Harnessing the Power of Plants: Innovative Approaches to Pollution Prevention and Mitigation
Abstract
:1. Introduction
2. Pollution Mitigation Mechanisms of Plants
2.1. Phytoremediation: Concepts and Mechanisms
2.1.1. Phytoextraction
2.1.2. Phytostabilization
2.1.3. Phytodegradation
2.1.4. Rhizofiltration
2.2. Phytoindication and Phytomonitoring
3. Case Studies: Successful Achievements in Phytoremediation
3.1. Heavy Metal Removal by Hyperaccumulator Plants
3.2. Organic Pollutant Degradation by Engineered Plant–Microbe Systems
3.3. Role of Wetland Plants in Water Purification
4. Technological Advances in Plant-Based Pollution Control
4.1. Genetic Engineering for Enhanced Phytoremediation
4.1.1. Transgenic Plants for Heavy Metal Uptake
4.1.2. Biotechnological Strategies for Increasing Biomass and Tolerance
4.2. Integration of Nanotechnology in Phytoremediation
5. Economic and Social Implications
5.1. Cost-Effectiveness of Plant-Based Environmental Remedies
5.2. Community Engagement and Socioeconomic Benefits
6. Challenges and Limitations
6.1. Limitations in the Scale and Scope of Phytoremediation
6.2. Regulatory and Public Acceptance Issues
7. Future Directions and Innovations
7.1. Emerging Trends in Phytotechnologies
7.2. Collaboration Opportunities: Academia, Industry, and Government
7.3. Prospects for the Global Implementation of Plant-Based Solutions
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitreska Jovanovska, E.; Batz, V.; Lameski, P.; Zdravevski, E.; Herzog, M.A.; Trajkovik, V. Methods for urban Air Pollution measurement and forecasting: Challenges, opportunities, and solutions. Atmosphere 2023, 14, 1441. [Google Scholar] [CrossRef]
- Mali, H.; Shah, C.; Raghunandan, B.H.; Prajapati, A.S.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J. Environ. Sci. 2023, 127, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Joshi, A.; Bist, B. Phytomonitoring and mitigation of air pollution by plants. In Sustainable Agriculture in the Era of Climate Change; Springer: Berlin/Heidelberg, Germany, 2020; pp. 113–142. [Google Scholar]
- Hrkić Ilić, Z.; Kapović Solomun, M.; Šumatić, N.; Ristić, R.; Marjanović-Balaban, Ž. The role of plants in water regulation and pollution control. In Nature-Based Solutions for Flood Mitigation: Environmental and Socio-Economic Aspects; Springer: Berlin/Heidelberg, Germany, 2021; pp. 159–185. [Google Scholar]
- Liu, X.; Sathishkumar, K.; Zhang, H.; Saxena, K.K.; Zhang, F.; Naraginiti, S.; Anbarasu, K.; Rajendiran, R.; Aruliah, R.; Guo, X. Frontiers in Environmental Cleanup: Recent Advances in Remediation of Emerging Pollutants from Soil and Water. J. Hazard. Mater. Adv. 2024, 16, 100461. [Google Scholar] [CrossRef]
- Oksanen, E.; Kontunen-Soppela, S. Plants have different strategies to defend against air pollutants. Curr. Opin. Environ. Sci. Health 2021, 19, 100222. [Google Scholar] [CrossRef]
- Han, Y.; Lee, J.; Haiping, G.; Kim, K.-H.; Wanxi, P.; Bhardwaj, N.; Oh, J.-M.; Brown, R.J.C. Plant-based remediation of air pollution: A review. J. Environ. Manag. 2022, 301, 113860. [Google Scholar] [CrossRef]
- Bortoloti, G.A.; Baron, D. Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environ. Adv. 2022, 8, 100204. [Google Scholar] [CrossRef]
- Shah, N.; Irshad, M.; Murad, W.; Hamayun, M.; Qadir, M.; Hussain, A.; Begum, H.A.; Alrefaei, A.F.; Almutairi, M.H.; Ahmad, A. IAA is more effective than EDTA in enhancing phytoremediation potential for cadmium and copper contaminated soils. BMC Plant Biol. 2024, 24, 815. [Google Scholar] [CrossRef]
- Su, R.; Wang, Y.; Huang, S.; Chen, R.; Wang, J. Application for ecological restoration of contaminated soil: Phytoremediation. Int. J. Environ. Res. Public Health 2022, 19, 13124. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, H.; Kim, J.-G. Current status of and challenges for phytoremediation as a sustainable environmental management plan for abandoned mine areas in Korea. Sustainability 2023, 15, 2761. [Google Scholar] [CrossRef]
- Chen, X.; Song, B.; Yao, Y.; Wu, H.; Hu, J.; Zhao, L. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem. Sci. Total Environ. 2014, 472, 939–946. [Google Scholar] [CrossRef]
