Identifying Landscape Characteristics That Maximize Ecosystem Services Provision
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spatial Distribution of ES in Italy
3.2. Spatial Correlation Among ES
3.3. Identifying the Landscape Variables Range in Which Each Ecosystem Service Is Maximized
4. Discussion
4.1. Perspectives Under Different Climate Scenarios
4.2. Limitations of the Approach of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Munafò, M. Land Consumption, Land Cover Changes and Ecosystem Services; Report SNPA 32/22; 2022; ISBN 978-88-448-1124-2. Available online: https://www.snpambiente.it/snpa/consumo-di-suolo-dinamiche-territoriali-e-servizi-ecosistemici-edizione-2022/ (accessed on 1 July 2023).
- Nelson, E.J.; Kareiva, P.; Ruckelshaus, M.; Arkema, K.; Geller, G.; Girvetz, E.; Goodrich, E.; Matzek, V.; Pinsky, M.; Reid, W.; et al. Climate Change’s Impact on Key Ecosystem Services and the Human Well-Being They Support in the US. Front. Ecol. Environ. 2013, 11, 483–493. [Google Scholar] [CrossRef]
- Di Leginio, M.; Assennato, F.; d’Antona, M.; Marinosci, I.; Munafò, M.; Arcidiacono, A.; di Martino, V.; Restelli, S.; Ronchi, S.; Ferruzzi, A.B.E.M.; et al. Buone Pratiche Sull’uso Sostenibile Del Suolo e Delle Sue Risorse A.1.2-Report Del Progetto SOIL4LIFE (LIFE17 GIE/IT/000477). 2019. Available online: https://soil4life.eu/wp/wp-content/uploads/2020/01/S4L-Report-A.1.2-final.pdf (accessed on 1 July 2023).
- Costanza, R.; D’Arge, R.; de Groot, R.S.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Values of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Montanarella, L. The EU Thematic Strategy on Soil Protection. In Proceedings of the Land Degradation; 2003; pp. 15–29. Available online: https://esdac.jrc.ec.europa.eu/events/SummerSchool_2003/presentations/III_SoilFunctions/PT01SoilProtStrat_LM.doc.pdf (accessed on 1 July 2023).
- Casalegno, S.; Inger, R.; DeSilvey, C.; Gaston, K.J.K. Spatial Covariance between Aesthetic Value & Other Ecosystem Services. PLoS ONE 2013, 8, e68437. [Google Scholar] [CrossRef]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; World Resources Institute: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 5 July 2023).
- Costanza, R. Valuing Natural Capital and Ecosystem Services toward the Goals of Efficiency, Fairness, and Sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Benedetti, Y.; Morelli, F.; Munafò, M.; Assennato, F.; Strollo, A.; Santolini, R. Spatial Associations among Avian Diversity, Regulating and Provisioning Ecosystem Services in Italy. Ecol. Indic. 2020, 108, 105742. [Google Scholar] [CrossRef]
- Morelli, F.; Jiguet, F.; Sabatier, R.; Dross, C.; Princé, K.; Tryjanowski, P.; Tichit, M. Spatial Covariance between Ecosystem Services and Biodiversity Pattern at a National Scale (France). Ecol. Indic. 2017, 82, 574–586. [Google Scholar] [CrossRef]
- Anderson, B.J.; Armsworth, P.R.; Eigenbrod, F.; Thomas, C.D.; Gillings, S.; Heinemeyer, A.; Roy, D.B.; Gaston, K.J. Spatial Covariance between Biodiversity and Other Ecosystem Service Priorities. J. Appl. Ecol. 2009, 46, 888–896. [Google Scholar] [CrossRef]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and Ecosystem Services: A Multilayered Relationship. Trends Ecol. Evol. 2012, 27, 19–25. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.-S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the Evidence for Biodiversity Effects on Ecosystem Functioning and Services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef]
- European Commission. Mapping and Assessment of Ecosystems and Their Services Indicators for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020 Second Report—Final, February 2014; European Commission: Brussels, Belgium, 2014.
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development, A/RES/70/1, United Nations; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 5 July 2023).
