Assessment of Water Quality, Growth of Penaeus vannamei, and Partial Budget in Super-Intensive BFT and RAS: A Comparison Between Sustainable Aquaculture Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Experimental Conditions
2.2. Water Quality Variables
2.3. Vibrio Community Composition
2.4. Feed Management
2.5. Shrimp Growth, Survival, and Water Use
2.6. Partial Budget Analysis
2.7. Data Analysis
3. Results
3.1. Water Quality
3.2. Vibrio Community Composition
3.3. Shrimp Growth, Survival, and Water Use
3.4. Partial Budget Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verdegem, M.C.J.; Bosma, R.H.; Verreth, J.A.J. Reducing Water Use for Animal Production through Aquaculture. Int. J. Water Resour. Dev. 2006, 22, 101–113. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The Basics of Bio-Flocs Technology: The Added Value for Aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- Macintosh, D.; Phillips, M. Environmental Issues in Shrimp Farming. In Shrimp 92, Proceedings of the 3rd. Global Conference on the Shrimp Industry Hong Kong, China, 1992; Saram, H., Singh, T., Eds.; Infofish: Kuala Lumpur, Malaysia, 1992. [Google Scholar]
- Primavera, J.H. Environmental and Socioeconomic Effects of Shrimp Farming: The Philippine Experience. Infofish Int. 1994, 1, 44–49. [Google Scholar]
- Rosenthal, H. Fish Farm Effluents and Their Control in EC Countries: Summary of a Workshop. J. Appl. Ichthyol. 1994, 10, 215–224. [Google Scholar] [CrossRef]
- Timmons, M.; Ebeling, J.; Piedrahita, R. Acuicultura En Sistemas de Recirculación; NRACE Publications n. 101-2009; Cayuga Aqua Ventures: New York, NY, USA; Fundación Chile: Santiago, Chile, 2009. (In Spanish) [Google Scholar]
- Xiao, R.; Wei, Y.; An, D.; Li, D.; Ta, X.; Wu, Y.; Ren, Q. A Review on the Research Status and Development Trend of Equipment in Water Treatment Processes of Recirculating Aquaculture Systems. Rev. Aquac. 2019, 11, 863–895. [Google Scholar] [CrossRef]
- Martins, C.I.; Eding, E.H.; Schneider, O.; Rasmussen, R.; Olesen, B.; Plesner, L.; Verreth, J.A.J. Recirculation Aquaculture Systems in Europe. Position Paper; CONSENSUS Working Group 3. Recirculation Systems; Wageningen University & Research: Oostende, Belgium, 2005. [Google Scholar]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; Factsheet 4503; Southern Regional Aquaculture Center: Stoneville, NC, USA, 2013. [Google Scholar]
- Robles-Porchas, G.R.; Gollas-Galván, T.; Martínez-Porchas, M.; Martínez-Cordova, L.R.; Miranda-Baeza, A.; Vargas-Albores, F. The Nitrification Process for Nitrogen Removal in Biofloc System Aquaculture. Rev. Aquac. 2020, 12, 2228–2249. [Google Scholar] [CrossRef]
- Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G.; Wasielesky, W. The Reuse of Water on the Culture of Pacific White Shrimp, Litopenaeus vannamei, in BFT System. J. World Aquac. Soc. 2014, 45, 3–14. [Google Scholar] [CrossRef]
- Krummenauer, D.; Peixoto, S.; Cavalli, R.O.; Poersch, L.H.; Wasielesky, W. Superintensive Culture of White Shrimp, Litopenaeus vannamei, in a Biofloc Technology System in Southern Brazil at Different Stocking Densities. J. World Aquac. Soc. 2011, 42, 726–733. [Google Scholar] [CrossRef]