- Askari-Khorasgani, O.; Hatterman-Valenti, H.; Flores, F.B.; Pessarakli, M. Managing plant-environment-symbiont interactions to promote plant performance under low temperature stress. J. Plant Nutr. 2019, 42, 2010–2027. [Google Scholar] [CrossRef]
- Hallett, P.D.; Bengough, A.G. Managing the soil physical environment for plants. In Soil Conditions and Plant Growth; Wiley: Hoboken, NJ, USA, 2013; pp. 238–268. [Google Scholar]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Brooker, R.W. Plant–plant interactions and environmental change. New Phytol. 2006, 171, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.X.; Dan, G.; Alamri, S.; Toghraie, D. Greening smart cities: An investigation of the integration of urban natural resources and smart city technologies for promoting environmental sustainability. Sustain. Cities Soc. 2023, 99, 104985. [Google Scholar] [CrossRef]
- Ode Sang, Å.; Thorpert, P.; Fransson, A.-M. Planning, designing, and managing green roofs and green walls for public health–an ecosystem services approach. Front. Ecol. Evol. 2022, 10, 804500. [Google Scholar] [CrossRef]
- Uçar, Z.; Akay, A.E.; Bilici, E. Towards green smart cities: Importance of Urban forestry and urban vegetation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 44, 399–403. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Azmat, R.; Altaf, I.; Moin, S.; Ahmed, W.; Alrefaei, A.F.; Ali, S. A study of photo-biological reactions under TiO2 nanoparticle accumulation in Spinacia oleracea L. Pak. J. Bot 2023, 55, 1359–1364. [Google Scholar] [CrossRef]
- Rai, G.K.; Bhat, B.A.; Mushtaq, M.; Tariq, L.; Rai, P.K.; Basu, U.; Dar, A.A.; Islam, S.T.; Dar, T.U.H.; Bhat, J.A. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies. Physiol. Plant. 2021, 173, 287–304. [Google Scholar] [CrossRef]
- Bhargava, A.; Carmona, F.F.; Bhargava, M.; Srivastava, S. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manag. 2012, 105, 103–120. [Google Scholar] [CrossRef]
- Manzoor, M.; Kamboh, U.R.; Gulshan, S.; Tomforde, S.; Gul, I.; Siddiqui, A.; Arshad, M. Optimizing Sustainable Phytoextraction of Lead from Contaminated Soil Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Sustainability 2023, 15, 11049. [Google Scholar] [CrossRef]
- Shackira, A.M.; Puthur, J.T. Phytostabilization of heavy metals: Understanding of principles and practices. In Plant-Metal Interactions; Springer: Berlin/Heidelberg, Germany, 2019; pp. 263–282. [Google Scholar]
- Bashir, Z.; Raj, D.; Selvasembian, R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. Chemosphere 2024, 363, 142774. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.S.; Park, J.H.; Robinson, B.; Naidu, R.; Huh, K.Y. Phytostabilization: A green approach to contaminant containment. Adv. Agron. 2011, 112, 145–204. [Google Scholar]
- Li, M.; He, W.; Han, Z.; Zhou, M.; Chen, X.; Li, Y. Mechanism analysis of the phytotoxicity and phytodegradation of PCBs based on the 2D-QASR model and sensitivity analysis method. J. Environ. Chem. Eng. 2021, 9, 106241. [Google Scholar] [CrossRef]
- Srivastava, N. Phytoremediation: A Tool for Environmental Sustainability. In Phytoremediation for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 405–421. [Google Scholar]
- Liu, H.; Tang, X.; Tam, N.F.-Y.; Li, Q.; Ruan, W.; Xu, X.; Gao, Y.; Yan, Q.; Zhang, X.; Dai, Y. Phytodegradation of neonicotinoids in Cyperus papyrus from enzymatic and transcriptomic perspectives. J. Hazard. Mater. 2024, 462, 132715. [Google Scholar] [CrossRef]
- Bakshe, P.; Jugade, R. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. J. Hazard. Mater. Adv. 2023, 10, 100293. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A.J.V. Assessing the rhizofiltration potential of three aquatic plants exposed to fluoride and multiple heavy metal polluted water. Vegetos 2022, 35, 1158–1164. [Google Scholar] [CrossRef]
- Kolesnik, D.; Kharlamova, O.; Shmandiy, V.; Bezdenezhnih, L.; Rigas, T. Monitoring the State of Environmental Safety Using Phytoindication Methods to Ensure Sustainable Development of a Technologically Loaded City Kremenchuk. Environ. Probl. 2023, 8, 192–198. [Google Scholar] [CrossRef]
- Glibovytska, N.I.; Yatsyshyn, T.M.; Gritsylak, G.M. Application of environmental biomonitoring in environmental risk management of the fuel and energy complex. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; p. 012111. [Google Scholar]