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and Trade-Offs between Ecosystem Service Supply, Biodiversity, and Habitat Conservation Status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Salvati, L.; Munafò, M.; Morelli, V.G.; Sabbi, A. Low-Density Settlements and Land Use Changes in a Mediterranean Urban Region. Landsc. Urban Plan. 2012, 105, 43–52. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in Integrating the Concept of Ecosystem Services and Values in Landscape Planning, Management and Decision Making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; van Mantgem, P.J. Linking Biodiversity to Ecosystem Function: Implications for Conservation Ecology. Oecologia 2000, 122, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Science for Environment Policy. Ecosystem Services and the Environment. In-Depth Report 11 Produced for the European Commission, DG Environment by the Science Communication Unit, UWE, Bristol. 2015. Available online: https://uwe-repository.worktribe.com/output/834982/ecosystem-services-and-the-environment-in-depth-report-11-produced-for-the-european-commission-dg-environment (accessed on 5 July 2023).
- Asmamaw, M.; Ambellu, A.; Tiku, S. Resilience of Ecosystems to Climate Change. Am. J. Environ. Prot. 2015, 4, 325–333. [Google Scholar] [CrossRef]
- Locatelli, B. Ecosystem Services and Climate Change. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: London, UK; New York, NY, USA, 2016; pp. 481–490. ISBN 978-1-138-02508-0. [Google Scholar]
- Schmidt, K.; Martín-López, B.; Phillips, P.M.; Julius, E.; Makan, N.; Walz, A. Key Landscape Features in the Provision of Ecosystem Services: Insights for Management. Land Use Policy 2019, 82, 353–366. [Google Scholar] [CrossRef]
- Oteros-Rozas, E.; Martín-López, B.; Fagerholm, N.; Bieling, C.; Plieninger, T. Using Social Media Photos to Explore the Relation between Cultural Ecosystem Services and Landscape Features across Five European Sites. Ecol. Indic. 2018, 94, 74–86. [Google Scholar] [CrossRef]
- Tenerelli, P.; Demšar, U.; Luque, S. Crowdsourcing Indicators for Cultural Ecosystem Services: A Geographically Weighted Approach for Mountain Landscapes. Ecol. Indic. 2016, 64, 237–248. [Google Scholar] [CrossRef]
- Kobler, J.; Zehetgruber, B.; Dirnböck, T.; Jandl, R.; Mirtl, M.; Schindlbacher, A. Effects of Aspect and Altitude on Carbon Cycling Processes in a Temperate Mountain Forest Catchment. Landsc. Ecol. 2019, 34, 325–340. [Google Scholar] [CrossRef]
- Maimouni, S.; Daghor, L.; Oukassou, M.; Moutaki, S.E.; Lhissou, R. Evaluate the Effect of Topographic Factors and Lithology on Forest Cover Distribution: A Case Study of the Moroccan High Atlas. Environmental Modeling and Assessment. Environ. Model. Assess. 2021, 26, 787–801. [Google Scholar] [CrossRef]
- Qiao, J.; Sun, Y. Effects of Altitude and Slope on the Climate–Radial Growth Relationships of Larix olgensis A. Henry in the Southern Lesser Khingan Mountains, Northeast China. Ecol. Process. 2022, 11, 46. [Google Scholar] [CrossRef]
- Cerda, R.; Allinne, C.; Gary, C.; Tixier, P.; Harvey, C.A.; Krolczyk, L.; Mathiot, C.; Clément, E.; Aubertot, J.N.; Avelino, J. Effects of Shade, Altitude and Management on Multiple Ecosystem Services in Coffee Agroecosystems. Eur. J. Agron. 2017, 82, 308–319. [Google Scholar] [CrossRef]