- da Silveira, L.G.P.; Krummenauer, D.; Poersch, L.H.; Rosas, V.T.; Wasielesky, W. Hyperintensive Stocking Densities for Litopenaeus vannamei Grow-out in Biofloc Technology Culture System. J. World Aquac. Soc. 2020, 51, 1290–1300. [Google Scholar] [CrossRef]
- Samocha, T.M. Sustainable Biofloc Systems for Marine Shrimp; Academic Press: San Diego, CA, USA, 2019. [Google Scholar]
- Schveitzer, R.; Baccarat, R.F.C.; Gaona, C.A.P.; Wasielesky, W.; Arantes, R. Concentration of Suspended Solids in Superintensive Culture of the Pacific White Shrimp Litopenaeus vannamei with Biofloc Technology (BFT): A Review. Rev. Aquac. 2024, 16, 785–795. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. Engineering Analysis of the Stoichiometry of Photoautotrophic, Autotrophic, and Heterotrophic Removal of Ammonia–Nitrogen in Aquaculture Systems. Aquaculture 2006, 257, 346–358. [Google Scholar] [CrossRef]
- Del’Duca, A.; Cesar, D.E.; Freato, T.A.; Azevedo, R.d.S.; Rodrigues, E.M.; Abreu, P.C. Variability of the Nitrifying Bacteria in the Biofilm and Water Column of a Recirculating Aquaculture System for Tilapia (Oreochromis niloticus) Production. Aquac. Res. 2019, 50, 2537–2544. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc Technology—A Practical Guide Book, 2nd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2012. [Google Scholar]
- Serra, F.P.; Gaona, C.A.P.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W. Use of Different Carbon Sources for the Biofloc System Adopted during the Nursery and Grow-out Culture of Litopenaeus vannamei. Aquac. Int. 2015, 23, 1325–1339. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1981. [Google Scholar]
- Eaton, D.E.; Clesceri, L.S.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 1995. [Google Scholar]
- Timmons, M.B.; Ebeling, J.M. Recirculating Aquaculture, 3rd ed.; Ithaca Publishing Company LLC: Ithaca, NY, USA, 2013. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Furtado, P.S.; Poersch, L.H.; Wasielesky, W. Effect of Calcium Hydroxide, Carbonate and Sodium Bicarbonate on Water Quality and Zootechnical Performance of Shrimp Litopenaeus vannamei Reared in Bio-Flocs Technology (BFT) Systems. Aquaculture 2011, 321, 130–135. [Google Scholar] [CrossRef]
- Kaysner, C.A.; DePaola, A., Jr.; Jones, J. Bacteriological Analytical Manual (BAM); U.S. Food & Drug Administration: Washington, DC, USA, 2004; Chapter 9: Vibrio. [Google Scholar]
- Jory, D.E.; Cabrera, T.R.; Dugger, D.M.; Fegan, D.; Lee, P.G.; Lawrence, A.L.; Jackson, C.J.; McIntosh, R.P.; Castañeda, J. A Global Review of Shrimp Feed Management: Status and Perspectives. The New Wave—Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture. World Aquac. Soc. 2001, 104–152. [Google Scholar]
- Engle, C. The Enterprise Budget and Partial Budgeting in Aquaculture. In Aquaculture Economics and Financing; Wiley: New York City, NY, USA, 2010; pp. 117–130. [Google Scholar]
- Krummenauer, D.; Pimentel, O.A.L.F.; Bezerra, A.; Gonçalves, F.H.; Poersch, L.H.; Wasielesky, W. The Use of Automatic Belt Feeders in a Penaeus vannamei Pilot Scale Super-Intensive Nursery and Grow-out with Biofloc System. Aquac. Eng. 2024, 107, 102453. [Google Scholar] [CrossRef]