- Ianovici, N.; Batalu, A.; Hriscu, D.; Datcu, A.D. Phytomonitoring study on intra urban variations of leaves of some evergreen and deciduous trees. Ecol. Indic. 2020, 114, 106313. [Google Scholar] [CrossRef]
- Barjoee, S.S.; Malverdi, E.; Kouhkan, M.; Alipourfard, I.; Rouhani, A.; Farokhi, H.; Khaledi, A. Health assessment of industrial ecosystems of Isfahan (Iran) using phytomonitoring: Chemometric, micromorphology, phytoremediation, air pollution tolerance and anticipated performance indices. Urban Clim. 2023, 48, 101394. [Google Scholar] [CrossRef]
- Inelova, Z.; Nurzhanova, A.; Yerubayeva, G.; Aitzhan, M.; Djansugurova, L.; Bekmanov, B. Heavy metal contents in plants of phytocenoses of the point of besqaynar, kyzylkairat and Taukaraturyk. Pak. J. Bot. 2021, 53, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Shahnaz, M.; Khan, B.; Khan, S.; Iqbal, J.; Mian, I.A.; Muhammad, M.W. Contamination and bioaccumulation of heavy metals in medicinal plants of District Dir Upper, Khyber Pakhtunkhwa, Pakistan. Pak. J. Bot. 2021, 53, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, Y.; Lin, H.; Yan, J. Constructed wetlands and hyperaccumulators for the removal of heavy metal and metalloids: A review. J. Hazard. Mater. 2024, 479, 135643. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Sytar, O.; Ghosh, S.; Malinska, H.; Zivcak, M.; Brestic, M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol. Plant. 2021, 173, 148–166. [Google Scholar] [CrossRef]
- Lasat, M.M.; Kochian, L.V. Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In Phytoremediation of Contaminated Soil and Water; CRC Press: Boca Raton, FL, USA, 2020; pp. 159–169. [Google Scholar]
- Prasad, M.; Saraswat, P.; Gupta, A.; Ranjan, R. Molecular basis of plant-microbe interaction in remediating organic pollutants. In Handbook of Bioremediation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 603–623. [Google Scholar]
- Mishra, A.; Mishra, S.P.; Arshi, A.; Agarwal, A.; Dwivedi, S.K. Plant-microbe interactions for bioremediation and phytoremediation of environmental pollutants and agro-ecosystem development. In Bioremediation of Industrial Waste for Environmental Safety: Volume II: Biological Agents and Methods for Industrial Waste Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 415–436. [Google Scholar]
- Lash, L.H. Trichloroethylene: An Update on an Environmental Contaminant with Multiple Health Effects. Annu. Rev. Pharmacol. Toxicol. 2024, 65, 5.1–5.21. [Google Scholar] [CrossRef]
- Brix, H. Wastewater treatment in constructed wetlands: System design, removal processes, and treatment performance. In Constructed Wetlands for Water Quality Improvement; CRC Press: Boca Raton, FL, USA, 2020; pp. 9–22. [Google Scholar]
- Moazzem, S.; Bhuiyan, M.; Muthukumaran, S.; Fagan, J.; Jegatheesan, V. Microbiome wetlands in nutrient and contaminant removal. Curr. Pollut. Rep. 2023, 9, 694–709. [Google Scholar] [CrossRef]
- Al Hadidi, L. Constructed wetlands a comprehensive review. Int. J. Regul. Govern. 2021, 9, 395–417. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A. Constructed wetlands for management of urban stormwater runoff. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2153–2214. [Google Scholar] [CrossRef]
- Abou-Elela, S.I. Constructed wetlands: The green technology for municipal wastewater treatment and reuse in agriculture. In Unconventional Water Resources and Agriculture in Egypt; Springer: Berlin/Heidelberg, Germany, 2019; pp. 189–239. [Google Scholar]
- Lymbery, A.J.; Kay, G.D.; Doupé, R.G.; Partridge, G.J.; Norman, H.C. The potential of a salt-tolerant plant (Distichlis spicata cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland. Sci. Total Environ. 2013, 445–446, 192–201. [Google Scholar] [CrossRef]
- Parsons, J.L.; Cameron, S.I.; Harris, C.S.; Smith, M.L. Echinacea biotechnology: Advances, commercialization and future considerations. Pharm. Biol. 2018, 56, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.B.A.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/Technology 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef]