- Sarmiento-Soler, A.; Rötter, R.P.; Hoffmann, M.P.; Jassogne, L.; van Asten, P.; Graefe, S.; Vaast, P. Disentangling Effects of Altitude and Shade Cover on Coffee Fruit Dynamics and Vegetative Growth in Smallholder Coffee Systems. Agric. Ecosyst. Environ. 2022, 326, 107786. [Google Scholar] [CrossRef]
- Morelli, F. Quantifying Effects of Spatial Heterogeneity of Farmlands on Bird Species Richness by Means of Similarity Index Pairwise. Int. J. Biodivers. 2013, 2013, 914837. [Google Scholar] [CrossRef]
- Manlick, P.J.; Windels, S.K.; Woodford, J.E.; Pauli, J.N. Can Landscape Heterogeneity Promote Carnivore Coexistence in Human-Dominated Landscapes? Landsc. Ecol. 2020, 35, 2013–2027. [Google Scholar] [CrossRef]
- Mannaf, M.; Zuo, A.; Wheeler, S.A. The Spatial Influences of Organic Farming and Environmental Heterogeneity on Biodiversity in South Australian Landscapes. J. Environ. Manag. 2022, 324, 116414. [Google Scholar] [CrossRef]
- Rees, E.E.; Pond, B.A.; Tinline, R.R.; Bélanger, D. Modelling the Effect of Landscape Heterogeneity on the Efficacy of Vaccination for Wildlife Infectious Disease Control. J. Appl. Ecol. 2013, 50, 881–891. [Google Scholar] [CrossRef]
- Botzas-Coluni, J.; Crockett, E.T.H.; Rieb, J.T.; Bennett, E.M. Farmland Heterogeneity Is Associated with Gains in Some Ecosystem Services but Also Potential Trade-Offs. Agric. Ecosyst. Environ. 2021, 322, 107661. [Google Scholar] [CrossRef]
- Herd-Hoare, S.; Shackleton, C.M. The Use and Value of Wild Harvested Provisioning Ecosystem Services along a Landscape Heterogeneity Gradient in Rural South Africa. Ecosyst. People 2022, 18, 616–629. [Google Scholar] [CrossRef]
- Renetzeder, C.; Schindler, S.; Peterseil, J.; Prinz, M.A.; Mücher, S.; Wrbka, T. Can We Measure Ecological Sustainability? Landscape Pattern as an Indicator for Naturalness and Land Use Intensity at Regional, National and European Level. Ecol. Indic. 2010, 10, 39–48. [Google Scholar] [CrossRef]
- Tieskens, K.F.; Schulp, C.J.E.; Levers, C.; Lieskovský, J.; Kuemmerle, T.; Plieninger, T.; Verburg, P.H. Characterizing European Cultural Landscapes: Accounting for Structure, Management Intensity and Value of Agricultural and Forest Landscapes. Land Use Policy 2017, 62, 29–39. [Google Scholar] [CrossRef]
- Geri, F.; Amici, V.; Rocchini, D. Human Activity Impact on the Heterogeneity of a Mediterranean Landscape. Appl. Geogr. 2010, 30, 370–379. [Google Scholar] [CrossRef]
- García, M.B.; Errea, P.; Gómez, D.; Pizarro, M. Winners and Losers of Landscape Changes over the Last Sixty Years in One of the Oldest and Southernmost National Parks of the European Alpine Region: Ordesa and Monte Perdido. Geogr. Res. Lett. 2019, 45, 123–141. [Google Scholar] [CrossRef]
- AA VV Enciclopedia Universale Garzanti; Garzanti: Milan, Italy, 1991; 1664. (In Italian)
- Bresich, G. Iperlibro; Deagostini: Milan, Italy, 2005; p. 252. (In Italian) [Google Scholar]
- Spano, D.; Armiento, M.; Aslam, M.F.; Bacciu, V.; Bigano, A.; Bosello, F.; Breil, M.; Butenschön, M.; Cadau, M.; Cogo, E.; et al. G20 Climate Risk Atlas. Impacts, Policy and Economics in the G20. 2021. Available online: https://files.cmcc.it/g20climaterisks/G20_climaterisk_MethodologicalNotesandReferences.pdf (accessed on 5 July 2023).