- The R Core Team. R: A Language and Environment for Statistical Computing, version 3.1.1; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Kassambara, A. _rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2, 2023. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 1 November 2024).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York City, NY, USA, 2011. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontol. Eletronica 2001, 4, 9. [Google Scholar]
- Ponce-Palafox, J.; Martinez-Palacios, C.A.; Ross, L.G. The Effects of Salinity and Temperature on the Growth and Survival Rates of Juvenile White Shrimp, Penaeus vannamei, Boone, 1931. Aquaculture 1997, 157, 107–115. [Google Scholar] [CrossRef]
- Gaona, C.A.P.; Poersch, L.H.; Krummenauer, D.; Foes, G.K.; Wasielesky, W.J. The Effect of Solids Removal on Water Quality, Growth and Survival of Litopenaeus vannamei in a Biofloc Technology Culture System. Int. J. Recirc. Aquac. 2011, 12, 54–73. [Google Scholar] [CrossRef]
- Maicá, P.F.; Furtado, P.S.; MARTINS, Á.C.d.S.; Filho, K.C.M.; Wasielesky, W., Jr. Efeito da Alcalinidade no Consumo Alimentar de Juvenis de Camarão Branco do Pacífico Cultivados Em Sistema de Água Clara E Bioflocos. Bol. Do Inst. De Pesca 2018, 44, e222. [Google Scholar] [CrossRef]
- Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mounta, J.; Scarpa, J. Farming Marine Shrimp in Recirculating Freshwater Systems; Harbor Branch Oceanographic Institution: Fort Pierce, FL, USA, 1999. [Google Scholar]
- Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen Removal Techniques in Aquaculture for a Sustainable Production. Aquaculture 2007, 270, 1–14. [Google Scholar] [CrossRef]
- Calone, R.; Pennisi, G.; Morgenstern, R.; Sanyé-Mengual, E.; Lorleberg, W.; Dapprich, P.; Winkler, P.; Orsini, F.; Gianquinto, G. Improving Water Management in European Catfish Recirculating Aquaculture Systems through Catfish-Lettuce Aquaponics. Sci. Total Environ. 2019, 687, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Timmons, M.B.; Ebeling, J.M.; Wheaton, F.W.; Summerfelt, S.T.; Vinci, B.J. Recirculating Aquaculture System, 2nd ed.; Cayuga Aqua Ventures: New York, NY, USA, 2002. [Google Scholar]
- Ray, A.J.; Lotz, J.M. Shrimp (Litopenaeus vannamei) Production and Stable Isotope Dynamics in Clear-water Recirculating Aquaculture Systems versus Biofloc Systems. Aquac. Res. 2017, 48, 4390–4398. [Google Scholar] [CrossRef]
- Prangnell, D.I.; Samocha, T.M.; Staresinic, N. Water. In Sustainable Biofloc Systems for Marine Shrimp; Elsevier: Amsterdam, The Netherlands, 2019; pp. 37–58. [Google Scholar]
- Ren, W.; Li, L.; Dong, S.; Tian, X.; Xue, Y. Effects of C/N Ratio and Light on Ammonia Nitrogen Uptake in Litopenaeus vannamei Culture Tanks. Aquaculture 2019, 498, 123–131. [Google Scholar] [CrossRef]
- Xu, W.-J.; Morris, T.C.; Samocha, T.M. Effects of C/N Ratio on Biofloc Development, Water Quality, and Performance of Litopenaeus vannamei Juveniles in a Biofloc-Based, High-Density, Zero-Exchange, Outdoor Tank System. Aquaculture 2016, 453, 169–175. [Google Scholar] [CrossRef]
- Abu Bakar, N.S.; Mohd Nasir, N.; Lananan, F.; Abdul Hamid, S.H.; Lam, S.S.; Jusoh, A. Optimization of C/N Ratios for Nutrient Removal in Aquaculture System Culturing African Catfish, (Clarias gariepinus) Utilizing Bioflocs Technology. Int. Biodeterior Biodegrad. 2015, 102, 100–106. [Google Scholar] [CrossRef]
