Assessing Drought Risk and the Influence of Climate Projections in Sri Lanka for Sustainable Drought Mitigation via Geospatial Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
2.2.1. Distributions of Average Temperature and Precipitation
2.2.2. Drought Calculation
2.2.3. Correlations of Drought with Temperature and Precipitation
2.2.4. Drought Risk Assessment Process
2.2.5. Trend Analysis of the Predicted Temperature and Precipitation
3. Results
3.1. Spatial Distribution of Current Annual Rainfall and Mean Temperature
3.2. Drought Hazard
3.3. Vulnerability to Drought
3.4. Drought Risk
3.5. Influence of Projected Temperature and Rainfall on Drought from 2021 to 2100
4. Discussion
4.1. Spatial Distributions of Current Temperature and Precipitation
4.2. Drought Risk Assessment
4.3. Influence of Projected Temperature and Rainfall on Future Drought Events
4.4. Implications of Drought Risk Assessment for Sustainable Development in Sri Lanka
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Colombo Published | Anuradhapura Published | Trincomalee Published | Puttalam Published | Galle Published | Nuwaraeliya Published | ||
---|---|---|---|---|---|---|---|
Colombo Observed | Pearson Correlation | 0.61 ** | 0.69 ** | 0.71 ** | 0.67 ** | 0.44 ** | 0.59 ** |
Sig. (2-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Anuradhapura Observed | Pearson Correlation | 0.43 ** | 0.52 ** | 0.51 ** | 0.46 ** | 0.44 ** | 0.59 ** |
Sig. (2-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Trincomalee Observed | Pearson Correlation | 0.39 ** | 0.53 ** | 0.53 ** | 0.27 ** | 0.23 * | 0.43 ** |
Sig. (2-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |
Puttalam Observed | Pearson Correlation | 0.72 ** | 0.83 ** | 0.81 ** | 0.56 ** | 0.57 ** | 0.81 ** |
Sig. (2-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Galle Observed | Pearson Correlation | 0.38 ** | 0.20 * | 0.25 ** | 0.32 ** | 0.34 ** | 0.18 |
Sig. (2-tailed) | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.05 | |
Nuwaraeliya Observed | Pearson Correlation | 0.61 ** | 0.52 ** | 0.52 ** | 0.55 ** | 0.69 ** | 0.67 ** |
Sig. (2-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
References
- Zhang, L.; Zhou, T. Drought over East Asia: A Review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. A Drought Climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Wei, X. The Geography and Remote Sensing Analysis of Sri Lanka; Springer: Singapore, 2021; ISBN 9789813346277. [Google Scholar]
- van Zyl, J.; Van Der Vyver, A.; Groenewald, J.A. The Influence of Drought and General Economic Effects on Agriculture: A Macro-Analysis. Agrekon 1987, 26, 8–12. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of Climate Variability and Drought on Surface Water Resources in Sub-Saharan Africa Using Remote Sensing: A Review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Shrestha, A.; Rahaman, M.M.; Kalra, A.; Jogineedi, R.; Maheshwari, P. Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India. Forecasting 2020, 2, 59–84. [Google Scholar] [CrossRef]
- Nagamuthu, P. Assessment of Projected Temperature and Precipitation in the Northern Province of Sri Lanka through Statistically Downscaled CMIP6 Projection. J. Geol. Geogr. Geoecol. 2024, 33, 132–154. [Google Scholar] [CrossRef]
- Shahid, S.; Behrawan, H. Drought Risk Assessment in the Western Part of Bangladesh. Nat. Hazards 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought Hazard Assessment in the Context of Climate Change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Solh, M.; Van Ginkel, M. Drought Preparedness and Drought Mitigation in the Developing World’s Drylands. Weather Clim. Extrem. 2014, 3, 62–66. [Google Scholar] [CrossRef]