- Sarma, H.; Islam, N.; Prasad, R.; Prasad, M.; Ma, L.Q.; Rinklebe, J. Enhancing phytoremediation of hazardous metal (loid) s using genome engineering CRISPR–Cas9 technology. J. Hazard. Mater. 2021, 414, 125493. [Google Scholar] [CrossRef]
- Rai, P.K.; Kim, K.-H.; Lee, S.S.; Lee, J.-H. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci. Total Environ. 2020, 705, 135858. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Mani, D.; Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef]
- Kotrba, P. Transgenic approaches to enhance phytoremediation of heavy metal-polluted soils. In Plant-Based Remediation Processes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 239–271. [Google Scholar]
- Kumar, K.; Shinde, A.; Aeron, V.; Verma, A.; Arif, N.S. Genetic engineering of plants for phytoremediation: Advances and challenges. J. Plant Biochem. Biotechnol. 2023, 32, 12–30. [Google Scholar] [CrossRef]
- Fasani, E.; Manara, A.; Martini, F.; Furini, A.; DalCorso, G. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 2018, 41, 1201–1232. [Google Scholar] [CrossRef]
- Prakash, P. Nano-phytoremediation of heavy metals from soil: A critical review. Pollutants 2023, 3, 360–380. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Amoo, A.E.; Owonubi, S.J.; Ayangbenro, A.S. Nanoparticles-assisted phytoremediation: Advances and applications. In Assisted Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 155–178. [Google Scholar]
- Singh, S.; Bhardwaj, A.K.; Dwivedi, K. Advances of Plant-Assisted Synthesized Metal Nanoparticles and Their Environmental Application. In Biogenic Wastes-Enabled Nanomaterial Synthesis: Applications in Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2024; pp. 373–392. [Google Scholar]
- Su, Y.; Ashworth, V.; Kim, C.; Adeleye, A.S.; Rolshausen, P.; Roper, C.; White, J.; Jassby, D. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environ. Sci. Nano 2019, 6, 2311–2331. [Google Scholar] [CrossRef]
- Kuhn, R.; Bryant, I.M.; Jensch, R.; Böllmann, J. Applications of environmental nanotechnologies in remediation, wastewater treatment, drinking water treatment, and agriculture. Appl. Nano 2022, 3, 54–90. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Khan, E.; Alessi, D.S.; Biswas, J.K.; Manjaiah, K.; Eguchi, M.; Wu, K.C.; Yamauchi, Y.; Ok, Y.S. Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2611–2660. [Google Scholar] [CrossRef]
- Karnwal, A.; Martolia, S.; Dohroo, A.; Al-Tawaha, A.R.M.S.; Malik, T. Exploring bioremediation strategies for heavy metals and POPs pollution: The role of microbes, plants, and nanotechnology. Front. Environ. Sci. 2024, 12, 1397850. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, X.; Zhu, Y.; Zhuo, R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol. Adv. 2024, 72, 108337. [Google Scholar] [CrossRef]
- Chandra, R.; Saxena, G.; Kumar, V. Phytoremediation of environmental pollutants: An eco-sustainable green technology to environmental management. In Advances in Biodegradation and Bioremediation of Industrial Waste; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–29. [Google Scholar]
- Pandey, V.C.; Bajpai, O. Phytoremediation: From theory toward practice. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar]
- Priya, A.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef]
- Phang, L.-Y.; Mingyuan, L.; Mohammadi, M.; Tee, C.-S.; Yuswan, M.H.; Cheng, W.-H.; Lai, K.-S. Phytoremediation as a viable ecological and socioeconomic management strategy. Environ. Sci. Pollut. Res. 2024, 31, 50126–50141. [Google Scholar] [CrossRef]
- Babu, S.O.F.; Hossain, M.B.; Rahman, M.S.; Rahman, M.; Ahmed, A.S.; Hasan, M.M.; Rakib, A.; Emran, T.B.; Xiao, J.; Simal-Gandara, J. Phytoremediation of toxic metals: A sustainable green solution for clean environment. Appl. Sci. 2021, 11, 10348. [Google Scholar] [CrossRef]
- Bekoe, J.; Balana, B.B.; Nimoh, F. Social cost-benefit analysis of investment in rehabilitation of multipurpose small reservoirs in northern Ghana using an ecosystem services-based approach. Ecosyst. Serv. 2021, 50, 101329. [Google Scholar] [CrossRef]
- Viroli, G.; Kalmpourtzidou, A.; Cena, H. Exploring benefits and barriers of plant-based diets: Health, environmental impact, food accessibility and acceptability. Nutrients 2023, 15, 4723. [Google Scholar] [CrossRef]