- Bakhshi, F.; Najdegerami, E.H.; Manaffar, R.; Tukmechi, A.; Farah, K.R. Use of Different Carbon Sources for the Biofloc System during the Grow-out Culture of Common Carp (Cyprinus carpio L.) Fingerlings. Aquaculture 2018, 484, 259–267. [Google Scholar] [CrossRef]
- Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. Growth, Digestive Activity, Welfare, and Partial Cost-Effectiveness of Genetically Improved Farmed Tilapia (Oreochromis niloticus) Cultured in a Recirculating Aquaculture System and an Indoor Biofloc System. Aquaculture 2014, 422–423, 1–7. [Google Scholar] [CrossRef]
- Avnimelech, Y. Carbon/Nitrogen Ratio as a Control Element in Aquaculture Systems. Aquaculture 1999, 176, 227–235. [Google Scholar] [CrossRef]
- Tan, D.; Gram, L.; Middelboe, M. Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum. Appl. Environ. Microbiol. 2014, 80, 3128–3140. [Google Scholar] [CrossRef] [PubMed]
- Decamp, O.; Moriarty, D.J.W. Probiotics as Alternative to Antimicrobials: Limitations and Potential. World Aquac. 2006, 73, 60–62. [Google Scholar]
- Ferreira, G.S.; Bolívar, N.C.; Pereira, S.A.; Guertler, C.; Vieira, F.d.N.; Mouriño, J.L.P.; Seiffert, W.Q. Microbial Biofloc as Source of Probiotic Bacteria for the Culture of Litopenaeus vannamei. Aquaculture 2015, 448, 273–279. [Google Scholar] [CrossRef]
- Hostins, B.; Lara, G.; Decamp, O.; Cesar, D.E.; Wasielesky, W. Efficacy and Variations in Bacterial Density in the Gut of Litopenaeus vannamei Reared in a BFT System and in Clear Water Supplemented with a Commercial Probiotic Mixture. Aquaculture 2017, 480, 58–64. [Google Scholar] [CrossRef]
- Chen, S.; Ling, J.; Blancheton, J.-P. Nitrification Kinetics of Biofilm as Affected by Water Quality Factors. Aquac. Eng. 2006, 34, 179–197. [Google Scholar] [CrossRef]
- Wang, Y.-B. Effect of Probiotics on Growth Performance and Digestive Enzyme Activity of the Shrimp Penaeus vannamei. Aquaculture 2007, 269, 259–264. [Google Scholar] [CrossRef]
- Zokaeifar, H.; Balcázar, J.L.; Saad, C.R.; Kamarudin, M.S.; Sijam, K.; Arshad, A.; Nejat, N. Effects of Bacillus Subtilis on the Growth Performance, Digestive Enzymes, Immune Gene Expression and Disease Resistance of White Shrimp, Litopenaeus vannamei. Fish Shellfish. Immunol. 2012, 33, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Balcazar, J.; Blas, I.; Ruizzarzuela, I.; Cunningham, D.; Vendrell, D.; Muzquiz, J. The Role of Probiotics in Aquaculture. Vet. Microbiol. 2006, 114, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Gatesoupe, F.J. The Use of Probiotics in Aquaculture. Aquaculture 1999, 180, 147–165. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Li, J.-R.; Lin, J. Probiotics in Aquaculture: Challenges and Outlook. Aquaculture 2008, 281, 1–4. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Al-Harbi, A.H.; Austin, B. Review: Developments in the Use of Probiotics for Disease Control in Aquaculture. Aquaculture 2014, 431, 1–11. [Google Scholar] [CrossRef]