- Speranza, C.I. Drought Coping and Adaptation Strategies: Understanding Adaptations to Climate Change in Agro-Pastoral Livestock Production in Makueni District, Kenya. Eur. J. Dev. Res. 2010, 22, 623–642. [Google Scholar] [CrossRef]
- Opiyo, F.; Wasonga, O.; Nyangito, M.; Schilling, J.; Munang, R. Drought Adaptation and Coping Strategies Among the Turkana Pastoralists of Northern Kenya. Int. J. Disaster Risk Sci. 2015, 6, 295–309. [Google Scholar] [CrossRef]
- Adhikari, S. Drought Impact and Adaptation Strategies in the Mid-Hill Farming System of Western Nepal. Environments 2018, 5, 101. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern Global Climate Change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Ding, Y.; Chen, D.; Qin, D.; Zhai, P. Understanding Human Influence on Climate Change in China. Natl. Sci. Rev. 2022, 9, nwab113. [Google Scholar] [CrossRef]
- Zommers, Z.; Singh, A. Reducing Disaster: Early Warning Systems for Climate Change; Springer: Dordrecht, The Netherlands, 2014; pp. 1–387. [Google Scholar] [CrossRef]
- Nissanka, S.P.; Sangakkara, U.R. Global Climate Change and Its Impacts on Sri Lanka Global; Faculty of Agriculture, University of Peradeniya Sri Lanka: Kandy, Sri Lanka, 2009; ISBN 9789554122413. [Google Scholar]
- Wickramaratne, S.; Ruwanpura, J.; Ranasinghe, U.; Walawe-Durage, S.; Adikariwattage, V.; Wirasinghe, S.C. Ranking of Natural Disasters in Sri Lanka for Mitigation Planning. Int. J. Disaster Resil. Built Environ. 2012, 3, 115–132. [Google Scholar] [CrossRef]
- Shelton, S.; Ogou, F.K.; Pushpawela, B. Spatial-Temporal Variability of Droughts during Two Cropping Seasons in Sri Lanka and Its Possible Mechanisms. Asia-Pacific J. Atmos. Sci. 2022, 58, 127–144. [Google Scholar] [CrossRef]
- Tate, E.L.; Gustard, A. Drought Definition: A Hydrological Perspective. In Drought and Drought Mitigation in Europe; Springer: Dordrecht, The Netherlands, 2000; pp. 23–48. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of Increasing Drought Severity Caused by Temperature Rise in Southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Wilhite, D.; Glantz, M.H. The Role of Definitions Understanding: The Drought Phenomenon: The Role of Definitions; Westview Press: Boulder, CO, USA, 1987; pp. 11–27. [Google Scholar]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A Review of Drought Indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought Indices and Indicators Revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- Beguería, S.; Sergio, M.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 1994, 34, 3001–3023. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards Pan-European Drought Risk Maps: Quantifying the Link between Drought Indices and Reported Drought Impacts. Environ. Res. Lett. 2015, 10, 014008. [Google Scholar] [CrossRef]
- Ekanayake, E.; Perera, K. Analysis of Drought Severity and Duration Using Copulas in Anuradhapura, Sri Lanka. Br. J. Environ. Clim. Chang. 2014, 4, 312–327. [Google Scholar] [CrossRef]
- Chithranayana, R.D.; Punyawardena, B.V.R. Identification of drought prone agro-ecological regions in Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2008, 36, 117. [Google Scholar] [CrossRef]
- Rekha, N. Drought Risk Reduction in the Dry Zone of Sri Lanka; Emerald Group Publishing Ltd.: Leeds, UK, 2011; Volume 8, ISBN 9780857248633. [Google Scholar]
- Haque, A.K.E.; Mukhopadhyay, P.; Nepal, M.; Shammin, M.R. Change and Community Resilience; Springer Nature: Singapore, 2022; ISBN 9789811606793. [Google Scholar]
- Burchfield, E.; Williams, N.E.; Carrico, A.R. Rescaling Drought Mitigation in Rural Sri Lanka. Reg. Environ. Chang. 2018, 18, 2495–2503. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Zhu, X.; Shen, Z.; Yu, H. Drought Risk Assessment in China: Evaluation Framework and Influencing Factors. Geogr. Sustain. 2020, 1, 220–228. [Google Scholar] [CrossRef]