- Saxena, G.; Purchase, D.; Mulla, S.I.; Saratale, G.D.; Bharagava, R.N. Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev. Environ. Contam. Toxicol. 2020, 249, 71–131. [Google Scholar] [PubMed]
- Nissim, W.G.; Labrecque, M. Reclamation of urban brownfields through phytoremediation: Implications for building sustainable and resilient towns. Urban For. Urban Green. 2021, 65, 127364. [Google Scholar] [CrossRef]
- Guidi Nissim, W.; Castiglione, S.; Guarino, F.; Pastore, M.C.; Labra, M. Beyond cleansing: Ecosystem services related to phytoremediation. Plants 2023, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Grigoletto, A.; Mauro, M.; Maietta Latessa, P.; Iannuzzi, V.; Gori, D.; Campa, F.; Greco, G.; Toselli, S. Impact of different types of physical activity in green urban space on adult health and behaviors: A systematic review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 263–275. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Jay, M.; Chen, X. The role of nature-based solutions for improving environmental quality, health and well-being. Sustainability 2021, 13, 10950. [Google Scholar] [CrossRef]
- Moreira, H.; Pereira, S.I.; Mench, M.; Garbisu, C.; Kidd, P.; Castro, P.M. Phytomanagement of metal (loid)-contaminated soils: Options, efficiency and value. Front. Environ. Sci. 2021, 9, 661423. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, J.; Du, J.; Hou, C.; Zhou, X.; Chen, J.; Zhang, Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Sci. Total Environ. 2024, 948, 174237. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, S.; Kumar, A.; Singh, A.N. Phytoremediation: A wonderful cost-effective tool. In Cost Effective Technologies for Solid Waste and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 179–208. [Google Scholar]
- Jaskulak, M.; Grobelak, A.; Vandenbulcke, F. Modelling assisted phytoremediation of soils contaminated with heavy metals–main opportunities, limitations, decision making and future prospects. Chemosphere 2020, 249, 126196. [Google Scholar] [CrossRef]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef]
- Tiodar, E.D.; Văcar, C.L.; Podar, D. Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: Challenges and perspectives. Int. J. Environ. Res. Public Health 2021, 18, 2435. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, S.; Dehghanian, Z.; Lajayer, B.A.; Thomson, A.; Astatkie, T.; Price, G. CRISPR/Cas9-Mediated genetically edited ornamental and aromatic plants: A promising technology in phytoremediation of heavy metals. J. Clean. Prod. 2023, 428, 139512. [Google Scholar] [CrossRef]
- Occhipinti-Ambrogi, A. Biopollution by invasive marine non-indigenous species: A review of potential adverse ecological effects in a changing climate. Int. J. Environ. Res. Public Health 2021, 18, 4268. [Google Scholar] [CrossRef] [PubMed]
- Skočajić, D.; Nešić, M. Invasive species: Routes of introduction, establishment, and expansion. In Life on Land; Springer: Berlin/Heidelberg, Germany, 2021; pp. 571–582. [Google Scholar]
- Haller, H.; Jonsson, A. Growing food in polluted soils: A review of risks and opportunities associated with combined phytoremediation and food production (CPFP). Chemosphere 2020, 254, 126826. [Google Scholar] [CrossRef]
- Bohua, L.; Yuexin, W.; Yakun, O.; Kunlan, Z.; Huan, L.; Ruipeng, L. Ethical framework on risk governance of synthetic biology. J. Biosaf. Biosecurity 2023, 5, 45–56. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Zhao, Z.; Kong, L.; Lou, W.; Zhang, T.; Jing, D.; Yu, J.; Shu, Z.; Huang, L. Molecular Hydrogen Increases Quantitative and Qualitative Traits of Rice Grain in Field Trials. Plants 2021, 10, 2331. [Google Scholar] [CrossRef]
- Fletcher, J. Optimising Multi-Pollutant Phytoremediation Strategies to Sustainably Improve Raw Water Quality. Ph.D. Thesis, University of Stirling, Stirling, UK, 2022. [Google Scholar]
- Kumar, P.; Choudhury, D. Optimized phytoremediation process for the sustainable management radionuclides. In Bioremediation of Emerging Contaminants from Soils; Elsevier: Amsterdam, The Netherlands, 2024; pp. 443–464. [Google Scholar]