- Bauer, W.; Prentice-Hernandez, C.; Tesser, M.B.; Wasielesky, W.; Poersch, L.H.S. Substitution of Fishmeal with Microbial Floc Meal and Soy Protein Concentrate in Diets for the Pacific White Shrimp Litopenaeus vannamei. Aquaculture 2012, 342–343, 112–116. [Google Scholar] [CrossRef]
- Emerenciano, M.; Ballester, E.L.C.; Cavalli, R.O.; Wasielesky, W. Biofloc Technology Application as a Food Source in a Limited Water Exchange Nursery System for Pink Shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res. 2012, 43, 447–457. [Google Scholar] [CrossRef]
- Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. Effect of Natural Production in a Zero Exchange Suspended Microbial Floc Based Super-Intensive Culture System for White Shrimp Litopenaeus vannamei. Aquaculture 2006, 258, 396–403. [Google Scholar] [CrossRef]
- Ray, A.J.; Drury, T.H.; Cecil, A. Comparing Clear-Water RAS and Biofloc Systems: Shrimp (Litopenaeus vannamei) Production, Water Quality, and Biofloc Nutritional Contributions Estimated Using Stable Isotopes. Aquac. Eng. 2017, 77, 9–14. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Cody, J.J.; Conquest, L.D.; Divakaran, S.; Forster, I.P.; Decamp, O.E. Effect of Culture System on the Nutrition and Growth Performance of Pacific White Shrimp Litopenaeus vannamei (Boone) Fed Different Diets. Aquac. Nutr. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Krummenauer, D.; Abreu, P.C.; Poersch, L.; Reis, P.A.C.P.; Suita, S.M.; dos Reis, W.G.; Wasielesky, W. The Relationship between Shrimp (Litopenaeus vannamei) Size and Biofloc Consumption Determined by the Stable Isotope Technique. Aquaculture 2020, 529, 735635. [Google Scholar] [CrossRef]
- Ramiro, B.d.O.; Wasielesky, W.; Pimentel, O.A.L.F.; Poersch, L.H.d.S.; Advent, B.; Gonçalves Júnior, G.F.; Krummenauer, D. The Effect of Using Nano and Microbubbles as Aeration Strategies on the Nitrification Process, Microbial Community Composition, and Growth of Penaeus vannamei in a Super-Intensive Biofloc System. Aquaculture 2024, 587, 740842. [Google Scholar] [CrossRef]
- Ramiro, B.d.O.; Wasielesky, W.; Pimentel, O.A.L.F.; San Martin, N.P.; Borges, L.d.V.; Krummenauer, D. Different Management Strategies for Artificial Substrates on Nitrification, Microbial Composition, and Growth of Penaeus vannamei in a Super-Intensive Biofloc System. Aquaculture 2025, 596, 741853. [Google Scholar] [CrossRef]
Variables | Treatments | |
---|---|---|
RAS | BFT | |
Temperature (°C) | 28.21 ± 1.12 | 29.82 ± 0.79 |
DO (mg L−1) | 5.75 ± 0.07 | 5.51 ± 0.16 |
pH | 8.10 ± 0.17 | 8.11 ± 0.21 |
TAN (mg L−1) | 1.89 ± 0.60 b | 3.52 ± 2.00 a |
NO2−-N (mg L−1) | 0.09 ± 0.11 b | 2.38 ± 2.23 a |
NO3−-N (mg L−1) | 8.85 ± 5.18 b | 52.73 ± 65.80 a |
Alkalinity (mg L−1) | 166.20 ± 31.17 | 199.00 ± 34.62 |
CO2 (mg L−1) | 2.17 ± 0.35 | 2.69 ± 1.28 |
TSS (mg L−1) | 31.39 ± 28.75 b | 217.10 ± 114.95 a |
SS (mL L−1) | 0.00 ± 0.00 b | 14.56 ± 15.28 a |
Turbidity (NTU) | 20.38 ± 17.19 b | 179.90 ± 104.25 a |
Variables | Treatments | |
---|---|---|
RAS | BFT | |
Initial weight (g) | 0.10 ± 0.04 | 0.10 ± 0.04 |
Final weight (g) | 8.14 ± 1.47 b | 13.56 ± 1.22 a |
WGR (g week−1) | 0.80 ± 0.15 b | 1.35 ± 0.12 a |
FCR | 2.81 ± 0.49 a | 1.91 ± 0.12 b |
Survival (%) | 88.00 ± 0.00 | 83.33 ± 9.24 |
Yield (Kg m−3) | 3.58 ± 0.65 b | 5.62 ± 0.33 a |