- Cimon-Morin, J.; Darveau, M.; Poulin, M. Fostering Synergies between Ecosystem Services and Biodiversity in Conservation Planning: A Review. Biol. Conserv. 2013, 166, 144–154. [Google Scholar] [CrossRef]
- Pressey, R.L.; Cabeza, M.; Watts, M.E.; Cowling, R.M.; Wilson, K.A. Conservation Planning in a Changing World. Trends Ecol. Evol. 2007, 22, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.; Montag, J.M.; Lyon, K. Public Participation GIS: A Method for Identifying Ecosystem Services. Soc. Nat. Resour. 2012, 25, 633–651. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.J.E.; Verburg, P.H. Mapping Ecosystem Services Demand: A Review of Current Research and Future Perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- Turner, M.G.; Donato, D.C.; Romme, W.H. Consequences of Spatial Heterogeneity for Ecosystem Services in Changing Forest Landscapes: Priorities for Future Research. Landsc. Ecol. 2013, 28, 1081–1097. [Google Scholar] [CrossRef]
- AA.VV. InVEST + VERSION + User’s Guide. In Proceedings of the 2018 International Conference on Computing Sciences and Engineering, ICCSE 2018, Qingdao, China, 3–4 December 2018; 2018. [Google Scholar]
- CLC Corine Land Cover. Available at Coperniucs Land Monitoring 2012. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc-2012 (accessed on 1 July 2018).
- De Fioravante, P.; Strollo, A.; Assennato, F.; Marinosci, I.; Congedo, L.; Munafò, M. High Resolution Land Cover Integrating Copernicus Products: A 2012–2020 Map of Italy. Land 2022, 11, 35. [Google Scholar] [CrossRef]
- FAO; ITPS. Global Soil Organic Carbon Map (GSOCmap); FAO: Rome, Italy, 2018. [Google Scholar]
- Munafò, M. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici—Edizione 2018; Report ISPRA 288/2018; 2018; ISBN: 978-88-448-0902-7.
- Andrew, M.E.; Wulder, M.A.; Nelson, T.A.; Coops, N.C. Spatial Data, Analysis Approaches, and Information Needs for Spatial Ecosystem Service Assessments: A Review. GIScience Remote Sens. 2015, 52, 344–373. [Google Scholar] [CrossRef]
- Wang, F. Quantitative Methods and Socio-Economic Applications in GIS, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1466584723. [Google Scholar]
- Maes, J.; Paracchini, M.L.; Zulian, G. A European Assessment of the Provision of Ecosystem Services: Towards an Atlas of Ecosystem Services; EUR—Scientific and Technical Research Reports; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing Habitat Quality in Relation to the Spatial Distribution of Protected Areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4, International Centre for Tropical Agriculture (CIAT). Available online from the CGIAR-CSI SRTM 90m Database. Available online: http://srtm.csi.cgiar.org (accessed on 1 July 2018).
- Reuter, H.; Nelson, A.; Jarvis, A. An Evaluation of Void Filling Interpolation Methods for SRTM Data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10.1; Environmental Systems Research Institute: Redlands, CA, USA, 2012. [Google Scholar]
- Schindler, S.; Poirazidis, K.; Wrbka, T. Towards a Core Set of Landscape Metrics for Biodiversity Assessments. A Case Study from Dadia National Park, Greece. Ecol. Indic. 2008, 8, 502–514. [Google Scholar] [CrossRef]
- Schindler, S.; von Wehrden, H.; Poirazidis, K.; Wrbka, T.; Kati, V. Multiscale Performance of Landscape Metrics as Indicators of Species Richness of Plants, Insects and Vertebrates. Ecol. Indic. 2013, 31, 41–48. [Google Scholar] [CrossRef]
- Xu, C.; Huang, Z.Y.X.; Chi, T.; Chen, B.J.W.; Zhang, M.; Liu, M. Can Local Landscape Attributes Explain Species Richness Patterns at Macroecological Scales? Glob. Ecol. Biogeogr. 2014, 23, 436–445. [Google Scholar] [CrossRef]