- Diarra, I.; Kotra, K.K.; Prasad, S. Application of phytoremediation for heavy metal contaminated sites in the South Pacific: Strategies, current challenges and future prospects. Appl. Spectrosc. Rev. 2022, 57, 490–512. [Google Scholar] [CrossRef]
- Ashkanani, Z.; Mohtar, R.; Al-Enezi, S.; Smith, P.K.; Calabrese, S.; Ma, X.; Abdullah, M. AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals. J. Hazard. Mater. 2024, 468, 133813. [Google Scholar] [CrossRef]
- Kurade, M.B.; Ha, Y.-H.; Xiong, J.-Q.; Govindwar, S.P.; Jang, M.; Jeon, B.-H. Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chem. Eng. J. 2021, 415, 129040. [Google Scholar] [CrossRef]
- Thijs, S.; Sillen, W.; Weyens, N.; Vangronsveld, J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int. J. Phytoremediat. 2017, 19, 23–38. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.-F.; Yu, T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Voigt, C.A. Synthetic biology 2020–2030: Six commercially-available products that are changing our world. Nat. Commun. 2020, 11, 6379. [Google Scholar] [CrossRef] [PubMed]
- Zurbriggen, M.D.; Moor, A.; Weber, W. Plant and bacterial systems biology as platform for plant synthetic bio (techno) logy. J. Biotechnol. 2012, 160, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Chaney, R.L.; Baker, A.J.; Morel, J.L. The long road to developing agromining/phytomining. In Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–22. [Google Scholar]
- Kikis, C.; Thalassinos, G.; Antoniadis, V. Soil phytomining: Recent developments—A review. Soil Systems 2024, 8, 8. [Google Scholar] [CrossRef]
- Van Aken, B. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol. 2009, 20, 231–236. [Google Scholar] [CrossRef]
- Naz, M.; Benavides-Mendoza, A.; Tariq, M.; Zhou, J.; Wang, J.; Qi, S.; Dai, Z.; Du, D. CRISPR/Cas9 technology as an innovative approach to enhancing the phytoremediation: Concepts and implications. J. Environ. Manag. 2022, 323, 116296. [Google Scholar] [CrossRef]
- Vara Prasad, M.N.; de Oliveira Freitas, H.M. Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 2003, 6, 285–321. [Google Scholar] [CrossRef]
- Chaney, R.L.; Baklanov, I.A. Phytoremediation and phytomining: Status and promise. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 83, pp. 189–221. [Google Scholar]
- Gulzar, A.B.M.; Mazumder, P.B. Helping plants to deal with heavy metal stress: The role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Environ. Sci. Pollut. Res. 2022, 29, 40319–40341. [Google Scholar] [CrossRef]
- Nwadinigwe, A.O.; Ugwu, E.C. Overview of nano-phytoremediation applications. Phytoremediat. Manag. Environ. Contam. 2018, 6, 377–382. [Google Scholar]
- Vázquez-Núñez, E.; Molina-Guerrero, C.E.; Peña-Castro, J.M.; Fernández-Luqueño, F.; de la Rosa-Álvarez, M.G. Use of nanotechnology for the bioremediation of contaminants: A review. Processes 2020, 8, 826. [Google Scholar] [CrossRef]
- Jha, P.; Jha, P.N. Plant-microbe partnerships for enhanced biodegradation of polychlorinated biphenyls. In Plant Microbes Symbiosis: Applied Facets; Springer: Berlin/Heidelberg, Germany, 2014; pp. 95–110. [Google Scholar]
- Wu, D.; Wang, W.; Yao, Y.; Li, H.; Wang, Q.; Niu, B. Microbial interactions within beneficial consortia promote soil health. Sci. Total Environ. 2023, 900, 165801. [Google Scholar] [CrossRef]
- Ubogu, M.; Akponah, E. Plant–microbe interactions in attenuation of toxic waste in ecosystem. In Rhizobiont in Bioremediation of Hazardous Waste; Springer: Berlin/Heidelberg, Germany, 2021; pp. 131–150. [Google Scholar]
- Khan, S.; Masoodi, T.H.; Pala, N.A.; Murtaza, S.; Mugloo, J.A.; Sofi, P.A.; Zaman, M.U.; Kumar, R.; Kumar, A. Phytoremediation prospects for restoration of contamination in the natural ecosystems. Water 2023, 15, 1498. [Google Scholar] [CrossRef]
- Dash, S.; Vs, C. Climate Crisis and Agricultural Response: Climate Resilient Crops for Sustainability in Food Production Systems. J. Exp. Agric. Int. 2024, 46, 440–458. [Google Scholar] [CrossRef]
- Waqar, R.; Iqbal, J.; Abbasi, B.A.; Mumtaz, A.S.; Ijaz, S.; Ullah, Z.; Murtaza, G.; Iqbal, R.; Hussain, M.; Butt, N.I. Climate Resilience: Strategies for Enhancing Plant and Vegetation Growth. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin/Heidelberg, Germany, 2024; pp. 471–501. [Google Scholar]