- Pei, W.; Fu, Q.; Liu, D.; Li, T.; Cheng, K.; Cui, S. A Novel Method for Agricultural Drought Risk Assessment. Water Resour. Manag. 2019, 33, 2033–2047. [Google Scholar] [CrossRef]
- Wu, H.; Wilhite, D.A. An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA. Nat. Hazards 2004, 33, 1–21. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Li, Z.; Zhou, Y.; Guo, Y.; Huang, H. Agricultural Drought Risk Assessment in Southwest China. Water 2019, 11, 1064. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.; Lian, F.; Gao, Y.; Lin, D.; Wang, J. Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize. Sustainability 2016, 8, 813. [Google Scholar] [CrossRef]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Rezaei, E.E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J.; et al. Global-Scale Drought Risk Assessment for Agricultural Systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The Shared Socio-Economic Pathway (SSP) Greenhouse Gas Concentrations and Their Extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Thevakaran, A.; Suppiah, R.; Sonnadara, U. Trends in Extreme Rainfall Events in Sri Lanka,1961-2010. J. Natl. Sci. Found. Sri Lanka 2019, 47, 285–295. [Google Scholar] [CrossRef]
- Jayawardena, I.S.P.; Darshika, D.T.; Herath, H.C.R. Recent Trends in Climate Extreme Indices over Sri Lanka. Am. J. Clim. Chang. 2018, 07, 586–599. [Google Scholar] [CrossRef]
- Nas, B. Geostatistical Approach to Assessment of Spatial Distribution of Groundwater Quality. Polish J. Environ. Stud. 2009, 18, 1073–1082. [Google Scholar]
- Shipley, S.; Graffman, I.; Ingram, J. GIS Applications in Climate and Meteorology. In Proceedings of the ESRI Annual User Conference, San Diego, CA, USA, 26–30 June 2000. [Google Scholar]
- Alahacoon, N.; Edirisinghe, M.; Ranagalage, M. Satellite-Based Meteorological and Agricultural Drought Monitoring for Agricultural Sustainability in Sri Lanka. Sustainability 2021, 13, 3427. [Google Scholar] [CrossRef]
- Krishnamoorthi, N. Role of Remote Sensing and GIS in Natural-Disaster Management Cycle. Imp. J. Interdiscip. Res. 2016, 2, 144–154. [Google Scholar]
- Legesse, G.; Suryabhagavan, K.V. Remote Sensing and GIS Based Agricultural Drought Assessment in East Shewa Zone, Ethiopia. Trop. Ecol. 2014, 55, 349–363. [Google Scholar]
- Belal, A.A.; El-Ramady, H.R.; Mohamed, E.S.; Saleh, A.M. Drought Risk Assessment Using Remote Sensing and GIS Techniques. Arab. J. Geosci. 2014, 7, 35–53. [Google Scholar] [CrossRef]
- Rajpoot, P.S.; Kumar, A. Impact assessment of meteorological drought on rainfed agriculture using drought index and NDVI modeling: A case study of Tikamgarh district, M. P., India. Appl. Geomat. 2019, 11, 15–23. [Google Scholar] [CrossRef]
- He, B.; Lü, A.; Wu, J.; Zhao, L.; Liu, M. Drought Hazard Assessment and Spatial Characteristics Analysis in China. J. Geogr. Sci. 2011, 21, 235–249. [Google Scholar] [CrossRef]
- Xu, X.; Xie, F.; Zhou, X. Research on Spatial and Temporal Characteristics of Drought Based on GIS Using Remote Sensing Big Data. Clust. Comput. 2016, 19, 757–767. [Google Scholar] [CrossRef]
- Finch, W.H. Distribution of Variables by Method of Outlier Detection. Front. Psychol. 2012, 3, 211. [Google Scholar] [CrossRef]
- Afrifa-Yamoah, E.; Mueller, U.A.; Taylor, S.M.; Fisher, A.J. Missing Data Imputation of High-Resolution Temporal Climate Time Series Data. Meteorol. Appl. 2020, 27, e1873. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, J.; Qi, J.; Zhang, X.; Zeng, Y.; Shui, W.; Xu, Z.; Zhang, R.; Wu, X.; Cong, J. A Multi-Scale Daily SPEI Dataset for Drought Characterization at Observation Stations over Mainland China from 1961 to 2018. Earth Syst. Sci. Data 2021, 13, 331–341. [Google Scholar] [CrossRef]
