Spatiotemporal Changes and Driving Factors of Land Use/Land Cover (LULC) in the Wuding River Basin, China: Impacts of Ecological Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. LULC Data
2.2.2. Driving Factor Data
2.3. Research Method
2.3.1. Dynamic Degree
2.3.2. Land-Use Transfer Matrix
2.3.3. Centroid Migration Model
2.3.4. Geographical Detector Model
3. Results
3.1. Spatiotemporal Evolution Characteristics of LULC
3.1.1. Spatial Distribution of LULC
3.1.2. Area Change and Dynamic Degree of LULC
3.2. Analysis of the Land-Use Transfer Matrix
3.3. Spatial Transfer Trajectory of LULC
3.4. Driving Factors of LULC Change in the WRB
3.4.1. Single-Factor Detector
3.4.2. Interaction Detection
4. Discussion
4.1. Spatiotemporal Patterns of LULC Evolution in the WRB
4.2. Driving Mechanisms of LULC Changes in the WRB
4.2.1. Natural Factors
4.2.2. Human Factors
4.3. Limitations and Prospects
5. Conclusions
- (1)
- The primary land use and cover types in the WRB are grassland, cropland, and desert. Ecological restoration has led to a reduction in cropland (from 6428.73 km2 in 2000 to 5394.56 km2 in 2020), while grassland increased significantly (from 66.50% to 78.16%) and desert areas diminished substantially (from 3338.62 km2 to 743.18 km2). Forest and urban areas showed steady growth, and water bodies fluctuated slightly. The land dynamic degree ranked as follows: forest > desert > urban > water > cropland > grassland, with the overall dynamic degree fluctuating over time.
- (2)
- LULC types in the basin follow a northwest to southeast gradient of desert, grassland, and cropland. Key changes include the conversion of desert and cropland into grassland, with forest, urban, and water areas primarily expanding from grassland. LULC centroids shifted west and north, with the greatest migration observed for forest and desert areas. As ecological restoration progressed, the extent of centroid migration decreased, approaching stability.
- (3)
- Natural factors, particularly slope and precipitation, are the main drivers of LULC changes, excluding urban land, where economic factors and population density dominate. Climate change provides favorable conditions for ecological restoration. Dual-factor interactions have greater explanatory power than individual factors, showing enhanced or nonlinear effects. The strongest interactions are: slope and temperature for cropland (54.50%), precipitation and elevation for forest (66.10%), slope and elevation for grassland (40.50%), precipitation and proximity to railways for water areas (24.80%), population and economic factors for urban areas (35.80%), and temperature and precipitation for desert areas (40.30%).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LULC | Cropland | Forest | Grassland | Water | Urban | Desert | Sum | Roll Out |
---|---|---|---|---|---|---|---|---|
Cropland | 4990.76 | 0.05 | 1424.56 | 3.33 | 11.06 | 0.20 | 6429.96 | 1439.20 |
Forest | 0.06 | 2.52 | 0.05 | 0.00 | 0.00 | 0.00 | 2.63 | 0.11 |
Grassland | 957.16 | 0.14 | 18,476.80 | 7.47 | 10.86 | 236.24 | 19,688.67 | 1211.87 |
Water | 2.03 | 0.00 | 2.88 | 53.23 | 0.58 | 0.00 | 58.72 | 5.49 |
Urban | 0.04 | 0.00 | 0.06 | 2.07 | 88.03 | 0.00 | 90.20 | 2.17 |
Desert | 3.93 | 0.00 | 1006.32 | 2.97 | 2.42 | 2324.12 | 3339.76 | 1015.64 |
Sum | 5953.98 | 2.71 | 20,910.67 | 69.07 | 112.95 | 2560.56 | 29,609.94 | - |
Roll in | 963.22 | 0.19 | 2433.87 | 15.84 | 24.92 | 236.44 | - | - |
LULC | Cropland | Forest | Grassland | Water | Urban | Desert | Sum | Roll Out |