- Kristanti, R.A.; Tirtalistyani, R.; Tang, Y.Y.; Thao, N.T.T.; Kasongo, J.; Wijayanti, Y. Phytoremediation mechanism for emerging pollutants: A review. Trop. Aquat. Soil Pollut. 2023, 3, 88–108. [Google Scholar] [CrossRef]
- Bhatt, P.; Ganesan, S.; Santhose, I.; Durairaj, T. Phytoremediation as an effective tool to handle emerging contaminants. Phys. Sci. Rev. 2023, 8, 2321–2340. [Google Scholar] [CrossRef]
- González-González, R.B.; Flores-Contreras, E.A.; Parra-Saldívar, R.; Iqbal, H.M.N. Bio-removal of emerging pollutants by advanced bioremediation techniques. Environ. Res. 2022, 214, 113936. [Google Scholar] [CrossRef]
- Malik, J.A.; Goyal, M.R.; Wani, K.A. Bioremediation and Phytoremediation Technologies in Sustainable Soil Management: Volume 1: Fundamental Aspects and Contaminated Sites; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Wang, R.; Wang, Y.; Sun, S.; Cai, C.; Zhang, J. Discussing on “source-sink” landscape theory and phytoremediation for non-point source pollution control in China. Environ. Sci. Pollut. Res. 2020, 27, 44797–44806. [Google Scholar] [CrossRef]
- B Menson, R. Development of Searchable Database for Phytoremediation for Plant Selection Increasing the Accessibility of Existing Data from Field Pilot Trials. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2023. [Google Scholar]
- Cubero, J.N.; Gbadegeshin, S.A.; Consolación, C. Commercialization of disruptive innovations: Literature review and proposal for a process framework. Int. J. Innov. Stud. 2021, 5, 127–144. [Google Scholar] [CrossRef]
- Newton, R.A.; Pidlisnyuk, V.; Wildová, E.; Nováková, L.; Trögl, J. State of Brownfields in the Northern Bohemia, Saxony and Lower Silesian Regions and Prospects for Regeneration by Utilization of the Phytotechnology with the Second Generation Crops. Land 2023, 12, 354. [Google Scholar] [CrossRef]
- Shmaefsky, B.R. Principles of phytoremediation. In Phytoremediation: In-Situ Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–26. [Google Scholar]
- Janeeshma, E.; Sen, A.; Aswathi, K.R.; Johnson, R.; Dhankher, O.P.; Puthur, J.T. Reclamation and Phytoremediation of heavy metal contaminated land. In Bioenergy Crops; CRC Press: Boca Raton, FL, USA, 2022; pp. 187–203. [Google Scholar]
- Vermeulen, S.J.; Park, T.; Khoury, C.K.; Béné, C. Changing diets and the transformation of the global food system. Ann. N. Y. Acad. Sci. 2020, 1478, 3–17. [Google Scholar] [CrossRef]
- Dobermann, A.; Bruulsema, T.; Cakmak, I.; Gerard, B.; Majumdar, K.; McLaughlin, M.; Reidsma, P.; Vanlauwe, B.; Wollenberg, L.; Zhang, F. Responsible plant nutrition: A new paradigm to support food system transformation. Glob. Food Secur. 2022, 33, 100636. [Google Scholar] [CrossRef]
- Khan, N.; Jhariya, M.K.; Raj, A. Urban greening toward sustainable development and sustainability. In Biodiversity, Conservation and Sustainability in Asia: Volume 2: Prospects and Challenges in South and Middle Asia; Springer: Berlin/Heidelberg, Germany, 2022; pp. 345–373. [Google Scholar]
- Fermeglia, M.; Perišić, M. Nature-based solution to man-made problems: Fostering the uptake of phytoremediation and low-iluc biofuels in the EU. J. Eur. Environ. Plan. Law 2023, 20, 145–167. [Google Scholar] [CrossRef]
- Cusworth, G.; Garnett, T.; Lorimer, J. Legume dreams: The contested futures of sustainable plant-based food systems in Europe. Glob. Environ. Chang. 2021, 69, 102321. [Google Scholar] [CrossRef] [PubMed]
Location | Pollutant(s) Addressed | Plant Species Used | Outcomes/Results | References |
---|---|---|---|---|
Various global locations | Heavy metals (Ni, Zn, and Cd) | Alyssum spp. and Thlaspi caerulescens | Effective in extracting heavy metals (e.g., nickel, zinc, and cadmium) from contaminated soils. Nickel recovery from biomass also provides economic benefits. | [40,41,42] |
USA and other locations | Organic pollutants (TCE) | Genetically engineered poplar trees (Populus spp.) | Enhanced degradation of trichloroethylene (TCE) by genetically modified poplar trees that express cytochrome P450 enzymes. Improved breakdown of TCE into harmless by-products. | [44,45,52] |