- Abeysiriwardana, H.D.; Muttil, N.; Rathnayake, U. A Comparative Study of Potential Evapotranspiration Estimation by Three Methods with FAO Penman–Monteith Method across Sri Lanka. Hydrology 2022, 9, 206. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. A Review on Monthly Water Balance Models for Water Resources Investigations. Water Resour. Manag. 1998, 12, 20–50. [Google Scholar] [CrossRef]
- Sedgwick, P. Pearson’s Correlation Coefficient. BMJ 2012, 345, e4483. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. Spatial Variability of Rainfall Trends in Sri Lanka from 1989 to 2019 as an Indication of Climate Change. ISPRS Int. J. Geo-Inf. 2021, 10, 84. [Google Scholar] [CrossRef]
- Heydari Alamdarloo, E.; Khosravi, H.; Nasabpour, S.; Gholami, A. Assessment of Drought Hazard, Vulnerability and Risk in Iran Using GIS Techniques. J. Arid Land 2020, 12, 984–1000. [Google Scholar] [CrossRef]
- Talebiniya, M.; Khosravi, H.; Zehtabian, G.; Malekian, A.; Keshtkar, H. Investigating the Role of Meteorological Drought and Geodetic Factors on Land Subsidence Vulnerability Using Fuzzy Overlay. Desert 2022, 27, 227–245. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S. Spatial Distribution of Unidirectional Trends in Climate and Weather Extremes in Nile River Basin. Theor. Appl. Climatol. 2019, 137, 1181–1199. [Google Scholar] [CrossRef]
- Agbo, E.P.; Ekpo, C.M.; Edet, C.O. Analysis of the Effects of Meteorological Parameters on Radio Refractivity, Equivalent Potential Temperature and Field Strength via Mann-Kendall Test. Theor. Appl. Climatol. 2021, 143, 1437–1456. [Google Scholar] [CrossRef]
- Ampitiyawatta, A.D.; Wijeratne, A.W. Impact of Temporal Changes of Rainfall on Major Climatic Zones of Sri Lanka. Trop. Agric. Res. Ext. 2015, 18, 148. [Google Scholar] [CrossRef]
- Gunatilleke, C.V.S.; Gunatilleke, I.A.U.N.; Esufali, S.; Harms, K.E.; Ashton, P.M.S.; Burslem, D.F.R.P.; Ashton, P.S. Species-Habitat Associations in a Sri Lankan Dipterocarp Forest. J. Trop. Ecol. 2006, 22, 371–384. [Google Scholar] [CrossRef]
- Breuste, J.; Jayathunga, S. Representatives of Nature Conservation and Ecotourism in Different Biomes of Sri Lanka. Hercynia 2010, 43, 257–276. [Google Scholar]
- Pawar, U.; Karunathilaka, P.; Rathnayake, U. Spatio-Temporal Rainfall Variability and Concentration over Sri Lanka. Adv. Meteorol. 2022, 2022, 6456761. [Google Scholar] [CrossRef]
- Senatilleke, U.; Gunathilake, M.B.; Alyousifi, Y.; Rathnayake, U. Analysis of Recent Trends and Variability of Temperature and Relative Humidity over Sri Lanka. Mausam 2022, 73, 511–524. [Google Scholar] [CrossRef]
- Blauhut, V.; Stahl, K.; Stagge, J.H.; Tallaksen, L.M.; de Stefano, L.; Vogt, J. Estimating Drought Risk across Europe from Reported Drought Impacts, Drought Indices, and Vulnerability Factors. Hydrol. Earth Syst. Sci. 2016, 20, 2779–2800. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global Data Assessment and Analysis of Drought Characteristics Based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, M.J. Future Drought Characteristics through a Multi-Model Ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Russo, T.; Alfredo, K.; Fisher, J. Sustainable Water Management in Urban, Agricultural, and Natural Systems. Water 2014, 6, 3934–3956. [Google Scholar] [CrossRef]
- Wilhite, D.A.; And, M.V.K.S.; Wood, D.A. Early Warning Systems for Drought Preparedness and Drought Management. In Proceedings of the Expert Group Meeting, Lisbon, Portugal, 5–7 September 2000; pp. 57–73. [Google Scholar]