---|---|---|---|---|---|---|---|---|
Cropland | 5156.50 | 0.28 | 782.10 | 2.29 | 12.79 | 0.02 | 5953.98 | 797.48 |
Forest | 0.01 | 2.70 | 0.00 | 0.00 | 0.00 | 0.00 | 2.71 | 0.01 |
Grassland | 1171.94 | 3.64 | 19,616.80 | 4.63 | 17.09 | 96.57 | 20,910.67 | 1293.87 |
Water | 5.74 | 0.01 | 2.01 | 59.63 | 1.28 | 0.40 | 69.07 | 9.44 |
Urban | 0.02 | 0.00 | 0.00 | 0.97 | 111.96 | 0.00 | 112.95 | 0.99 |
Desert | 2.76 | 0.00 | 1099.86 | 0.28 | 2.79 | 1454.87 | 2560.56 | 1105.69 |
Sum | 6336.97 | 6.63 | 21,500.77 | 67.80 | 145.91 | 1551.86 | 29,609.94 | - |
Roll in | 1180.47 | 3.93 | 1883.97 | 8.17 | 33.95 | 96.99 | - | - |
LULC | Cropland | Forest | Grassland | Water | Urban | Desert | Sum | Roll Out |
---|---|---|---|---|---|---|---|---|
Cropland | 4863.51 | 3.84 | 1450.56 | 9.07 | 9.94 | 0.05 | 6336.97 | 1473.46 |
Forest | 0.01 | 6.62 | 0.00 | 0.00 | 0.00 | 0.00 | 6.63 | 0.01 |
Grassland | 862.82 | 23.40 | 20,535.38 | 8.30 | 18.87 | 52.00 | 21,500.77 | 965.39 |
Water | 4.42 | 0.02 | 1.13 | 61.53 | 0.66 | 0.04 | 67.80 | 6.27 |
Urban | 0.00 | 0.00 | 0.00 | 1.84 | 144.07 | 0.00 | 145.91 | 1.84 |
Desert | 17.62 | 0.00 | 755.27 | 0.43 | 3.34 | 775.20 | 1551.86 | 776.66 |
Sum | 5748.38 | 33.88 | 22,742.34 | 81.17 | 176.88 | 827.29 | 29,609.94 | - |
Roll in | 884.87 | 27.26 | 2206.96 | 19.64 | 32.81 | 52.09 | - | - |
LULC | Cropland | Forest | Grassland | Water | Urban | Desert | Sum | Roll Out |
---|---|---|---|---|---|---|---|---|
Cropland | 4571.33 | 0.72 | 1166.84 | 1.67 | 7.71 | 0.11 | 5748.38 | 1177.05 |
Forest | 1.98 | 31.88 | 0.02 | 0.00 | 0.00 | 0.00 | 33.88 | 2.00 |
Grassland | 809.18 | 4.22 | 21,737.83 | 2.93 | 24.74 | 163.44 | 22,742.34 | 1004.51 |
Water | 3.22 | 0.01 | 2.26 | 73.40 | 1.10 | 1.18 | 81.17 | 7.77 |
Urban | 0.00 | 0.00 | 0.02 | 0.56 | 176.30 | 0.00 | 176.88 | 0.58 |
Desert | 9.64 | 0.00 | 235.96 | 0.20 | 2.45 | 579.04 | 827.29 | 248.25 |
Sum | 5395.35 | 36.83 | 23,142.93 | 78.76 | 212.30 | 743.77 | 29,609.94 | - |
Roll in | 824.02 | 4.95 | 1405.10 | 5.36 | 36.00 | 164.73 | - | - |
Major Axis/km | Minor Axis/km | Azimuth Angle/° | X | Y | Area/km2 | |
---|---|---|---|---|---|---|
Cropland | ||||||
2000 | 80.71 | 59.74 | 99.14 | 109.49 | 37.78 | 15,147.86 |
2005 | 81.13 | 60.63 | 100.85 | 109.50 | 37.78 | 15,451.65 |
2010 | 79.99 | 60.78 | 98.07 | 109.46 | 37.80 | 15,273.06 |
2015 | 76.83 | 63.72 | 97.58 | 109.38 | 37.88 | 15,379.64 |
2020 | 74.05 | 63.95 | 94.96 | 109.34 | 37.93 | 14,876.33 |
Forest | ||||||
2000 | 73.94 | 18.84 | 91.34 | 110.07 | 37.40 | 4374.89 |
2005 | 78.56 | 24.42 | 91.71 | 110.02 | 37.40 | 6024.65 |
2010 | 65.88 | 29.58 | 88.94 | 109.82 | 37.43 | 6121.04 |
2015 | 63.60 | 42.71 | 91.92 | 109.66 | 37.47 | 8533.61 |
2020 | 65.72 | 37.80 | 87.34 | 109.70 | 37.46 | 7802.63 |
Grassland | ||||||
2000 | 74.02 | 69.53 | 11.22 | 109.25 | 37.96 | 16,166.90 |
2005 | 73.96 | 68.89 | 14.81 | 109.25 | 37.96 | 16,006.56 |
2010 | 74.39 | 68.86 | 10.93 | 109.25 | 37.98 | 16,092.91 |
2015 | 75.04 | 70.58 | 0.73 | 109.27 | 37.97 | 16,635.89 |
2020 | 75.43 | 71.24 | 174.96 | 109.28 | 37.95 | 16,881.73 |
Water | ||||||
2000 | 80.52 | 61.01 | 56.57 | 109.21 | 37.91 | 15,432.70 |
2005 | 79.35 | 63.30 | 50.02 | 109.21 | 37.96 | 15,777.66 |
2010 | 81.89 | 59.27 | 47.01 | 109.17 | 37.96 | 15,363.22 |
2015 | 80.58 | 53.60 | 42.74 | 109.14 | 37.97 | 13,569.27 |
2020 | 81.89 | 50.45 | 42.29 | 109.14 | 37.97 | 12,977.41 |
Urban | ||||||
2000 | 60.70 | 52.99 | 63.43 | 109.60 | 37.88 | 10,104.59 |
2005 | 59.93 | 56.58 | 65.31 | 109.61 | 37.90 | 10,653.02 |
