO 11885:2009 |
Nickel (Ni) | mg/kg | <1.3 | |
Molybdenum (Mo) | mg/kg | <2.2 | |
Boron (B) | mg/kg | 11.867 | |
Cobalt (Co) | mg/kg | <0.2 | |
Copper (Cu) | mg/kg | 3.233 | LST EN 13650:2006, LST ISO 8288:2002 |
Zinc (Zn) | mg/kg | 4.467 | |
Iron (Fe) | mg/kg | 63.333 | LST EN 13650:2006, LST EN ISO 11885:2009 |
Manganese (Mn) | mg/kg | 10.933 | |
Tungsten (W) | mg/kg | <0.98 | |
Acid detergent lignin (ADL) | % | 9.94 | [36] |
Cellulose | % | 49.7 | [36] |
Hemicellulose | % | 23.6 | [36] |
Exploratory Option | Microorganism Culture Observed |
---|---|
WWS control | 0/3 |
Monocrystalline cellulose control | 0/3 |
WWS+BP | 2/3 |
Monocrystalline cellulose+BP | 0/3 |
WWS+propionic acid+BP | 3/3 |
WWS+formic acid+BP | 2/3 |
WWS+citric acid+BP | 3/3 |
WWS+acetic acid+BP | 3/3 |
Raw Straw | BP-Treated Straw | |
---|---|---|
CH4, % | 52.9 ± 1.8 | 55.8 ± 1.1 |
CO2, % | 46.2 ± 1.9 | 43.8 ± 1.8 |
H2S, ppm | 19.6 ± 3.5 | 18.0 ± 2.9 |
Indicators | Unit | Stages | |||
---|---|---|---|---|---|
Method of Processing | WWS | WWS+BPT1 | WWS+BPT2 | WWS+BPT3 | |
Storage temperature after pretreatment | °C | +6 | −18 | +25 | |
Sample composition: | |||||
WWS | g | 11.6 | 11.6 | 11.6 | 11.6 |
Water | g | 200 | 200 | 200 | 200 |
Results: | |||||
Duration of the study | d | 73 | 10 | 10 | 10 |
Biogas yield from VS | L/kg VS | 490.0 ± 15.7 | 553.6 ± 12.5 | 582.0 ± 24.1 a | 577.4 ± 15.5 a |
Methane concentration | % | 50.3 ± 0.5 a | 51.8 ± 0.5 b | 52.0 ± 0.4 b | 52.3 ± 0.8 |
Biomethane yield from VS | LCH4 /kg VS | 249.9 ± 15.7 | 286.8 ± 16.9 | 302.6 ± 17.4 | 302.0 ± 17.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venslauskas, K.; Navickas, K.; Rubežius, M.; Žalys, B.; Gegeckas, A. Processing of Agricultural Residues with a High Concentration of Structural Carbohydrates into Biogas Using Selective Biological Products. Sustainability 2024, 16, 1553. https://doi.org/10.3390/su16041553
Venslauskas K, Navickas K, Rubežius M, Žalys B, Gegeckas A. Processing of Agricultural Residues with a High Concentration of Structural Carbohydrates into Biogas Using Selective Biological Products. Sustainability. 2024; 16(4):1553. https://doi.org/10.3390/su16041553
Chicago/Turabian StyleVenslauskas, Kęstutis, Kęstutis Navickas, Mantas Rubežius, Bronius Žalys, and Audrius Gegeckas. 2024. "Processing of Agricultural Residues with a High Concentration of Structural Carbohydrates into Biogas Using Selective Biological Products" Sustainability 16, no. 4: 1553. https://doi.org/10.3390/su16041553
APA StyleVenslauskas, K., Navickas, K., Rubežius, M., Žalys, B., & Gegeckas, A. (2024). Processing of Agricultural Residues with a High Concentration of Structural Carbohydrates into Biogas Using Selective Biological Products. Sustainability, 16(4), 1553. https://doi.org/10.3390/su16041553