- Morelli, F.; Pruscini, F.; Santolini, R.; Perna, P.; Benedetti, Y.; Sisti, D. Landscape Heterogeneity Metrics as Indicators of Bird Diversity: Determining the Optimal Spatial Scales in Different Landscapes. Ecol. Indic. 2013, 34, 372–379. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental Heterogeneity as a Universal Driver of Species Richness across Taxa, Biomes and Spatial Scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Kisel, Y.; McInnes, L.; Toomey, N.H.; Orme, C.D.L. How Diversification Rates and Diversity Limits Combine to Create Large-Scale Species-Area Relationships. Philos. Trans. R. Soc. B—Biol. Sci. 2011, 366, 2514–2525. [Google Scholar] [CrossRef]
- Caro, B.C.; Caro, J.C.C.; Barrio, J.C.; Barrio, I.C.; Tortosa, I.C. Effects of Hedges and Herbaceous Cover on Passerine Communities in Mediterranean Olive Groves. Acta Ornithol. 2015, 50, 180–192. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized Additive Models for Location, Scale and Shape. J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Wood, S.N. Thin Plate Regression Splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017; ISBN 9781315370279. [Google Scholar]
- Nagel, T.A.; Firm, D.; Pisek, R.; Mihelic, T.; Hladnik, D.; de Groot, M.; Rozenbergar, D. Evaluating the Influence of Integrative Forest Management on Old-Growth Habitat Structures in a Temperate Forest Region. Biol. Conserv. 2017, 216, 101–107. [Google Scholar] [CrossRef]
- Bjørnstad, O.N.; Falck, W. Nonparametric Spatial Covariance Functions: Estimation and Testing. Environ. Ecol. Stat. 2001, 8, 53–70. [Google Scholar] [CrossRef]
- Marra, G.; Wood, S.N. Coverage Properties of Confidence Intervals for Generalized Additive Model Components. Scand. J. Stat. 2012, 39, 53–74. [Google Scholar] [CrossRef]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997; Volume 54, ISBN 9780511802843. [Google Scholar]
- Kim, S. Ppcor: Partial and Semi-Partial (Part) Correlation. R Package Version 1.1. 2015. Available online: https://cran.rproject.org/web/packages/ppcor/ppcor.pdf (accessed on 15 July 2022).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; Volume VIII, ISBN 978-0-387-98141-3. [Google Scholar]
- Bjornstad, O.H. Ncf: Spatial Covariance Functions. R Package Version 1.2-6. 2018. Available online: https://cran.r-project.org/web/packages/ncf/ncf.pdf (accessed on 15 July 2022).
- Crouzat, E.; Mouchet, M.; Turkelboom, F.; Byczek, C.; Meersmans, J.; Berger, F.; Verkerk, P.J.; Lavorel, S. Assessing Bundles of Ecosystem Services from Regional to Landscape Scale: Insights from the French Alps. J. Appl. Ecol. 2015, 52, 1145–1155. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Tappeiner, U. Mapping Ecosystem Services Supply in Mountain Regions: A Case Study from South Tyrol (Italy). Ann. Bot. 2014, 4, 35–43. [Google Scholar] [CrossRef]
- Caddeo, A.; Marras, S.; Sallustio, L.; Spano, D.; Sirca, C. Soil Organic Carbon in Italian Forests and Agroecosystems: Estimating Current Stock and Future Changes with a Spatial Modelling Approach. Agric. For. Meteorol. 2019, 278, 107654. [Google Scholar] [CrossRef]
- Teixeira Duarte, G.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The Effects of Landscape Patterns on Ecosystem Services: Meta-Analyses of Landscape Services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Di Falco, S.; Chavas, J.P. Rainfall Shocks, Resilience, and the Effects of Crop Biodiversity on Agroecosystem Productivity. Land Econ. 2008, 84, 83–96. [Google Scholar] [CrossRef]
- Ramirez, M.A.M.; Pulhin, J.M.; Garcia, J.E.; Tapia, M.A.; Pulhin, F.B.; Cruz, R.V.O.; De Luna, C.C.; Inoue, M. Landscape Fragmentation, Ecosystem Services, and Local Knowledge in the Baroro River Watershed, Northern Philippines. Resources 2019, 8, 164. [Google Scholar] [CrossRef]
- Ramírez, F.; Cordón, Y.; García, D.; Rodríguez, A.; Coll, M.; Davis, L.S.; Chiaradia, A.; Carrasco, J.L. Large-Scale Human Celebrations Increase Global Light Pollution. People Nat. 2023, 5, 1552–1560. [Google Scholar] [CrossRef]