2010 | 59.29 | 58.84 | 18.97 | 109.61 | 37.94 | 10,958.69 |
2015 | 60.47 | 57.16 | 176.97 | 109.63 | 37.98 | 10,857.03 |
2020 | 60.90 | 55.78 | 2.28 | 109.63 | 38.02 | 10,671.81 |
Desert | ||||||
2000 | 67.99 | 43.64 | 40.63 | 109.10 | 38.33 | 9321.25 |
2005 | 68.58 | 40.78 | 43.47 | 109.04 | 38.36 | 8785.30 |
2010 | 67.85 | 38.00 | 46.34 | 108.98 | 38.42 | 8099.30 |
2015 | 62.80 | 34.40 | 42.85 | 108.92 | 38.46 | 6786.98 |
2020 | 67.04 | 32.75 | 41.26 | 108.86 | 38.42 | 6897.45 |
References
- Mas, J.F.; Kolb, M.; Paegelow, M.; Camacho Olmedo, M.T.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef]
- Zhang, T. Temporal and Spatial Evolution of Land Use in Gansu Section of The Yellow River Basin and Analysis of Driving Forces. Acad. J. Sci. Technol. 2023, 4, 88–93. [Google Scholar] [CrossRef]
- Krause, A.; Haverd, V.; Poulter, B.; Anthoni, P.; Quesada, B.; Rammig, A.; Arneth, A. Multimodel Analysis of Future Land Use and Climate Change Impacts on Ecosystem Functioning. Earth’s Future 2019, 7, 833–851. [Google Scholar] [CrossRef]
- Froese, R.; Schilling, J. The Nexus of Climate Change, Land Use, and Conflicts. Curr. Clim. Change Rep. 2019, 5, 24–35. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, Y.; Wang, L.; Wei, L.; Wu, X. An Analysis of Land-Use Conflict Potential Based on the Perspective of Production–Living–Ecological Function. Sustainability 2022, 14, 5936. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, L.; Tang, S.; Li, X.; Hao, T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. J. Geogr. Sci. 2017, 27, 771–785. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Ferreira, M.S.; Chazdon, R.L.; Lindenmayer, D.B.; Sansevero, J.B.B.; Monteiro, L.; Iribarrem, A.; Latawiec, A.E.; Strassburg, B.B.N. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 2017, 3, 1701345. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lü, Y.; Fu, B.; Zhang, Q.; Li, T.; Hu, W.; Comber, A. Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Sci. Total Environ. 2019, 651, 2546–2557. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, Y. Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China. Land 2021, 10, 982. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, P.; Wu, C.; Mu, X. Analysis of Land Use Change Characteristics and Its Driving Forces in the Loess Plateau: A Case Study in the Yan River Basin. Land 2023, 12, 1653. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Lu, C.; Wang, D.; Wang, H.; Liu, H. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecol. Eng. 2017, 104, 13–22. [Google Scholar] [CrossRef]
- Mao, S.; Shangguan, Z. Evolution of spatiotemporal patterns in vegetation net primary productivity and the driving forces on the Loess Plateau. Front. Environ. Sci. 2023, 11, 1134917. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y. Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China. Life 2022, 12, 1688. [Google Scholar] [CrossRef]
- Hu, B.; Li, Z.; Wu, H.; Han, H.; Cheng, X.; Kang, F. Coupling strength of human-natural systems mediates the response of ecosystem services to land use change. J. Environ. Manag. 2023, 344, 118521. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, M.; Batunacun. Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under different land use and climate change scenarios. Environ. Dev. 2020, 34, 100488. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying landscape pattern and ecosystem service value changes: A case study at the county level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, 01110. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Wang, Y.; Yuan, X. Interactive relationship and zoning management between county urbanization and ecosystem services in the Loess Plateau. Ecol. Indic. 2023, 156, 111021. [Google Scholar] [CrossRef]