- Che-Ani, A.I.; Shaari, N.; Sairi, A.; Zain, M.F.M.; Tahir, M.M. Rainwater Harvesting as an Alternative Water Supply in the Future. Eur. J. Sci. Res. 2014, 34, 132–140. [Google Scholar]
SPEI Value | Drought Category | Frequency (%) |
---|---|---|
0 to −0.99 | Near Normal | 45 |
−1 to −1.49 | Moderate | 25 |
−1.50 to −1.99 | Severe | 20 |
−2 or less | Extreme | 10 |
Environmental Factor | Importance |
---|---|
Rainfall | Main driving factor of drought |
Temperature | Main driving factor of drought |
Elevation | Drought occurrence differs depending on the level of elevation |
Land Use | Effect on the occurrence of drought |
Soil Type | The amount of water in the soil affects drought |
Precipitation | Temperature | SPEI | ||
---|---|---|---|---|
Precipitation | Pearson Correlation | 1 | −0.319 ** | 0.208 ** |
Sig. (2-tailed) | 0.000 | 0.000 | ||
N | 588 | 588 | 588 | |
Temperature | Pearson Correlation | −0.319 ** | 1 | −0.086 |
Sig. (2-tailed) | 0.000 | 0.280 | ||
N | 588 | 588 | 588 | |
SPEI | Pearson Correlation | 0.208 ** | −0.086 | 1 |
Sig. (2-tailed) | 0.000 | 0.280 | ||
N | 588 | 588 | 588 |
Location | Temperature | Precipitation | ||||||
---|---|---|---|---|---|---|---|---|
SSP 2.6 | SSP 8.5 | SSP 2.6 | SSP 8.5 | |||||
p Value | Sen’s Slope | p Value | Sen’s Slope | p Value | Sen’s Slope | p Value | Sen’s Slope | |
Anuradhapura | <0.00 * | 0.0057 | <0.00 * | 0.0434 | 0.1933 | 0.3257 | <0.00 * | 2.5582 |
Badulla | <0.00 * | 0.0054 | <0.00 * | 0.0435 | 0.0112 * | 0.7556 | <0.00 * | 3.3777 |
Batticaloa | <0.00 * | 0.0057 | <0.00 * | 0.0432 | 0.1081 | 0.4196 | <0.00 * | 3.0575 |
Colombo | <0.00 * | 0.0056 | <0.00 * | 0.0438 | 0.0010 * | 1.4774 | <0.00 * | 6.0540 |
Galle | <0.00 * | 0.0057 | <0.00 * | 0.0431 | 0.0015 * | 1.0343 | <0.00 * | 3.8028 |
Hambantota | <0.00 * | 0.0057 | <0.00 * | 0.0431 | 0.0015 * | 1.0343 | <0.00 * | 3.8028 |
Katugastota | <0.00 * | 0.0055 | <0.00 * | 0.0439 | 0.0092 * | 0.9959 | <0.00 * | 3.8047 |
Katunayake | <0.00 * | 0.0056 | <0.00 * | 0.0438 | 0.0010 * | 1.4774 | <0.00 * | 6.0540 |
Kurunegala | <0.00 * | 0.0054 | <0.00 * | 0.0435 | 0.0029 * | 0.7627 | <0.00 * | 3.6204 |
Mannar | <0.00 * | 0.0059 | <0.00 * | 0.0432 | 0.1303 | 0.4451 | <0.00 * | 2.3983 |
Nuwara Eliya | <0.00 * | 0.0055 | <0.00 * | 0.0439 | 0.0092 * | 0.9959 | <0.00 * | 3.8047 |
Puttalam | <0.00 * | 0.0054 | <0.00 * | 0.0435 | 0.0029 * | 0.7627 | <0.00 * | 3.6204 |
Rathnapura | <0.00 * | 0.0055 | <0.00 * | 0.0440 | 0.0021 * | 1.5687 | <0.00 * | 5.8016 |
Tricomalee | <0.00 * | 0.0057 | <0.00 * | 0.0432 | 0.1081 | 0.4196 | <0.00 * | 3.0575 |
Vavuniya | <0.00 * | 0.0059 | <0.00 * | 0.0432 | 0.1303 | 0.4451 | <0.00 * | 2.3983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dissanayake, S.D.S.K.; Jing, Y.; Laksith, T.I. Assessing Drought Risk and the Influence of Climate Projections in Sri Lanka for Sustainable Drought Mitigation via Geospatial Techniques. Sustainability 2024, 16, 10375. https://doi.org/10.3390/su162310375
Dissanayake SDSK, Jing Y, Laksith TI. Assessing Drought Risk and the Influence of Climate Projections in Sri Lanka for Sustainable Drought Mitigation via Geospatial Techniques. Sustainability. 2024; 16(23):10375. https://doi.org/10.3390/su162310375
Chicago/Turabian StyleDissanayake, S. D. Sachini Kaushalya, Yuanshu Jing, and Tharana Inu Laksith. 2024. "Assessing Drought Risk and the Influence of Climate Projections in Sri Lanka for Sustainable Drought Mitigation via Geospatial Techniques" Sustainability 16, no. 23: 10375. https://doi.org/10.3390/su162310375
APA StyleDissanayake, S. D. S. K., Jing, Y., & Laksith, T. I. (2024). Assessing Drought Risk and the Influence of Climate Projections in Sri Lanka for Sustainable Drought Mitigation via Geospatial Techniques. Sustainability, 16(23), 10375. https://doi.org/10.3390/su162310375