- Turner, W.R.; Oppenheimer, M.; Wilcove, D.S. Aforce to Fight Global Warming. Nature 2009, 428, 278–279. [Google Scholar] [CrossRef]
- Hilborn, E.D.; Beasley, V.R. One Health and Cyanobacteria in Freshwater Systems: Animal Illnesses and Deaths Are Sentinel Events for Human Health Risks. Toxins 2015, 7, 1374–1395. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate Change Effects on Biodiversity, Ecosystems, Ecosystem Services, and Natural Resource Management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Jay, A.; Reidmiller, D.R.; Avery, C.W.; Barrie, D.; DeAngelo, B.J.; Dave, A.; Dzaugis, M.; Kolian, M.; Lewis, K.L.M.; Reeves, K.; et al. Overview. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; II. U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 33–71. [Google Scholar]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Gowda, P.; Steiner, J.L.; Olson, C.; Boggess, M.; Farrigan, T.; Grusak, M.A. Agriculture and Rural Communities. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; II. U.S. Glob: Washington, DC, USA, 2018; pp. 391–437. [Google Scholar]
- Mori, S.S.; Pacetti, T.; Brandimarte, L.; Santolini, R.; Caporali, E. A Methodology for Assessing Spatio-Temporal Dynamics of Flood Regulating Services. Ecol. Indic. 2021, 129, 107963. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Ameztegui, A.; De Cáceres, M.; De-Miguel, S.; Lefèvre, F.; Brotons, L.; Coll, L. Future Trade-Offs and Synergies among Ecosystem Services in Mediterranean Forests under Global Change Scenarios. Ecosyst. Serv. 2020, 45, 101174. [Google Scholar] [CrossRef]
- Scholes, R.; Settele, J. Terrestrial and Inland Water Systems. Working Group 2 Contribution to the Fifth Assessment Report; IPCC, International Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Qiu, J.; Turner, M.G. Importance of Landscape Heterogeneity in Sustaining Hydrologic Ecosystem Services in an Agricultural Watershed. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
ES | Type | Units | Notes |
---|---|---|---|
Agricultural production | Provisioning | €/ha | The average of agricultural productivity values associated with all cultivated agricultural systems [49]. |
Timber production | Provisioning | €/ha | The average agricultural productivity values are associated with all forest classes [49]. |
Carbon sequestration and storage | Regulating | t/ha | The term refers to ecosystems’ ability to store greenhouse gases and their contribution to mitigating climate change. Estimating this service generally involves calculating the total amount of organic carbon stored by each type of land use/cover [49,56]. |
Habitat quality | Supporting | €/ha | It refers to the ecosystem’s ability to provide suitable conditions for individual and population survival [49,57]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedetti, Y.; Morelli, F.; Svitok, M.; Santolini, R.; Kadlecová, P.; Cavalli, A.; Strollo, A.; Munafò, M. Identifying Landscape Characteristics That Maximize Ecosystem Services Provision. Sustainability 2024, 16, 9461. https://doi.org/10.3390/su16219461
Benedetti Y, Morelli F, Svitok M, Santolini R, Kadlecová P, Cavalli A, Strollo A, Munafò M. Identifying Landscape Characteristics That Maximize Ecosystem Services Provision. Sustainability. 2024; 16(21):9461. https://doi.org/10.3390/su16219461
Chicago/Turabian StyleBenedetti, Yanina, Federico Morelli, Marek Svitok, Riccardo Santolini, Petra Kadlecová, Alice Cavalli, Andrea Strollo, and Michele Munafò. 2024. "Identifying Landscape Characteristics That Maximize Ecosystem Services Provision" Sustainability 16, no. 21: 9461. https://doi.org/10.3390/su16219461
APA StyleBenedetti, Y., Morelli, F., Svitok, M., Santolini, R., Kadlecová, P., Cavalli, A., Strollo, A., & Munafò, M. (2024). Identifying Landscape Characteristics That Maximize Ecosystem Services Provision. Sustainability, 16(21), 9461. https://doi.org/10.3390/su16219461