- Chang, S.; Dai, Z.Z.; Wang, X.; Zhu, Z.Y.; Feng, Y.Z. Landscape pattern identification and ecological risk assessment employing land use dynamics on the Loess Plateau. Agronomy 2023, 13, 2247. [Google Scholar] [CrossRef]
- Wen, X.; Wang, J.; Han, X. Impact of land use evolution on the value of ecosystem services in the returned farmland area of the Loess Plateau in northern Shaanxi. Ecol. Indic. 2024, 163, 112119. [Google Scholar] [CrossRef]
- Xiong, M.; Li, F.; Liu, X.; Liu, J.; Luo, X.; Xing, L.; Wang, R.; Li, H.; Guo, F. Characterization of Ecosystem Services and Their Trade-Off and Synergistic Relationships under Different Land-Use Scenarios on the Loess Plateau. Land 2023, 12, 2087. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Y.; Wu, Z.; Xiao, P.; Wang, J.; Sun, P. Quantitative analysis of runoff alteration based on the Budyko model with time-varying underlying surface parameters for the Wuding River Basin, Loess Plateau. Ecol. Indic. 2024, 158, 111377. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, P.; Zhao, Y.; Qu, L.; Du, P.; Wang, Y. Factors affecting runoff and sediment load changes in the Wuding River basin from 1960 to 2020. Hydrology 2022, 9, 198. [Google Scholar] [CrossRef]
- Zeng, Y.; Yu, Q.; Wang, X.; Ma, J.; Xu, C.; Qiu, S.; Liu, W.; Wang, F. Research on the Relationship between the Structure of Forest and Grass Ecological Spaces and Ecological Service Capacity: A Case Study of the Wuding River Basin. Remote Sens. 2023, 15, 2456. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, Z.; Guan, Q.; Yan, Y.; Zhang, J. Comprehensive assessment of land degradation in the arid and semiarid area based on the optimal land degradation index model. Catena 2024, 234, 107563. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, R.; Yang, M.; Xie, J.; Zhao, Y.; Li, F.; Lu, X. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China. J. Arid Land 2024, 16, 91–109. [Google Scholar] [CrossRef]
- Wei, Z.; Du, N.; Yu, W. Land use change and its driving factors in the ecological function area: A case study in the Hedong Region of the Gansu Province, China. J. Arid Land 2024, 16, 71–90. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Duan, Y. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle Heihe River basin, China. Sci. Total Environ. 2015, 506–507, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, H.; Gu, X.; Liu, J.; Yin, Z.; Sun, Q.; Wei, Z.; Pan, Y. Monitoring the Spatio-Temporal Changes of Non-Cultivated Land via Long-Time Series Remote Sensing Images in Xinghua. IEEE Access 2022, 10, 84518–84534. [Google Scholar] [CrossRef]
- Lee, J.; Yin, X.; Zhu, H.; Zheng, X. Geographical Detector-Based Research of Spatiotemporal Evolution and Driving Factors of Oasification and Desertification in Manas River Basin, China. Land 2023, 12, 1487. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, F.; Jim, C.Y.; Bahtebay, J. Spatio-temporal evolution of landscape patterns in an oasis city. Environ. Sci. Pollut. Res. 2023, 30, 3872–3886. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, Y.; Hou, M.; Yao, S. Response of Land Use Change to the Grain for Green Program and Its Driving Forces in the Loess Hilly-Gully Region. Land 2021, 10, 194. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, S.; Cui, Y.; Li, P.; Sheng, L.; Liao, C. Analysis of the spatiotemporal expansion and pattern evolution of urban areas in Anhui Province, China, based on nighttime light data. Ecol. Indic. 2023, 157, 111283. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Lei, J.; Li, S. Development of a multiscale discretization method for the geographical detector model. Int. J. Geogr. Inf. Sci. 2021, 35, 1650–1675. [Google Scholar] [CrossRef]