Water use (m3 Kg−1) | 2.13 ± 0.36 a | 1.82 ± 0.12 b |
Input | Description | Unit Price ($) | Total Cost ($) | |
---|---|---|---|---|
RAS | BFT | |||
Water | Rate per gallon | 3.69 | 2.92 | 3.98 |
Salt | Box 27.2 Kg | 50.00 | 143.77 | 196.14 |
Sodium Bicarbonate | Bag 22.68 Kg | 34.46 | 0.07 | 0.03 |
Probiotic | 500 g | 104.00 | 16.97 | 16.97 |
Dextrose | 997 g | 18.00 | - | 6.45 |
Feed | 25 Kg | 47.79 | 5.81 | 6.33 |
Labor | Wage hour−1 | 12.00 | 346.00 | 407.00 |
Electricity | Rate per kWh | 2.49 | 2380.20 | 137.42 |
Operating interest | 5% interest rate | - | 144.79 | 38.72 |
Equipment | Description | Unit price ($) | RAS | BFT |
Aeration pump | 50 Watts | 413.00 | 413.00 | 413.00 |
Water pump | 0.75 HP | 443.00 | 443.00 | - |
Sump | 180 gallons | 470.00 | 470.00 | - |
KMT media | per cu.ft. | 45.00 | 45.00 | - |
Mechanical sand filter | Bubble bead filter | 352.00 | 352.00 | - |
Equipment depreciation | $ year−1 | 172.30 | 32.57 | 6.16 |
Production | Description | Unit | RAS | BFT |
Final biomass | Experiment yield | G | 1074.07 | 1684.97 |
Sales price ($/kg) | Farmer’s market | $ Kg−1 | 26.43 | 26.43 |
Revenue | From yield | $ | 28.39 | 44.58 |
Scenarios | Benefits | Costs | Net Benefit/ Cost | ||||
---|---|---|---|---|---|---|---|
Additional Revenue | Reduced Costs | Total Additional Benefits | Additional Costs | Reduced Costs | Total Additional Costs | ||
RAS to BFT | 16.19 | 2375.31 | 2391.50 | 121.41 | 0 | 121.41 | 2270.09 |
BFT to RAS | 0 | 121.41 | 121.41 | 2375.31 | 16.19 | 2391.50 | −2270.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramiro, B.d.O.; Wasielesky, W., Jr.; Pimentel, O.A.L.F.; Sun, T.; McAlhaney, E.; Urick, S.; Gonçalves, F.H.; van Senten, J.; Schwarz, M.H.; Krummenauer, D. Assessment of Water Quality, Growth of Penaeus vannamei, and Partial Budget in Super-Intensive BFT and RAS: A Comparison Between Sustainable Aquaculture Systems. Sustainability 2024, 16, 11005. https://doi.org/10.3390/su162411005
Ramiro BdO, Wasielesky W Jr., Pimentel OALF, Sun T, McAlhaney E, Urick S, Gonçalves FH, van Senten J, Schwarz MH, Krummenauer D. Assessment of Water Quality, Growth of Penaeus vannamei, and Partial Budget in Super-Intensive BFT and RAS: A Comparison Between Sustainable Aquaculture Systems. Sustainability. 2024; 16(24):11005. https://doi.org/10.3390/su162411005
Chicago/Turabian StyleRamiro, Bianca de Oliveira, Wilson Wasielesky, Jr., Otávio Augusto Lacerda Ferreira Pimentel, Taozhu Sun, Ethan McAlhaney, Stephen Urick, Fernando H. Gonçalves, Jonathan van Senten, Michael H. Schwarz, and Dariano Krummenauer. 2024. "Assessment of Water Quality, Growth of Penaeus vannamei, and Partial Budget in Super-Intensive BFT and RAS: A Comparison Between Sustainable Aquaculture Systems" Sustainability 16, no. 24: 11005. https://doi.org/10.3390/su162411005
APA StyleRamiro, B. d. O., Wasielesky, W., Jr., Pimentel, O. A. L. F., Sun, T., McAlhaney, E., Urick, S., Gonçalves, F. H., van Senten, J., Schwarz, M. H., & Krummenauer, D. (2024). Assessment of Water Quality, Growth of Penaeus vannamei, and Partial Budget in Super-Intensive BFT and RAS: A Comparison Between Sustainable Aquaculture Systems. Sustainability, 16(24), 11005. https://doi.org/10.3390/su162411005