Worldwide | Nutrients (N and P), heavy metals, and sediment | Wetland plants (Typha spp., Phragmites spp., and Juncus spp.) | Utilized in constructed wetlands to treat municipal, industrial, and agricultural wastewater. Effective in removing nutrients, trapping sediment, and purifying water. | [46,47,48] |
Worldwide | Heavy metals (Cd, Pb, and Zn) | Brassica juncea and Arabidopsis thaliana | Highly effective in hyperaccumulating heavy metals (e.g., cadmium, lead, and zinc) from contaminated soils. Brassica juncea exhibits rapid growth and high biomass production, making it suitable for large-scale remediation projects. | [53,54] |
Remediation Project Location | Remediation Method | Cost per Hectare ($USD) | Time to Completion | Environmental Impact | Economic/Environmental Benefits |
---|---|---|---|---|---|
Chernobyl, Ukraine | Phytoremediation (sunflowers) | 25,000–50,000 | 5–10 years | Low (minimal disruption to the ecosystem) | Safe removal of radioactive isotopes and long-term soil recovery |
Liberty State Park, USA | Phytoremediation (Indian mustard) | 40,000–60,000 | 5 years | Low | 45% reduction in lead contamination and improved soil quality |
Industrial Site, USA | Traditional soil excavation | 150,000–250,000 | 6 months to 1 year | High (heavy disruption and significant ecosystem loss) | Immediate reduction in contamination but long-term ecosystem damage |
Rhine Valley, Germany | Phytoremediation (willow and poplar) | 30,000–70,000 | 8–12 years | Low | Degradation of organic pollutants (polycyclic aromatic hydrocarbons) and soil restoration for agriculture |
Ningxia, China | Phytoremediation (Sedum alfredii) | 20,000–50,000 | 7–10 years | Low | Significant removal of zinc and cadmium and reclaimed land for agricultural use |
Southeast Peru | Constructed wetland (reed) | 10,000–40,000 | Ongoing (continuous treatment) | Very low (natural wetland processes) | Petroleum-contaminated water treated for safe discharge and restored biodiversity |
Research Area | Description | References |
---|---|---|
Genetic engineering in phytoremediation | Utilizing CRISPR/Cas9 and other genetic tools to enhance plants’ ability to tolerate and absorb pollutants, with a focus on heavy metals and organic pollutants. | [106,107] |
Phytomining | Developing techniques for using hyperaccumulator plants to extract valuable metals (nickel, zinc, etc.) from contaminated soils while remediating the site. | [108,109] |
Nanotechnology integration in phytoremediation | Incorporating nanoparticles to improve plant growth, enhance pollutant absorption, and aid in the breakdown of complex contaminants. | [110,111,112] |
Plant–microbe synergies | Investigating interactions between plant roots and microbial communities to enhance the biodegradation of pollutants through mutualistic relationships. | [113,114,115] |
Phytohydraulics | Studying the role of plants in controlling the flow of groundwater to prevent the spread of contamination through natural transpiration and root systems. | [77,116] |
Climate-resilient phytoremediation | Engineering plants to perform effective phytoremediation under extreme conditions such as drought, salinity, or temperature fluctuations due to climate change. | [117,118] |
Phytoremediation of emerging contaminants | Expanding the use of phytoremediation to handle pharmaceuticals, microplastics, and other newly recognized environmental pollutants. | [119,120,121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, W.; Ali, S.; Akhtar, M.S. Harnessing the Power of Plants: Innovative Approaches to Pollution Prevention and Mitigation. Sustainability 2024, 16, 10587. https://doi.org/10.3390/su162310587
Zaman W, Ali S, Akhtar MS. Harnessing the Power of Plants: Innovative Approaches to Pollution Prevention and Mitigation. Sustainability. 2024; 16(23):10587. https://doi.org/10.3390/su162310587
Chicago/Turabian StyleZaman, Wajid, Sajid Ali, and Muhammad Saeed Akhtar. 2024. "Harnessing the Power of Plants: Innovative Approaches to Pollution Prevention and Mitigation" Sustainability 16, no. 23: 10587. https://doi.org/10.3390/su162310587
APA StyleZaman, W., Ali, S., & Akhtar, M. S. (2024). Harnessing the Power of Plants: Innovative Approaches to Pollution Prevention and Mitigation. Sustainability, 16(23), 10587. https://doi.org/10.3390/su162310587