- Shang, S.; Cui, T.; Wang, Y.; Gao, Q.; Liu, Y. Dynamic variation and driving mechanisms of land use change from 1980 to 2020 in the lower reaches of the Yangtze River, China. Front. Environ. Sci. 2024, 11, 1335624. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Bai, R.; Wang, X.; Li, J.; Yang, F.; Shangguan, Z.; Deng, L. The impact of vegetation reconstruction on soil erosion in the Loess plateau. J. Environ. Manag. 2024, 363, 121382. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Xie, P.; Sun, W.; Mu, X.; Gao, P. The greening of vegetation on the Loess Plateau has resulted in a northward shift of the vegetation greenness line. Glob. Planet. Change 2024, 237, 104440. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Zhao, M.; Liu, Y.; Chen, Y. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-western Yunnan, China. Sci. Total Environ. 2017, 574, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Xie, J.; Han, J.; Luo, L. A comprehensive framework on land-water resources development in Mu Us Sandy Land. Land Use Policy 2014, 40, 69–73. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Pei, C.; Zhao, X.; Li, Y.; Hu, S.; Bu, C.; Zhang, Q. Multisource Remote Sensing Monitoring and Analysis of the Driving Forces of Vegetation Restoration in the Mu Us Sandy Land. Land 2022, 11, 1553. [Google Scholar] [CrossRef]
- Fu, C.; Liu, Y.; Chen, Y.; Li, F.; Huang, J.; Huang, H. Simulation of Land Use Change and Habitat Quality in the Yellow River Basin under Multiple Scenarios. Water 2022, 14, 3767. [Google Scholar] [CrossRef]
- Tong, S.; Ma, Y. Evaluation of Ecological Vulnerability of Yulin City under the Background of Returning Farmland to Forests. IOP Conf. Ser. Mater. Sci. Eng. 2020, 768, 052127. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y.; Yuan, Y. Evaluation and simulation of the impact of land use change on ecosystem services trade-offs in ecological restoration areas, China. Land Use Policy 2020, 99, 105020. [Google Scholar] [CrossRef]
- Bai, Y.; Zhu, Y.; Liu, Y.; Wang, S. Vegetation greening and its response to a warmer and wetter climate in the yellow river basin from 2000 to 2020. Remote Sens. 2024, 16, 790. [Google Scholar] [CrossRef]
- Ru, X.; Song, H.; Xia, H.; Zhai, S.; Wang, Y.; Min, R.; Zhang, H.; Qiao, L. Effects of Land Use and Land Cover Change on Temperature in Summer over the Yellow River Basin, China. Remote Sens. 2022, 14, 4352. [Google Scholar] [CrossRef]
- Li, S.; Liang, W.; Fu, B.; Lü, Y.; Fu, S.; Wang, S.; Su, H. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 2016, 569–570, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; An, L.; Zhong, S.; Shen, L.; Wu, S. Declining coupling between vegetation and drought over the past three decades. Glob. Change Biol. 2024, 30, 17141. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fu, S.; Cui, H.; Cao, Q.; Wang, Z.; Zhang, Z.; Wu, Q.; Qiao, J. Identifying the spatio-temporal pattern of drought characteristics and its constraint factors in the Yellow River Basin. Ecol. Indic. 2023, 154, 110753. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Liu, M.; Shi, Y.; Zhou, H.; Zhang, B.; Yan, J. Spatial variation patterns of plant herbaceous community response to warming along latitudinal and altitudinal gradients in mountainous forests of the Loess Plateau, China. Environ. Exp. Bot. 2020, 172, 103983. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, X.; Shi, X.; Zhang, Y.; Liu, Y.; Cai, W. Spatiotemporal evolution characteristics of soil erosion and its driving mechanisms-a case Study: Loess Plateau, China. Catena 2024, 242, 108075. [Google Scholar] [CrossRef]
- Shao, W.; Guan, Q.; Tan, Z.; Luo, H.; Li, H.; Sun, Y.; Ma, Y. Application of BP-ANN model in evaluation of soil quality in the arid area, northwest China. Soil Tillage Res. 2021, 208, 104907. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Ha, S.; Lai, Q.; Ma, Q. Dynamics of Fractional Vegetation Coverage and Its Relationship with Climate and Human Activities in Inner Mongolia, China. Remote Sens. 2016, 8, 776. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liu, Y.; Shi, Z.H.; López Vicente, M.; Wu, G.L. Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. Catena 2020, 195, 104787. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Li, C.; Gao, Z.; Sun, B.; Wu, J.; Wang, H.; Ding, X. Ecological restoration effects of the Beijing–Tianjin Sandstorm Source Control Project in China since 2000. Ecol. Indic. 2023, 146, 109782. [Google Scholar] [CrossRef]
- Yu, L.; Wu, Z.; Du, Z.; Zhang, H.; Liu, Y. Insights on the roles of climate and human activities to vegetation degradation and restoration in Beijing-Tianjin sandstorm source region. Ecol. Eng. 2021, 159, 106105. [Google Scholar] [CrossRef]
- Wen, X.; Wang, J.; Han, X.; Ma, L. Where Are the Trade-Offs in Multiple Ecosystem Services in the Process of Ecological Restoration? A Case Study on the Vegetation Restoration Area in the Loess Plateau, Northern Shaanxi. Land 2024, 13, 70. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, B.; Li, T.; Li, W. Research on the sustainability of “greening” process in the Mu Us Sandy Land based on the spatiotemporal stability of ecological land. PLoS ONE 2024, 19, 0292469. [Google Scholar] [CrossRef]
- Zhao, H.; He, H.; Wang, J.; Bai, C.; Zhang, C. Vegetation Restoration and Its Environmental Effects on the Loess Plateau. Sustainability 2018, 10, 4676. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Wang, C.; Zhang, T.; Dong, X.; Liu, Y. Vegetation dynamics influenced by climate change and human activities in the Hanjiang River Basin, central China. Ecol. Indic. 2022, 145, 109586. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Sun, S. Study on the Restoration and Control of Yulin Landscape, Forest, Field, Lake and Grass System. Acad. J. Sci. Technol. 2023, 5, 41–43. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Lan, J.; Chai, Z.; Tang, X.; Wang, X. Landscape Ecological Risk Assessment and Driving Force Analysis of the Heihe River Basin in the Zhangye Area of China. Water 2023, 15, 3588. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C.; Chen, T.; Feng, Z.; Hu, Y.; Wu, K. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [Google Scholar] [CrossRef]
- Chi, W.; Wang, Y.; Lou, Y.; Na, Y.; Luo, Q. Effect of Land Use/Cover Change on Soil Wind Erosion in the Yellow River Basin since the 1990s. Sustainability 2022, 14, 12930. [Google Scholar] [CrossRef]
- Du, L.; Dong, C.; Kang, X.; Qian, X.; Gu, L. Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020. J. Environ. Manag. 2023, 332, 117149. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Liang, W.; Fu, B.; Zhang, W.; Yan, J.; Lü, Y.; Yue, C.; Jin, Z.; Lan, Z.; Li, S.; et al. Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sens. 2021, 13, 1299. [Google Scholar] [CrossRef]
Type | Factor | Resolution | Data Source |
---|---|---|---|
Natural factors | Elevation | 30 m | Geospatial Data Cloud (https://www.gscloud.cn/) |
Slope | 30 m | ||
Distance to the river | 30 m | ||
Annual average temperature | 1 km | Resource and Environmental Science Data Platform (https://www.resdc.cn/) | |
Annual precipitation | 1 km | ||
Human factors | Population density | 1 km | |
GDP | 1 km | ||
Distance to the main road | 1 km | OpenStreetMap (https://www.openstreetmap.org/) | |
Distance to the railway | 1 km |
Type | q Value |
---|---|
Nonlinear weakening | q(X1∩X2) < min (q(X1), q(X2)) |
Single factor nonlinear weakening | min (q(X1), q(X2)) < q(X1∩X2) < max (q(X1), q(X2)) |
Two-factor enhancement | q(X1∩X2) > max (q(X1), q(X2)) |
Nonlinear enhancement | q(X1∩X2) > q(X1) + q(X2) |
Independence | q(X1∩X2) = q(X1) + q(X2) |
2020 | Cropland | Forest | Grassland | Water | Urban | Desert | Sum | Roll Out | |
---|---|---|---|---|---|---|---|---|---|
2000 | |||||||||
Cropland | 3443.93 | 5.01 | 2919.36 | 13.81 | 45.95 | 1.89 | 6429.96 | 2986.03 | |
Forest | 0.04 | 2.48 | 0.11 | 0.00 | 0.00 | 0.00 | 2.63 | 0.15 | |
Grassland | 1828.78 | 29.14 | 17,633.95 | 15.79 | 61.21 | 119.80 | 19,688.67 | 2054.72 | |
Water | 10.27 | 0.13 | 2.46 | 42.99 | 2.57 | 0.30 | 58.72 | 15.73 | |
Urban | 0.85 | 0.00 | 0.14 | 3.24 | 85.98 | 0.00 | 90.21 | 4.23 | |
Desert | 111.51 | 0.04 | 2586.90 | 2.96 | 16.57 | 621.77 | 3339.76 | 2717.99 | |
Sum | 5395.37 | 36.81 | 23,142.93 | 78.79 | 212.28 | 743.76 | 29,609.95 | - | |
Roll in | 1951.44 | 34.33 | 5508.97 | 35.80 | 126.30 | 122.00 | - | - |
Type | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | ||||
---|---|---|---|---|---|---|---|---|
Direction | Distance | Direction | Distance | Direction | Distance | Direction | Distance | |
Cropland | SE | 0.01 | NW | 0.04 | NW | 0.11 | NW | 0.06 |
Forest | NW | 0.05 | NW | 0.20 | NW | 0.16 | NW | 0.04 |
Grassland | NE | 0.00 | NE | 0.02 | SE | 0.02 | SE | 0.02 |
Water | NE | 0.05 | NW | 0.04 | NW | 0.03 | NE | 0.00 |
Urban | NE | 0.02 | NE | 0.04 | NE | 0.04 | NE | 0.04 |
Desert | NW | 0.06 | NW | 0.08 | NW | 0.07 | SW | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Ni, M.; Yang, Y.; Fang, Y.; Xia, J. Spatiotemporal Changes and Driving Factors of Land Use/Land Cover (LULC) in the Wuding River Basin, China: Impacts of Ecological Restoration. Sustainability 2024, 16, 10453. https://doi.org/10.3390/su162310453
Sun T, Ni M, Yang Y, Fang Y, Xia J. Spatiotemporal Changes and Driving Factors of Land Use/Land Cover (LULC) in the Wuding River Basin, China: Impacts of Ecological Restoration. Sustainability. 2024; 16(23):10453. https://doi.org/10.3390/su162310453
Chicago/Turabian StyleSun, Tingyu, Mingxia Ni, Yinuo Yang, Yu Fang, and Jianxin Xia. 2024. "Spatiotemporal Changes and Driving Factors of Land Use/Land Cover (LULC) in the Wuding River Basin, China: Impacts of Ecological Restoration" Sustainability 16, no. 23: 10453. https://doi.org/10.3390/su162310453
APA StyleSun, T., Ni, M., Yang, Y., Fang, Y., & Xia, J. (2024). Spatiotemporal Changes and Driving Factors of Land Use/Land Cover (LULC) in the Wuding River Basin, China: Impacts of Ecological Restoration. Sustainability, 16(23), 10453. https://doi.org/10.3390/su162310453